JPS61218994A - Purifier for water for nuclear reactor - Google Patents

Purifier for water for nuclear reactor

Info

Publication number
JPS61218994A
JPS61218994A JP60061297A JP6129785A JPS61218994A JP S61218994 A JPS61218994 A JP S61218994A JP 60061297 A JP60061297 A JP 60061297A JP 6129785 A JP6129785 A JP 6129785A JP S61218994 A JPS61218994 A JP S61218994A
Authority
JP
Japan
Prior art keywords
reactor
reactor water
water
pressure
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60061297A
Other languages
Japanese (ja)
Other versions
JPH0631796B2 (en
Inventor
戸根川 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60061297A priority Critical patent/JPH0631796B2/en
Publication of JPS61218994A publication Critical patent/JPS61218994A/en
Publication of JPH0631796B2 publication Critical patent/JPH0631796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Water Treatment By Sorption (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はBWR原子炉水浄化系に係り、特にグラノトの
運転中及び停止中全通して効果的に原子炉水を浄化し得
る原子炉水浄化系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a BWR reactor water purification system, and particularly to a reactor water purification system that can effectively purify reactor water throughout the operation and shutdown of a granoto. Regarding the system.

〔発明の背景〕[Background of the invention]

従来のBWR原子炉水浄化系統を第4図に示す。原子炉
水浄化系統の機能は、原子炉通常運転時及び原子炉起動
、停止時における原子炉水の水質と基準値内に維持する
ための炉水の浄化機能、及び原子炉起動時における炉水
の熱膨張による増加分、制御棒駆動水圧系からの冷水の
注入による炉水の増加分を排出して原子炉水位を所定の
レベルに制御する機能である。
A conventional BWR reactor water purification system is shown in Figure 4. The functions of the reactor water purification system are to purify the reactor water during normal reactor operation and during reactor startup and shutdown to maintain the reactor water quality within standard values, and to maintain the reactor water quality within standard values. This function controls the reactor water level to a predetermined level by discharging the increase in reactor water due to thermal expansion and the increase in reactor water due to injection of cold water from the control rod drive hydraulic system.

第4図において、原子炉圧力容器1内の炉水は、原子炉
再循環ポンプ2の吸込ライン及び原子炉圧力容器1底部
から夫々取り出しライン3,4により取り出され、各ラ
インは合流し、格納容器隔離弁5.6を通り、4ンプ5
1にて加圧され、再生熱交換器52及び非再生熱交換器
53で所定の温度(約50℃)まで冷却され、−過脱塩
器54にて浄化され、浄化された炉水は再生熱交換器5
2で加温され、給水ライン34から原子炉へ戻される。
In FIG. 4, the reactor water in the reactor pressure vessel 1 is taken out from the suction line of the reactor recirculation pump 2 and the bottom of the reactor pressure vessel 1 through take-out lines 3 and 4, respectively, and the lines merge and are stored. Through container isolation valve 5.6, 4 pump 5
The reactor water is pressurized at 1, cooled to a predetermined temperature (approximately 50°C) by a regenerative heat exchanger 52 and a non-regenerative heat exchanger 53, and purified by a super desalinator 54, and the purified reactor water is recycled. heat exchanger 5
2 and returned to the reactor through the water supply line 34.

非再生熱交換器53での冷却は、冷却源15により冷却
された冷却水をIンデ16で供給することにより行って
いる。
Cooling in the non-regenerative heat exchanger 53 is performed by supplying cooling water cooled by the cooling source 15 through the inlet 16.

原子炉通常運転時は前記のように循環サイクルにて炉水
の浄化が行われるが、原子炉起動時における炉水の増加
分の排出は、濾過脱塩器54を通した後、復水器へのラ
イン56を通して復水器へ10−することによって、ま
た、パイノ譬スライン55を通して濾過脱塩器54をパ
イ/4スさせた場合には廃棄物受タンクへのライン57
を通して廃棄物処理系の廃棄物受タンク57へ排出する
ことによって行われる。
During normal reactor operation, reactor water is purified in the circulation cycle as described above, but the increased amount of reactor water discharged at the time of reactor startup passes through the filtration demineralizer 54 and then into the condenser. 10- to the condenser through line 56 to
This is done by discharging the waste through the waste receiving tank 57 of the waste treatment system.

