JPS62215894A - Purification system of coolant for nuclear reactor - Google Patents

Purification system of coolant for nuclear reactor

Info

Publication number
JPS62215894A
JPS62215894A JP61060075A JP6007586A JPS62215894A JP S62215894 A JPS62215894 A JP S62215894A JP 61060075 A JP61060075 A JP 61060075A JP 6007586 A JP6007586 A JP 6007586A JP S62215894 A JPS62215894 A JP S62215894A
Authority
JP
Japan
Prior art keywords
reactor
pump
purification system
purification
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61060075A
Other languages
Japanese (ja)
Other versions
JPH0679073B2 (en
Inventor
円谷 公文
実 秋田
白石 忠
木下 詳一郎
大倉 稔
辻 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP61060075A priority Critical patent/JPH0679073B2/en
Publication of JPS62215894A publication Critical patent/JPS62215894A/en
Publication of JPH0679073B2 publication Critical patent/JPH0679073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉冷却材浄化系に係り、特に、ポンプの
放射能汚染を低減した構成の原子炉冷却材浄化系に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nuclear reactor coolant purification system, and particularly to a nuclear reactor coolant purification system configured to reduce radioactive contamination of a pump.

〔従来の技術〕[Conventional technology]

従来の沸騰水型原子炉(以下、BWRという)の系統構
成の一例の概略を第6図に示す、BWRは、再循環系、
給水系、残留熱除去系、および本発明の対象である原子
炉冷却材浄化系などを備えている。
Figure 6 shows an outline of an example of the system configuration of a conventional boiling water reactor (hereinafter referred to as BWR).
It is equipped with a water supply system, a residual heat removal system, and a reactor coolant purification system, which is the object of the present invention.

このうち、再@環系は、再循環ポンプ2(以下。Among these, the re@ring system is the recirculation pump 2 (hereinafter referred to as the recirculation pump 2).

PLRポンプという)で昇圧した炉水を原子炉圧力容器
1内に戻して炉水を強制循環させる系統である。
This is a system in which reactor water pressurized by a PLR pump is returned to the reactor pressure vessel 1 for forced circulation.

給水系は、圧力容器1で生じた蒸気にタービン9で仕7
3(をさせた後、主復水器10で凝縮させ復水として、
復水を圧力容器1に戻す系統である。
The water supply system supplies steam generated in the pressure vessel 1 with a turbine 9.
3 (after doing so, it is condensed in the main condenser 10 as condensate,
This system returns condensate to the pressure vessel 1.

原子炉停止時の原子炉冷却は、主復水器10および残留
熱除去系で行われる。すなわち、原子炉冷却は、原子炉
が通常運転圧力(約70kg/cJg)からタービング
ランドシールが効かなくなる圧力(約9.0 kg/J
g)に下がるまでは主復水器10により行われ、それ以
降の低圧時には残留熱除去系により行われる。
Reactor cooling during reactor shutdown is performed by the main condenser 10 and the residual heat removal system. In other words, reactor cooling is carried out when the reactor goes from its normal operating pressure (approximately 70 kg/cJg) to the pressure at which the turbine gland seal becomes ineffective (approximately 9.0 kg/Jg).
g) is carried out by the main condenser 10, and thereafter by the residual heat removal system when the pressure is low.

残留熱除去系は、原子炉停止時の低圧時には常時運転し
て再循環ポンプ2の吸込配管から残留熱除去ポンプ3(
以下、RHRポンプという)で炉水を取出し、残留熱除
去系熱交換器4で原子炉補機冷却系により冷却した後に
、PLRポンプ2の吐出配管を経て圧力容器1に戻す閉
ループを構成して、yK子炉の冷却を行う系統である。
The residual heat removal system operates constantly when the pressure is low when the reactor is shut down, and connects the suction pipe of the recirculation pump 2 to the residual heat removal pump 3 (
A closed loop is constructed in which reactor water is taken out by the RHR pump (hereinafter referred to as the RHR pump), cooled by the reactor auxiliary equipment cooling system by the residual heat removal system heat exchanger 4, and then returned to the pressure vessel 1 via the discharge piping of the PLR pump 2. , is a system that cools the yK sub-reactor.