ところで、BwRプラントの設備簡素化を図るため、上
記の如き従来の単独の原子炉水浄化装置の代わりにター
ビン系の復水脱塩装置を使用して原子炉水の浄化を行う
公知例が特開昭54−36477号公報に開示されてい
る。これは、原子炉残留熱除去系の熱交換器の下流側と
タービン系の復水脱塩装置上流側を接続し、原子炉低圧
時及び停止時これに炉水を通すことにより炉水冷却と浄
化を行い、炉水中のクラッド除去と放射能低減化を図る
ものである。通常原子炉停止時には原子炉残留熱除去系
により原子炉を冷却し且つ減圧させるが、上記公知例で
は、原子炉内圧力が十分低下した以後に、炉水を原子炉
残留熱除去系熱交換器で冷却した上でタービン系復水脱
塩装置を通し、そのまま給水系を通して原子炉へ戻すよ
うにしているものである。ここで復水脱塩装置へ炉水を
通すのを原子炉内圧力が十分低下してから(すなわち炉
水温度が十分低下してから)行うのは、復水脱塩装置入
口ラインは通常温度が低く約40℃程度であり、圧力と
しては原子炉通常運転状態Khいて約6〜8 kliF
 / cttt2程度となっていることから、十分減圧
、減温する必要があるからである。
By the way, in order to simplify the equipment of a BwR plant, there is a known example in which a turbine-based condensate desalination device is used to purify reactor water instead of the conventional single reactor water purification device as described above. It is disclosed in JP-A No. 54-36477. This connects the downstream side of the heat exchanger of the reactor residual heat removal system and the upstream side of the condensate desalination device of the turbine system, and cools the reactor water by passing reactor water through this during low reactor pressure and shutdown. The purpose is to purify the reactor water, remove crud, and reduce radioactivity. Normally, when a nuclear reactor is shut down, the reactor is cooled and depressurized by the reactor residual heat removal system, but in the above-mentioned known example, after the pressure inside the reactor has sufficiently decreased, the reactor water is transferred to the reactor residual heat removal system heat exchanger. After being cooled, the water is passed through a turbine-based condensate desalination device and then returned to the reactor through the water supply system. The reason why the reactor water is passed through the condensate desalination equipment after the reactor internal pressure has decreased sufficiently (that is, after the reactor water temperature has sufficiently decreased) is because the condensate demineralization equipment inlet line is at a normal temperature. The temperature is as low as about 40℃, and the pressure is about 6 to 8 kliF under normal reactor operating conditions.
/cttt2, it is necessary to sufficiently reduce the pressure and temperature.

したがりて、上記公知例では、原子炉の高圧、高温時に
は原子炉水の浄化が行えないことになる。
Therefore, in the above known example, the reactor water cannot be purified when the reactor is at high pressure and high temperature.

また、原子炉運転中は原子炉残留熱除去系は、非常用炉
心冷却系の一つとして待機状態としているため常時使用
はできない。このように、上記公知例は、その使用範囲
が原子炉低圧時及び停止時のみに制限されてしまうこと
になる。ま九、原子炉停止中、プラント定期点検時等に
おいて給水系が使用できない場合、例えば給水系ヒータ
及びポンプ等の点検、修理の場合には炉水の浄化が行え
なくなるという不具合がある。
Furthermore, while the reactor is operating, the reactor residual heat removal system is on standby as one of the emergency core cooling systems, so it cannot be used all the time. In this way, the range of use of the above-mentioned known example is limited to only when the reactor is at low pressure and when it is shut down. Furthermore, when the water supply system cannot be used during reactor shutdown or periodic plant inspections, for example, when inspecting or repairing the water supply system heaters and pumps, there is a problem in that the reactor water cannot be purified.