原子炉冷却材浄化系は、原子炉圧力容器1内が原子炉通
常運転時の高圧時(約70.0 kg/cx1g)から
原子炉停止時の低圧時(〜Okg / d g )まで
の広範囲にわたって常時運転し、炉水を浄化する系統で
ある。原子炉冷却材浄化系は、PLRポンプ2の吸込配
管側から原子炉冷却材浄化系ポンプ5(以下、CUWポ
ンプという)により炉水を取出し昇圧して、再生熱交換
器6および非再生熱交換器7で所定の温度(約50℃)
まで冷却した後。
The reactor coolant purification system has a wide range of pressure inside the reactor pressure vessel 1, from high pressure during normal reactor operation (approximately 70.0 kg/cx1g) to low pressure during reactor shutdown (~Okg/dg). This is a system that operates continuously throughout the entire period to purify reactor water. The reactor coolant purification system extracts reactor water from the suction pipe side of the PLR pump 2 using a reactor coolant purification system pump 5 (hereinafter referred to as CUW pump), pressurizes it, and transfers it to a regenerative heat exchanger 6 and a non-regenerative heat exchanger. Set the temperature in the container 7 (approx. 50℃)
After cooling until.

浄化装置(ろ過説塩装置)8で炉水を浄化し、前記再生
熱交換器6で加温し、給水系を経て再び正圧容器1へ戻
す系統である。
In this system, reactor water is purified by a purification device (filtration salting device) 8, heated by the regenerative heat exchanger 6, and returned to the positive pressure vessel 1 via the water supply system.

これら系統の改善に関連するものとしては、特開昭55
−6260号、特開昭54−38498号などがある。
Regarding the improvement of these systems, Japanese Patent Application Laid-Open No. 55
-6260, JP-A No. 54-38498, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特開昭55−6260号公報の例は、熱交換器、ポンプ
、浄化装置および同装置のバイパスラインから構成され
、プラント通常運転時には、ポンプが小流量で運転され
、熱交換器、ポンプ、浄化装置を経て原子炉圧力容器に
炉水を戻し、冷却材浄化装置として使用している。プラ
ント停止時には、ポンプが大流吐で運転され、熱交換器
、ポンプ、浄化装置J<イパスラインを経て原子炉圧力
容器に炉水を戻し、残留熱除去装置として使用する。
The example disclosed in JP-A-55-6260 consists of a heat exchanger, a pump, a purification device, and a bypass line for the device.During normal plant operation, the pump is operated at a small flow rate, and the heat exchanger, pump, purification device Reactor water is returned to the reactor pressure vessel through the system and is used as a coolant purification system. When the plant is shut down, the pump is operated with a large discharge, and reactor water is returned to the reactor pressure vessel via the heat exchanger, pump, and purification device J<Ipass line, where it is used as a residual heat removal device.

したがって、この例は、プラントの運転状態によって、
同一装置を1通常運転時は冷却材浄化装置に、停止N:
時は残留熱除去装置に切り換え使用することになる。こ
こで、前記BWRでの原子炉冷却材浄化系の容量は、一
般に残留熱除去系の容量の約1/J5と小流量であるた
め、この例で冷却材浄化装置として使用する場合は、配
管および機器内の流速が極端に遅くなり、配管および機
器が放射能汚染されることが考えられる。
Therefore, in this example, depending on the operating state of the plant,
The same device is used as a coolant purification device during normal operation, and when stopped N:
In some cases, it is necessary to switch to a residual heat removal device. Here, the capacity of the reactor coolant purification system in the BWR is generally a small flow rate, about 1/J5 of the capacity of the residual heat removal system, so when used as a coolant purification system in this example, the piping The flow rate inside the equipment will be extremely slow, and the piping and equipment may be contaminated with radioactivity.

また、残留熱除去装置としては低圧時のみ使用されるが
、冷却材浄化装置として通常運転時には高圧(約70k
g/ff1g)使用となるため、装置全体を高圧時の使
用に耐えるようにしておくことが不可決であった。
In addition, it is used as a residual heat removal device only when the pressure is low, but as a coolant purification device during normal operation it is used at high pressure (approximately 70k).
g/ff1g), so it was impractical to make the entire device capable of withstanding use at high pressures.

一方、特開昭54−38498号公報に示されているよ
うに、CUWポンプを熱交換器の下流側でろ過説塩装置
の上流側にi12置し、ポンプ内流体の温度を低温化す
ることでポンプ内面に発生する酸化被膜を少なくシ、こ
れにより酸化被膜中に吸収されるコバルト60の量を低
減させ、定期検査時の作業員の被ばく量を抑えることが
考えられている。
On the other hand, as shown in Japanese Patent Application Laid-Open No. 54-38498, a CUW pump is placed i12 downstream of a heat exchanger and upstream of a filtration chlorination device to lower the temperature of the fluid inside the pump. It is being considered to reduce the amount of cobalt-60 that is absorbed into the oxide film by reducing the amount of oxide film that forms on the inner surface of the pump, thereby reducing the amount of radiation that workers are exposed to during periodic inspections.