以上述べたごとく、原子炉浄化装置の機能をタービン系
復水脱塩装置にもたせることはプラントの設備合理化、
簡素化上望ましいことであるが、従来提案のものは使用
条件、使用範囲の点で満足し得るものではなかった。
As mentioned above, providing the functionality of the reactor purification system to the turbine condensate desalination system will streamline plant equipment.
Although this is desirable in terms of simplification, the conventional proposals were not satisfactory in terms of usage conditions and usage range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、BWR既設設備を共用化することによ
り、該既設設備の本来の機能を保持しつつ、合理的かつ
有効なる原子炉水浄化機能を奏する原子炉水浄化系を提
供することにある。
The purpose of the present invention is to provide a reactor water purification system that maintains the original functions of the existing BWR equipment and performs a rational and effective reactor water purification function by sharing the existing equipment. be.

〔発明の概要〕[Summary of the invention]

本発明による原子炉水浄化は、上記目的を達成するため
、通常運転中で原子炉高圧、高温時の原子炉水を浄化す
るのに、原子炉から取出した炉水を減圧手段により有効
に減圧し、さらに冷却手段により減温した炉水をろ過脱
塩装置に通して浄化した後加温して再び原子炉へ戻すよ
うにした装置によって行なわれるが、この場合前記濾過
脱塩装置の浄化機能の全部又は1部を復水系のろ過脱塩
装置によって行なわしめるようにした。
In order to achieve the above object, the reactor water purification according to the present invention effectively depressurizes the reactor water taken out from the reactor using a decompression means to purify the reactor water at high pressure and high temperature in the reactor during normal operation. The reactor water, which has been further cooled by cooling means, is passed through a filtration desalination device to be purified, heated, and returned to the reactor again. In this case, the purification function of the filtration and desalination device is All or part of the process is carried out by a condensate-based filtration and desalination equipment.

上記の冷却手段には、浄化する系統内の復水を用い、ま
た上記減圧手段としてはフラッシュタンクを使用する。
Condensate in the system to be purified is used as the cooling means, and a flash tank is used as the pressure reduction means.

高圧炉水を減圧した際のフラッシュ蒸気はプラント内蒸
気ラインに吸収し、回収を図っており、浄化する系統内
の復水利用と相俟ってグランド外への熱エネルギーの放
出を抑制している。
Flash steam generated when high-pressure reactor water is depressurized is absorbed into the plant's internal steam line and recovered. Together with the use of condensate in the purification system, the release of thermal energy outside the ground is suppressed. There is.

原子炉停止中、プラント定検時等おいて給水系が停止し
ている状態においても炉水を浄化できるように給水系ヒ
ータ、ポンプ等をパイ/4スし、浄化された炉水を原子
炉に戻せるよう構成している。
In order to purify reactor water even when the water supply system is stopped during reactor shutdown or plant periodic inspections, the water supply system heaters, pumps, etc. are installed, and the purified reactor water is transferred to the reactor. It is configured so that it can be returned to

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図によ−り説明する。原子炉圧
力容器1からの炉水の取り出しライン3゜4及び格納容
器隔離弁5,6を通すところまでは従来の原子炉水浄化
系統と同じであるが、その後、この取り出した炉水を、
流量制御弁tを通した後、フラッシュタンク8にて一旦
所定の圧力まで減圧させ、減圧した炉水を熱交換器9に
て所定の温度(約50℃)まで冷却した後、フィルター
10を通して炉水を一過し、ポンプ11又はそのバイパ
スライン12を通し、復水脱塩装置28の上流側に入れ
るように構成している。
An embodiment of the present invention will be explained with reference to FIG. The reactor water purification system is the same as the conventional reactor water purification system up to the point where it passes through the reactor water extraction line 3゜4 from the reactor pressure vessel 1 and the containment vessel isolation valves 5 and 6, but after that, the extracted reactor water is
After passing through the flow control valve t, the pressure is once reduced to a predetermined pressure in a flash tank 8, and the reduced pressure reactor water is cooled to a predetermined temperature (approximately 50°C) in a heat exchanger 9, and then passed through a filter 10 to the reactor. It is configured such that the water is passed through the pump 11 or its bypass line 12, and is introduced into the upstream side of the condensate desalination device 28.