しかしながら第7図に示す沓体化装置3の出口側(F部
)に比べて、入口側(E部)は約10倍も放射線量が高
く、CUWポンプの汚染を完全になくすることはできて
いない、CUWポンプの汚染を完全になくするには、ポ
ンプをろ過脱塩装置の下流側に設置すれば良いが、ポン
プ移設により、ポンプ入口側の圧力損失が増大し、従来
の設計ではポンプ入口側の押込み圧力不足となってしま
うから、そのようにできなかった。
However, the radiation dose on the inlet side (section E) is about 10 times higher than on the outlet side (section F) of the pumping device 3 shown in Fig. 7, and it is not possible to completely eliminate contamination of the CUW pump. In order to completely eliminate contamination of the CUW pump, which is not a problem, it is possible to install the pump downstream of the filtration/desalination equipment, but relocating the pump increases the pressure loss on the pump inlet side. This could not be done because the pushing pressure on the inlet side would be insufficient.

なお、第7図において、A−Fの各部は、第6図に示し
た位置を表わしている。すなわち、A部はCUWポンプ
の出口側、B部は再生熱交換器。
In addition, in FIG. 7, each part of A-F represents the position shown in FIG. That is, part A is the outlet side of the CUW pump, and part B is the regenerative heat exchanger.

6部はその出口側、D部は非再生熱交換器、E部は浄化
装置入口側、F部は浄化装置出口側である。
Section 6 is the outlet side, section D is the non-regenerative heat exchanger, section E is the inlet side of the purifier, and section F is the outlet side of the purifier.

本発明の目的は、CUWポンプの人口側の押込み圧力を
充分に確保しなからCUWポンプの放射能汚染をなくし
た原子炉冷却材浄化系を提供することである。
An object of the present invention is to provide a reactor coolant purification system that eliminates radioactive contamination of the CUW pump while ensuring sufficient pumping pressure on the artificial side of the CUW pump.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、浄化系のCUW
ポンプをろ過脱塩装置の下流側に設置し。
In order to achieve the above object, the present invention provides CUW of purification system.
Install the pump downstream of the filtration and desalination equipment.

そのために不足するポンプ入口側の押込み圧力を補うよ
うに、浄化系への炉水取入れ口を残留熱除去系のRHR
ポンプ及び熱交換器の下流側からとした系統構成を提案
するものである。
Therefore, in order to compensate for the insufficient pushing pressure on the pump inlet side, the reactor water intake to the purification system was connected to the RHR of the residual heat removal system.
We propose a system configuration starting from the downstream side of the pump and heat exchanger.

浄化系への炉水取入れ口は、再循環系のPLRポンプの
下流側としてもよい。
The reactor water intake to the purification system may be downstream of the PLR pump of the recirculation system.

〔作用〕[Effect]

原子炉冷却材浄化系は、原子炉通常運転時および停止時
を通して常時運転されているが、停止時には燃料棒から
のクラッドのはく瀬等により機器の放射能汚染の恐れが
あるから、プラント定期検査時の作業具の被ばく低減の
点で、特に、原子炉停止時に原子炉浄化設備を運転する
ことが重要である。
The reactor coolant purification system is in constant operation during normal reactor operation and during shutdown, but when the reactor is shut down, there is a risk of radioactive contamination of equipment due to flaking of crud from the fuel rods, so plant periodic In terms of reducing the exposure of working tools during inspections, it is especially important to operate the reactor purification equipment when the reactor is shut down.

原子炉を停止した低圧時には、原子炉の崩壊熱。At low pressure when the reactor is shut down, the decay heat of the reactor.

残留熱を除去するためにRHRポンプと熱交換器を含む
残留熱除去系が常時運転してい1ゼ来の残留熱除去系は
冷却機能のみであった。残留熱除去系を原子炉冷却材浄
化系の浄化装置と接続すれば、残留熱除去系がいわば冷
却機能と浄化機能の両方を有することとなり、原子炉停
止時に原子炉浄化系の浄化装置以外の部分の運転が不要
となる。
In order to remove residual heat, a residual heat removal system including an RHR pump and a heat exchanger is in constant operation.The residual heat removal system used in the past had only a cooling function. If the residual heat removal system is connected to the purification equipment of the reactor coolant purification system, the residual heat removal system will have both a cooling function and a purification function. There is no need to operate the parts.

ここで、従来の原子炉冷却材浄化系のCUWポンプ、熱
交換器、浄化装置の配置は、原子炉停止時にポンプの押
込み圧力あるいは有効ポンプ吸込みヘッド(以下、NP
SHという)が不足し、ポンプ内でキャビテーションン
が発生しポンプを損傷する恐れがあったため、原子炉圧
力容器から炉水を取出した直後にCUWポンプを配置し
てポンプNPSH不足を防止していた。しかし上記のよ
うに残留熱除去系から浄化系のNPSH不足分を補えば
、前記原子炉停止時のCUWポンプNPSH不足の問題
が解決されるので、原子炉浄化系の配置を熱交換器、浄
化装置、ポンプの順にできる。このため、CUWポンプ
は浄化装置で浄化された炉水を扱うことになり、ポンプ
の放射能汚染を低減できる。
Here, the arrangement of the CUW pump, heat exchanger, and purification device in the conventional reactor coolant purification system is based on the pump pressure or the effective pump suction head (hereinafter referred to as NP) when the reactor is shut down.
Because there was a risk of cavitation occurring inside the pump and damaging the pump due to a shortage of SH), a CUW pump was placed immediately after reactor water was removed from the reactor pressure vessel to prevent a pump NPSH shortage. . However, as mentioned above, if the residual heat removal system compensates for the NPSH shortage in the purification system, the problem of CUW pump NPSH shortage at the time of reactor shutdown will be solved, so the arrangement of the reactor purification system can be changed to a heat exchanger, purification system, etc. This can be done in the following order: equipment and pump. Therefore, the CUW pump handles reactor water that has been purified by the purification device, and radioactive contamination of the pump can be reduced.

また、同様にNFSHの不足を原子炉冷却材再循環ポン
プ吐出圧力によって補うこともでき、同様の効果が期待
される。
Furthermore, the shortage of NFSH can be similarly compensated for by the reactor coolant recirculation pump discharge pressure, and similar effects are expected.

〔実施例〕〔Example〕

本発明による原子炉冷却系浄化系の一実施例を第1図に
示す1本実施例は、熱交換器6,7.浄化装置8.CU
Wポンプ5の順で配置した浄化系の浄化装置8の上流側
に、残留熱除去系の熱交換器4の下流配管から炉水取入
れ用の配管20を設け、浄化装置8の下流側配管から原
子炉圧力容器1に戻る配管21を接続し、切換え弁23
,24゜25などを配置したものである。
An embodiment of the reactor cooling system purification system according to the present invention is shown in FIG. 1. In this embodiment, heat exchangers 6, 7. Purification device8. C.U.
A pipe 20 for taking in reactor water from the downstream pipe of the heat exchanger 4 of the residual heat removal system is provided upstream of the purification device 8 of the purification system arranged in the order of the W pump 5, and Connect the pipe 21 returning to the reactor pressure vessel 1, and connect the switching valve 23.
, 24°25, etc.

原子炉通常運転時の炉水の浄化は、圧力容器1から炉水
を取出し、原子炉冷却材浄化系熱交換器6.7で冷却し
て浄化装置8で浄化し、CUWポンプ5で昇圧し、R子
炉浄化系熱交換器6にて加温し再び圧力容器1に戻すよ
うにしてなされる。
To purify reactor water during normal reactor operation, reactor water is taken out from the pressure vessel 1, cooled by the reactor coolant purification system heat exchanger 6.7, purified by the purification device 8, and pressurized by the CUW pump 5. , heated in the R sub-furnace purification system heat exchanger 6 and returned to the pressure vessel 1 again.

原子炉停止時には、残留熱除去系が従来と同様に運転さ
れて原子炉を冷却する。炉水の浄化は。
When the reactor is shut down, the residual heat removal system is operated in the same manner as before to cool the reactor. Purification of reactor water.