ここで、タービン周りの構成について説明すると、原子
炉圧力容器1からの発生蒸気は主蒸気ライン21により
高圧タービン22に導かれ、高圧タービン21を出た蒸
気は湿分分離器23により湿分を除去され低圧タービン
24に導か−れてこれを回す。低圧タービンを出走蒸気
は復水器25にて冷却されて凝縮し、凝縮した復水は、
低圧復水ボンデ26により加圧され、復水濾過装置27
、復水脱塩装置28を通って一過脱塩され、次に高圧復
水4ンデ29により昇圧され、低圧ヒータ30.31に
より加温され、給水4ンデ32にて更に昇圧され、高圧
ヒータ33により加熱され、給水ライン34を通り原子
炉へ送シ込まれる。高圧ヒータ33の加熱は高圧タービ
ンの抽気ライン42からの抽気蒸気にて、また、低圧ヒ
ータ30゜31の加温は低圧タービンからの抽気蒸気等
にて行われる。
Here, to explain the configuration around the turbine, the steam generated from the reactor pressure vessel 1 is guided to the high-pressure turbine 22 through the main steam line 21, and the steam leaving the high-pressure turbine 21 is dehumidified by the moisture separator 23. It is removed and guided to a low pressure turbine 24 to rotate it. The steam leaving the low pressure turbine is cooled and condensed in the condenser 25, and the condensed water is
Pressurized by the low pressure condensate bonder 26, the condensate filtration device 27
The condensate is temporarily desalinated through the condensate desalination device 28, then the pressure is increased by the high-pressure condensate 29, heated by the low-pressure heater 30, 31, and the pressure is further increased by the water supply 4-de 32, It is heated by a high-pressure heater 33 and sent to the nuclear reactor through a water supply line 34. The high-pressure heater 33 is heated by extracted steam from the extraction line 42 of the high-pressure turbine, and the low-pressure heaters 30 and 31 are heated by extracted steam from the low-pressure turbine.

前記熱交換器9の冷却は低圧復水ボンデ29の出口ライ
ンから冷却水ライン37によシ冷却水を導いて行ない、
熱交換器9を冷却した後はライン38にて低圧ヒータ3
0の出口側に戻すようにされている。また熱交換器9の
冷却は上記とは別に独立の冷却源15によっても行われ
るようになっている。
The heat exchanger 9 is cooled by introducing cooling water from the outlet line of the low pressure condensate bond 29 to the cooling water line 37,
After cooling the heat exchanger 9, the low pressure heater 3 is connected to the line 38.
It is designed to return to the exit side of 0. In addition to the above, cooling of the heat exchanger 9 is also performed by an independent cooling source 15.

フラッシュタンク8での減圧に伴って生ずるフラッジ島
蒸気は7ラツシ島蒸気ライン13を経て高圧タービン2
2の出口ラインに回収できるようにし、フラッジ為蒸気
ライン13には圧力制御弁13’を設けて7ラツシエタ
ンク8内の圧力を制御できるようにしている。また7ラ
ツシエ蒸気ラインは、圧力制御弁14を介し復水器25
ヘプローできるようにしている。
Flood Island steam generated due to pressure reduction in the flash tank 8 passes through the 7 Lassie Island steam line 13 to the high pressure turbine 2.
A pressure control valve 13' is provided in the steam line 13 for flooding to control the pressure inside the seven lasier tank 8. In addition, the 7 Lassie steam line is connected to the condenser 25 via the pressure control valve 14.
I'm trying to be able to do it.

また、復水脱塩装置28の出口部からはラインを分岐さ
せて直接給水ライン34に接続した給水系パイノ母スラ
イン36を設けている。復水脱塩装置28を出た復水は
、必要に応じ、復水器25へのライン35を通して復水
器25へ10−できるようにしている。
Further, from the outlet of the condensate desalination device 28, a water supply system Pino mother line 36 is provided, which is connected directly to the water supply line 34 by branching off the line. The condensate leaving the condensate desalination device 28 can be sent to the condenser 25 through a line 35 to the condenser 25, if necessary.