残留熱除去系のRHRポンプ3と熱交換器4で昇圧冷却
された炉水の一部を、接続配管20により浄化装置I!
8に導き浄化し、戻り配管21で圧力容器1内に戻すよ
うになっている。したがって1本実施例では原子炉通常
運転時には従来と同様に炉水の浄化ができ、yX子炉停
止時には原子炉冷却材浄化系のポンプなどは運転せずに
残留熱除去系のみを運転するだけで、冷却機能と浄化機
能の両方が得られる。
A portion of the reactor water that has been pressurized and cooled by the RHR pump 3 and heat exchanger 4 of the residual heat removal system is transferred to the purifier I! through the connecting pipe 20!
8 for purification and return to the pressure vessel 1 through a return pipe 21. Therefore, in this embodiment, during normal reactor operation, reactor water can be purified as before, and when the yX subreactor is shut down, only the residual heat removal system is operated without operating the pumps of the reactor coolant purification system. This provides both cooling and purification functions.

既しこ述べたように、従来の原子炉冷却材浄化系では、
CU Wポンプを浄化装置下流側に配置した場合、原子
炉通常運転時は、圧力容器1内で高圧(約70.0 k
g/ff1g)であり、ポンプ5吸込側に充分な押込み
圧力が得られるためポンプ5のNPSH上の問題はなか
った。しかし、原子炉が停止した低圧時には、ポンプ5
上流側の熱交換器6.7.浄化装置8でその圧力損失に
よりCUWポンプ5に必要な押込み圧力が不足してしま
い。
As mentioned above, in conventional reactor coolant purification systems,
When the CU W pump is placed downstream of the purification equipment, high pressure (approximately 70.0 k
g/ff1g), and sufficient pushing pressure was obtained on the suction side of the pump 5, so there was no problem with the NPSH of the pump 5. However, when the reactor is shut down and the pressure is low, the pump 5
Upstream heat exchanger 6.7. Due to the pressure loss in the purifier 8, the pushing pressure required for the CUW pump 5 is insufficient.

ポンプ5でキャビテーションが発生する恐れがあり、ポ
ンプ5のNPSH不足の問題があった。そこで、従来の
原子炉浄化設備は、CUWポンプ5のNPSHを確保す
るために第6図に示すように、ポンプ5.熱交換器6,
7.浄化装fi8の順に機器を配置している。
There was a risk that cavitation would occur in pump 5, and there was a problem of insufficient NPSH in pump 5. Therefore, in the conventional nuclear reactor purification equipment, in order to ensure the NPSH of the CUW pump 5, as shown in FIG. heat exchanger 6,
7. The equipment is arranged in the order of purification equipment fi8.

これに対し1本実施例では、原子炉が停止した低圧時に
は、残留熱除去系のポンプ圧力を利用して炉水を浄化す
るので、ポンプ5のNPSH不足の問題が解決され、第
1図に示すように、熱交換@6,7.浄化装置8.ポン
プ5の順に機器を配置できる。この結果、ポンプ5は、
原子炉圧力容器1から取出された炉水を直接扱うことが
なくなり、CUWポンプ5の放射能汚染が低減される。
On the other hand, in this embodiment, when the reactor is stopped and the pressure is low, the reactor water is purified using the pump pressure of the residual heat removal system, so the problem of insufficient NPSH in the pump 5 is solved, and as shown in FIG. As shown, heat exchange @6,7. Purification device8. The devices can be arranged in the order of pump 5. As a result, the pump 5 is
Since the reactor water taken out from the reactor pressure vessel 1 is no longer handled directly, radioactive contamination of the CUW pump 5 is reduced.

従来の原子炉冷却材浄化系の配管表面線量率の概略を示
す第7図によれば、浄化装置8下流側(F部)は、再生
熱交換器6上流側(A部)に比べて約1/100程度で
あることが解る0本実施例では、浄化装置t!8下流側
配置により、ポンプ5の放射能汚染を約17100に低
減可能である。
According to FIG. 7, which shows an outline of the pipe surface dose rate of a conventional reactor coolant purification system, the downstream side of the purification device 8 (section F) is approximately In this example, the purification device t! is found to be about 1/100. 8 downstream arrangement, the radioactive contamination of the pump 5 can be reduced to about 17,100.

また、原子炉停止時に原子炉冷却材浄化系ポンプ5熱交
換器6.7を停止できるため、弁23゜24.25を閉
じてこれらを隔離し、機器を容易に点検できる。
Furthermore, since the reactor coolant purification system pump 5 and heat exchanger 6.7 can be stopped when the reactor is shut down, the valves 23, 24, and 25 can be closed to isolate them and the equipment can be easily inspected.

本発明の他の実施例を第2図、第3図に示す。Other embodiments of the invention are shown in FIGS. 2 and 3.