以上が実施例の全体構成であるが、次に原子炉通常運転
時、原子炉起動時、原子炉停止後について、その各モー
ドの運転態様を説明する。
The overall configuration of the embodiment has been described above.Next, the operation mode of each mode will be explained during normal reactor operation, at reactor start-up, and after reactor shutdown.

原子炉通常運転時は原子炉が高温、高圧状態であるため
、復水脱塩装置28に通す炉水としては、温度40〜6
0℃程度、圧力6〜8 kg / cps2程度まで減
温、減圧したものにする必要がある。そのため、原子炉
lから取り出された炉水け、先ずフラッシュタンク8に
て所定の圧力まで減圧させる。
During normal reactor operation, the reactor is in a high temperature and high pressure state, so the reactor water passed through the condensate desalination equipment 28 has a temperature of 40 to 6.
It is necessary to reduce the temperature and pressure to about 0°C and pressure to about 6 to 8 kg/cps2. Therefore, the reactor water taken out from the reactor 1 is first depressurized to a predetermined pressure in the flash tank 8.

減圧すると炉水の一部はフラッジ為し蒸気が発生するの
で、このフラッジ島蒸気を7ラツシユタンク8の上方か
ら高圧タービン22出口の主蒸気ラインに逃がしてやる
。高圧タービン22出口の主。
When the pressure is reduced, a portion of the reactor water is flooded and steam is generated, so this flood island steam is released from above the 7 lash tank 8 to the main steam line at the outlet of the high pressure turbine 22. The main outlet of the high pressure turbine 22.

蒸気ラインは圧力14 kg / tym2程度であり
、したがってフラノシスタンク8内の圧力もこれとほぼ
同程度の圧力になる。
The pressure of the steam line is about 14 kg/tym2, and therefore the pressure inside the furanosis tank 8 is also about the same pressure.

ブラックェタンク8にて減圧し、それに伴い減温された
炉水は熱交換器9にて所定の温度(約50℃程度)まで
冷却される。熱交換器9の冷却水としては、高圧復水ポ
ンプ29出口から導いた復水を用いる。炉水の熱交換器
9出口温度は温度検出器41にて監視し、その出力信号
に基づき冷却水側の弁40を操作させ、冷却水量を調整
させることにより、該出口温度を制御できるようにして
いる。
The pressure of the reactor water is reduced in the black tank 8, and the temperature thereof is reduced accordingly, and the reactor water is cooled to a predetermined temperature (approximately 50° C.) in the heat exchanger 9. As the cooling water for the heat exchanger 9, condensate drawn from the outlet of the high-pressure condensate pump 29 is used. The outlet temperature of the reactor water heat exchanger 9 is monitored by a temperature detector 41, and the outlet temperature can be controlled by operating the cooling water side valve 40 based on the output signal and adjusting the amount of cooling water. ing.

かくて所定の温度(約50℃)まで冷却された炉水はフ
ィルター10により濾過され、I7グ11のバイパスラ
イン12を通して復水脱塩装置28へ導かれる。ここで
、原子炉通常運転時は炉圧が高いため、上記炉水はポン
プ11にて加圧する必要はなく、バイパスライン12を
通すことで復水脱塩装置28へ導入できる。復水脱塩装
置28に導かれた炉水は該復水脱塩装置28で浄化され
、復水系、給水系を通して原子炉へ戻される。
The reactor water cooled to a predetermined temperature (approximately 50° C.) is filtered by the filter 10 and guided to the condensate desalination device 28 through the bypass line 12 of the I7 pipe 11. Here, since the reactor pressure is high during normal reactor operation, the reactor water does not need to be pressurized by the pump 11, and can be introduced into the condensate desalination device 28 by passing through the bypass line 12. The reactor water led to the condensate desalination device 28 is purified by the condensate desalination device 28 and returned to the reactor through the condensate system and the water supply system.