第2図は、残留熱除去系熱交換器4からの接続配管20
を原子炉冷却材浄化系再生熱交換器6の上流側に接続し
たものである。rM子炉停止時に熱交換器6,7を通る
ので、冷却機能が向上する。
FIG. 2 shows connection piping 20 from the residual heat removal system heat exchanger 4.
is connected to the upstream side of the reactor coolant purification system regenerative heat exchanger 6. Since the rM passes through the heat exchangers 6 and 7 when the child reactor is shut down, the cooling function is improved.

第3図は、2系統の残留熱除去系熱交換器4からの接続
配管20を原子炉冷却材浄化系に接続したものである。
FIG. 3 shows connecting pipes 20 from two residual heat removal system heat exchangers 4 connected to a reactor coolant purification system.

第4図は、原子炉冷却材浄化系の熱交換器6゜7、CU
Wポンプ5を削除し、接続配管20.浄化装置8.戻り
配管21のみとした変形例である。
Figure 4 shows the reactor coolant purification system heat exchanger 6°7, CU
Delete W pump 5 and connect piping 20. Purification device8. This is a modification example in which only the return pipe 21 is used.

本実施例では、原子炉通常運転時には、原子炉冷却材浄
化系を運転できない、しがしながら、通常は他にも浄化
している系統があり、本浄化系の予想される浄化寄与率
が2%程度であること、また、本浄化系が対象としてい
るクラッドなどは炉停止時にはく離して出やすいことを
考えると、停止時のみ運転する系統構成としても、充分
に意義はあるものといえる。
In this example, the reactor coolant purification system cannot be operated during normal reactor operation. However, there are other systems that are normally purifying, and the expected purification contribution rate of this purification system is Considering that it is about 2%, and that the crud that this purification system targets tends to flake off and come out when the reactor is shut down, it can be said that there is sufficient significance in a system configuration that operates only when the reactor is shut down. .

次に、これまでの実施例で利用してきた残留熱除去系に
代えて、再循環系を利用する発明の一実施例を、第5図
により説明する。
Next, an embodiment of the invention in which a recirculation system is used in place of the residual heat removal system used in the previous embodiments will be described with reference to FIG.

本実施例において、浄化すべき炉水は、PLRポンプ2
の下流から取込まれる。図において。
In this embodiment, the reactor water to be purified is the PLR pump 2
taken in from downstream. In fig.

15はポンプメンテナンス用止め弁、16は流量調整弁
、17はバイパス弁、18は給水系配管である。
15 is a pump maintenance stop valve, 16 is a flow rate adjustment valve, 17 is a bypass valve, and 18 is a water supply system piping.

原子炉1内の炉水は、PLRポンプ2により循環させら
れる。この内の一部が流量調整弁16で流量調整後、再
生熱交換器6.非再生熱交換器7において約50℃に冷
却され、浄化装置8で浄化される。浄化水は、原子炉冷
却材浄化系CUWポンプ5により茄圧され、再生熱交換
器6.給水系配管18を経て原子炉1に戻される。
Reactor water within the nuclear reactor 1 is circulated by a PLR pump 2. After adjusting the flow rate with the flow rate adjustment valve 16, a part of this is transferred to the regenerative heat exchanger 6. It is cooled to about 50° C. in the non-regenerative heat exchanger 7 and purified in the purifier 8. The purified water is pressurized by the reactor coolant purification system CUW pump 5, and then passed through the regenerative heat exchanger 6. The water is returned to the reactor 1 via the water supply system piping 18.

本実施例のCUWポンプ5を流れる流体は、浄化装置8
によりコバルト60等の放射性物質を吸着処理された浄
化水である。従って、CUWポンプ5は、ポンプ内表面
の酸化被膜中に放射性物質を吸着することがなく、ポン
プ5を定期点検する作業員の被ばく量を低減できる。
The fluid flowing through the CUW pump 5 of this embodiment is the purifier 8
This is purified water that has been treated to adsorb radioactive substances such as cobalt-60. Therefore, the CUW pump 5 does not adsorb radioactive substances in the oxide film on the inner surface of the pump, and the amount of radiation exposure of workers who periodically inspect the pump 5 can be reduced.

次に、第S図に示した装置の具体的動作例を説明する。Next, a specific example of the operation of the apparatus shown in FIG. S will be explained.

(A)  原子炉圧力が低い場合 従来例では、原子炉冷却材浄化系は、PLRポンプ2の
上流側に接続していたため、CUWポンプ5の吸込圧力
は、次の様に表わされる。
(A) When the reactor pressure is low In the conventional example, the reactor coolant purification system was connected to the upstream side of the PLR pump 2, so the suction pressure of the CUW pump 5 is expressed as follows.

(ポンプ吸込圧力)=(M子炉ドーム圧力)+(原子炉
水位からCUW ポンプ設置位置までの木 頭)−(配管圧力損失) −(熱交換器圧力損失) −(ろ過脱塩装置圧力損) 失)      ・・・・・・(1) 現状設計のポンプにおいては、上記吸込圧力が0.6 
 kg/ff1g以下となった場合、ポンプ内部にキャ
ビテーションが発生し、ポンプケーシング内部およびポ
ンプ羽根の破損が生じる。プラントの運転モードの中で
、NPSHが、この条件を満足できないのは、プラント
停止時(R子炉圧力が大気圧時)の場合であり、約0.
5  kg/cdgの圧力不足となり、浄化運転を継続
できない、しかしながら、JJa子炉冷却材浄化系は、
炉水の浄化を原子炉運転中だけでなく停止中にも継続し
なくてはならないシステムである。
(Pump suction pressure) = (M child reactor dome pressure) + (wood head from reactor water level to CUW pump installation position) - (piping pressure loss) - (heat exchanger pressure loss) - (filtration desalination equipment pressure loss) (1) In the currently designed pump, the above suction pressure is 0.6
If it is less than kg/ff1g, cavitation will occur inside the pump, causing damage to the inside of the pump casing and the pump blades. Among the plant operation modes, NPSH cannot satisfy this condition when the plant is stopped (when the R reactor pressure is atmospheric pressure), which is about 0.
Due to a pressure shortage of 5 kg/cdg, purification operation could not be continued. However, the JJa reactor coolant purification system
This system requires continuous purification of reactor water not only during reactor operation but also when the reactor is shut down.

本発明においては、第5図に示す様にPLRポンプ2吐
出圧力を利用してこの問題を解決した。
In the present invention, this problem is solved by utilizing the discharge pressure of the PLR pump 2 as shown in FIG.

この場合のポンプ吸込圧力は、(1)式に(PLRポン
プ吐出圧力)を加えたものになる。
The pump suction pressure in this case is the sum of equation (1) plus (PLR pump discharge pressure).

PLRポンプ2は、プラント運転中だけでなく、プラン
ト停止中も定格の約20%回転数で常に運転を継続して
あり、本ポンプ2の吐出圧力は、約0 、6 kg /
 ci g (20%回転時)である。
The PLR pump 2 continues to operate at approximately 20% of the rated rotation speed not only during plant operation but also when the plant is stopped, and the discharge pressure of this pump 2 is approximately 0.6 kg /
ci g (at 20% rotation).

従って1本発明によりプラント停止時(原子炉圧力大気
圧時)においてもCUWポンプ5の運転に必要な吸込圧
力が確保できる。
Therefore, according to the present invention, the suction pressure necessary for operating the CUW pump 5 can be ensured even when the plant is stopped (at atmospheric pressure of the reactor).

(B)  再循環ポンプが定格回転数で運転中の場合原
子炉圧力が高く原子炉が定格出力で運転中の場合、PL
Rポンプ2は、定格回転数で運転されている。この場合
、PLRポンプ吐出圧力は、約18kg/cIigであ
り、yK子炉冷却材浄化系の系統圧力損失(配管機器の
圧力損失の和)値約12kg/ cd gを充分上回る
ため、浄化系統は、CUWポンプ5を停止し、ポンプの
バイパス弁17を開いて運転が可能である。
(B) When the recirculation pump is operating at the rated speed, when the reactor pressure is high and the reactor is operating at the rated power, the PL
The R pump 2 is operated at the rated rotation speed. In this case, the PLR pump discharge pressure is approximately 18 kg/cIig, which sufficiently exceeds the system pressure loss (sum of pressure loss of piping equipment) of the yK subreactor coolant purification system, which is approximately 12 kg/cd g. , the CUW pump 5 is stopped and the bypass valve 17 of the pump is opened to allow operation.

また、原子炉冷却材浄化系の流量は、m子炉冷却材再循
環系の流量のわずか1〜2%に過ぎず。
Further, the flow rate of the reactor coolant purification system is only 1 to 2% of the flow rate of the m reactor coolant recirculation system.

PLRポンプ2によって浄化流量を確保してもポンプ2
のモータ出力に影響しない。
Even if the purification flow rate is secured by PLR pump 2, pump 2
does not affect the motor output.