炉水を復水脱塩装置28に導くことにより放射線線量が
上がることが懸念されるかも知れないが、炉水は熱交換
器9により十分冷却されるため放射線線量は低下した状
態であり、またフィルター10により濾過しているため
、放射線線量については特に問題とはならない。
Although there may be concerns that the radiation dose will increase by introducing the reactor water to the condensate desalination equipment 28, the radiation dose is reduced because the reactor water is sufficiently cooled by the heat exchanger 9. Since the radiation is filtered by the filter 10, there is no particular problem regarding the radiation dose.

原子炉起動時には、原子炉が低圧であるから、Iフグ1
1により加圧して復水脱塩装置28に炉水を導く。原子
炉起動時の炉水の増加分は、復水脱塩装置28出ロライ
ンからライン35を通して復水器25ヘブローされる。
At the time of reactor startup, the reactor is under low pressure, so I Fugu 1
1 to lead the reactor water to the condensate desalination device 28. An increased amount of reactor water at the time of reactor startup is blown from the condensate desalination device 28 output line through the line 35 to the condenser 25.

次原子炉停止後の作動を説明する。定検等により原子炉
給水系が停止している状態の場合には、4ン7’llに
より加圧した炉水を、復水脱塩装置28に通した後、給
水系バイパスライン36を通して原子炉へ戻す。また、
高温待機時のように原子炉は停止しているが原子炉が高
温状態にある間は給水系をバイパスさせる場合、熱交換
器9を復水にて、冷却できなくなるため、このようなと
きには独立した冷却源15により熱交換器9の冷却を行
うようにする。この場合にも、冷却源15への戻りライ
ン中の弁39を温度検出器41からの信号に基づき操作
させるとと【より、熱交換器9出口の炉水温度を制御す
ることができる。
Next, we will explain the operation after reactor shutdown. When the reactor water supply system is stopped due to regular inspections, etc., reactor water pressurized by 4-7'll is passed through the condensate desalination equipment 28 and then passed through the water supply system bypass line 36 to the reactor water supply system. Return to furnace. Also,
When the reactor is stopped, such as during high-temperature standby, but the water supply system is bypassed while the reactor is in a high-temperature state, the heat exchanger 9 cannot be cooled with condensate, so the independent The heat exchanger 9 is cooled by the cooling source 15. In this case as well, by operating the valve 39 in the return line to the cooling source 15 based on the signal from the temperature detector 41, the temperature of the reactor water at the outlet of the heat exchanger 9 can be controlled.

本発明の他の実施例を第2図、第3図に示す。Other embodiments of the invention are shown in FIGS. 2 and 3.

第2図の第1図と異る点は、フラッシュタンク8からの
フラッシュ蒸気を高圧タービン22の出口ラインではな
く、同タービン22の抽気ラインに逃がすように構成し
た点である。同じ圧力条件下での蒸気ラインであること
から、こういう実施例も可能である。
The difference between FIG. 2 and FIG. 1 is that the flash steam from the flash tank 8 is configured to escape not to the outlet line of the high-pressure turbine 22 but to the bleed line of the same turbine 22. This embodiment is also possible since the steam lines are under the same pressure conditions.

第3図の第1図と異る点は、熱交換器9の炉水側出口ラ
イン中にフィルター10を設けることなく、炉水を復水
濾過装置1i27の上流側に入れてやるように構成した
点である。こういう構成としても、第1図の実施例と同
様の機能を果すことができる。
The difference between FIG. 3 and FIG. 1 is that the filter 10 is not provided in the reactor water side outlet line of the heat exchanger 9, and the reactor water is introduced into the upstream side of the condensate filtration device 1i27. This is the point. Even with this configuration, the same function as the embodiment shown in FIG. 1 can be achieved.

〔実施例の効果〕[Effects of Examples]

以上に説明した本発明の実施例によれば、熱交換器の冷
却を復水系の復水により行うため、プラント外への熱エ
ネルヤーの放出が抑制されるため熱効率向上となる。
According to the embodiment of the present invention described above, since the heat exchanger is cooled by condensate in the condensate system, the release of thermal energy to the outside of the plant is suppressed, resulting in improved thermal efficiency.

従来の第4図に示す如き原子炉水浄化系統が削除できる
ため、系統の簡素化が図れる。
Since the conventional reactor water purification system as shown in FIG. 4 can be eliminated, the system can be simplified.

また、従来の原子炉水浄化系統のポンプ51は高圧、高
温状態に設置しているが、第1図に示すように本発明例
では熱交換器9下流の低温側に設置したことにより、ポ
ンプにおける放射線線量率の低減及びポンプの信頼性向
上、保守、点検性の向上が図れる。
In addition, the pump 51 of the conventional reactor water purification system is installed at high pressure and high temperature, but in the example of the present invention, as shown in FIG. It is possible to reduce the radiation dose rate, improve the reliability of the pump, and improve the ease of maintenance and inspection.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、BwRの従来の原子炉水浄化系統のろ
過脱塩装置の機能をタービン系の復水脱塩装置の機能で
代用できるため、原子炉水浄化系統の一過脱塩器が削除
できることはもとより、原子炉の通常運転時及び高温待
機時におけるポンプ51の1台削減、再生熱交換器52
の削除ができ全体として構成の簡素化が図れ合理化でき
る。
According to the present invention, the function of the filtration desalination device of the conventional reactor water purification system of BwR can be replaced by the function of the condensate desalination device of the turbine system. In addition to the things that can be removed, the number of pumps 51 can be reduced by one during normal operation of the reactor and during high-temperature standby, and the number of regenerative heat exchangers 52 can be reduced by one.
can be deleted, simplifying and rationalizing the overall configuration.

また、熱交換器9を復水系で冷却することにより、プラ
ントでの熱損失の低減から発電端出力の向上等プラント
全体としての合理化が図れる。
Furthermore, by cooling the heat exchanger 9 with a condensate system, it is possible to rationalize the entire plant, such as reducing heat loss in the plant and improving the power generation output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図。 第3図は本発明の他の実施例の構成図を示す。 第4図は従来の原子炉浄化系統の構成図を示す。 8・・・フラッジ瓢タンク  9・・・熱交換器11・
・・ポンプ      27・・・復水濾過装置28・
・・復水脱塩装置   30・・・低圧ヒータ36・・
・給水系パイ・臂スライン 37.38・・・冷却水ライン
FIG. 1 is a configuration diagram of an embodiment of the present invention, and FIG. FIG. 3 shows a block diagram of another embodiment of the present invention. FIG. 4 shows a configuration diagram of a conventional nuclear reactor purification system. 8...Fludge gourd tank 9...Heat exchanger 11.
...Pump 27...Condensate filtration device 28.
...Condensate desalination equipment 30...Low pressure heater 36...
・Water supply system pie・arm line 37.38...cooling water line

Claims (1)

【特許請求の範囲】 1、原子炉水を取り出し、減圧手段により減圧しさらに
熱交換手段により冷却した炉水をろ過脱塩装置に通して
浄化した後加温して再び原子炉に戻す原子炉水浄化装置
であって、前記ろ過脱塩装置の浄化機能の全部又は1部
を復水系のろ過脱塩装置により行なわしめるようにした
ことを特徴とする原子炉水浄化装置。 2、前記炉水を冷却する熱交換手段として前記復水系の
脱塩装置を通った復水の一部を使用することを特徴とす
る特許請求の範囲第1項記載の原子炉水浄化装置。 3、原子炉通常運転時における高圧、高温炉水の減圧手
段としてフラッシュタンクを設けたことを特徴とする特
許請求の範囲第1項記載の原子炉水浄化装置。 4、前記フラッシュタンクからの蒸発ラインを高圧ター
ビン出口の主蒸気ライン又は高圧タービンの抽気ライン
等の蒸気ライン及び復水器に接続させたことを特徴とす
る特許請求の範囲第3項記載の原子炉水浄化装置。 5、原子炉停止中原子炉への給水ラインが停止している
状態において、浄化された炉水を原子炉へ戻すため、給
水加熱器及び給水系のポンプ等をバイパスするラインを
設けたことを特徴とする特許請求の範囲第1項ないし第
4項記載の原子炉水浄化装置。
[Scope of Claims] 1. A nuclear reactor in which reactor water is taken out, depressurized by a decompression means, further cooled by a heat exchange means, purified by passing through a filtration desalination device, heated, and returned to the reactor again. 1. A nuclear reactor water purification device, characterized in that all or part of the purification function of the filtration and desalination device is performed by a condensate-based filtration and desalination device. 2. The reactor water purification system according to claim 1, wherein a part of the condensate that has passed through the desalination device of the condensate system is used as a heat exchange means for cooling the reactor water. 3. The reactor water purification system according to claim 1, characterized in that a flash tank is provided as means for reducing the pressure of high-pressure, high-temperature reactor water during normal operation of the reactor. 4. The atom according to claim 3, wherein the evaporation line from the flash tank is connected to a steam line such as a main steam line at the outlet of the high-pressure turbine or a bleed line of the high-pressure turbine, and a condenser. Reactor water purification equipment. 5. During reactor shutdown When the water supply line to the reactor is stopped, in order to return purified reactor water to the reactor, a line has been installed to bypass the feedwater heater and water supply system pumps, etc. A nuclear reactor water purification system according to any one of claims 1 to 4.
JP60061297A 1985-03-26 1985-03-26 Reactor water purification device Expired - Lifetime JPH0631796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061297A JPH0631796B2 (en) 1985-03-26 1985-03-26 Reactor water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061297A JPH0631796B2 (en) 1985-03-26 1985-03-26 Reactor water purification device

Publications (2)

Publication Number Publication Date
JPS61218994A true JPS61218994A (en) 1986-09-29
JPH0631796B2 JPH0631796B2 (en) 1994-04-27

Family

ID=13167114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061297A Expired - Lifetime JPH0631796B2 (en) 1985-03-26 1985-03-26 Reactor water purification device

Country Status (1)

Country Link
JP (1) JPH0631796B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737038A (en) * 1980-08-12 1982-03-01 Nissan Motor Co Ltd Stop indication apparatus for car
JPS6038693A (en) * 1983-08-12 1985-02-28 株式会社日立製作所 Purifier for refrigerant of nuclear reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737038A (en) * 1980-08-12 1982-03-01 Nissan Motor Co Ltd Stop indication apparatus for car
JPS6038693A (en) * 1983-08-12 1985-02-28 株式会社日立製作所 Purifier for refrigerant of nuclear reactor

Also Published As

Publication number Publication date
JPH0631796B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
GB2521549A (en) Combined active and passive secondary-side reactor core heat removal apparatus
JPS6323519B2 (en)
US4138319A (en) Nuclear reactor installation with a light-water reactor
US4043864A (en) Nuclear power plant having a pressurized-water reactor
CN104961271B (en) Quick starting method of condensate polishing system of nuclear power station
JPS61218994A (en) Purifier for water for nuclear reactor
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JPS5913719B2 (en) Residual heat removal system for fast breeder reactor
CN215988119U (en) Steam generator cooling system used after emergency shutdown of high-temperature gas cooled reactor
JPS60113190A (en) Cooling system of boiling-water type reactor
JPS5941155B2 (en) Reactor shutdown cooling system
JPS6010597B2 (en) Reactor coolant purification system
JPH04270995A (en) Purification system of nuclear reactor coolant
JPS58201094A (en) Reactor coolant cleanup system
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPS604439B2 (en) How to operate a nuclear reactor plant
JPS5816479B2 (en) Comprehensive reactor backup cooling system equipment
JPS62190496A (en) Purifier for coolant of nuclear reactor
CN111174191A (en) Reactor start-stop system and method
JPS6189591A (en) Purifier for coolant of nuclear reactor
JP2563506B2 (en) Reactor coolant purification equipment
JPS60178394A (en) Refrigerant purifying system of nuclear reactor
JPS6030917B2 (en) Reactor decontamination cooling method and decontamination cooling device
JPH0679073B2 (en) Reactor coolant purification system
JPS6060590A (en) Removal system of residual heat in nuclear reactor