従って、本発明により、プラント運転時にcUvポンプ
5を停止することができる。
Therefore, according to the present invention, the cUv pump 5 can be stopped during plant operation.

(C)  CUWポンプメンテナンス時に炉水浄化を行
う場合 本実施例においては、原子炉冷却材浄化系の取入れ口を
PLRポンプ2と止め弁15の間に設置することで、C
UWポンプ5のメンテナンス時においても炉水の浄化運
転を継続できる。
(C) When purifying reactor water during CUW pump maintenance In this embodiment, by installing the intake of the reactor coolant purification system between the PLR pump 2 and the stop valve 15,
Reactor water purification operation can be continued even during maintenance of the UW pump 5.

CUWポンプ5点検時、ポンプ5の出入口弁25を閉じ
、バイパス弁17を開く、系統の流量は、PLRポンプ
2の出口止め弁15を閉じることでポンプ2により確保
できる。
When inspecting the CUW pump 5, the inlet/outlet valve 25 of the pump 5 is closed and the bypass valve 17 is opened.The flow rate of the system can be ensured by the pump 2 by closing the outlet stop valve 15 of the PLR pump 2.

PLRポンプ2は、大容量高圧型ポンプであるため、原
子炉冷却材浄化系流量と圧力を確保するためには、ポン
プ回転数を定格の約70%まで上げて圧力を確保し、流
量は、調整弁16で絞り運転しなくてはならない。
Since PLR pump 2 is a large-capacity, high-pressure pump, in order to secure the reactor coolant purification system flow rate and pressure, the pump rotation speed is increased to about 70% of the rated value to secure the pressure, and the flow rate is Throttle operation must be performed using the regulating valve 16.

ここで、PLRポンプ2のメカニカルシール点検に必要
な時間は、CV Wポンプ5のメンテナンスに必要な日
数と比べて短時間であるため、本発明により炉水の浄化
運転時間の延長が計れる。
Here, since the time required to inspect the mechanical seal of the PLR pump 2 is shorter than the number of days required for maintenance of the CV W pump 5, the present invention can extend the reactor water purification operation time.

とはいうものの、PLRポンプ2を定格の70%回転数
で運転する場合の必要動力は、C,UWポンプ5の定格
運転に必要な動力に比べて非常に大きいため、この運転
モードをポンプ5のメンテナンス時以外に使用すること
は、経済効率上好ましくなく1以上述べた運転モードA
−C別に運転を切換えることが必要である。
However, the power required to operate the PLR pump 2 at 70% of the rated rotation speed is much larger than the power required for the rated operation of the C, UW pump 5, so this operation mode is Operation mode A mentioned above is unfavorable from an economical efficiency point of view if it is used for purposes other than maintenance.
- It is necessary to switch the operation for each C.

本発明により第7図に示す様に、浄化装置出口側(F部
)の線量は、従来例のA部における線量の約1/100
に低減できる。
According to the present invention, as shown in FIG. 7, the dose on the outlet side (F section) of the purifier is approximately 1/100 of the dose on the A section of the conventional example.
can be reduced to

〔発明の効果〕〔Effect of the invention〕

本発明によれば、押込圧力不足の問題点が解消され、C
UWポンプをろ過説塩器の下流側に設置できるので、以
下の効果が得られる。
According to the present invention, the problem of insufficient pushing pressure is solved, and C
Since the UW pump can be installed downstream of the salt filter, the following effects can be obtained.

(1)CUWポンプ内部に蓄積される放射性物質を従来
に比べて約1/100に低減でき、定検時の作業員の被
ばく社を低減可能である。
(1) Radioactive materials accumulated inside the CUW pump can be reduced to about 1/100 compared to conventional pumps, reducing the number of workers exposed to radiation during regular inspections.

(2)プラント運転中、PLRポンプ吐出吐出圧伸用し
て浄化装置に炉水を供給でき、CUWポンプを停止でき
るためポンプの汚染が生じない。
(2) During plant operation, reactor water can be supplied to the purification equipment using the PLR pump for discharge expansion, and the CUW pump can be stopped, so no contamination of the pump occurs.

(3)C1JWポンプメンテナンス時、RHRポンプま
たはPLRポンプで浄化系の運転を継続できる。
(3) During maintenance of the C1JW pump, the purification system can continue to operate with the RHR pump or PLR pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により残留熱除去系のポンプを利用した
原子炉冷却材浄化系の一実施例を示す系統図、第2図、
第3図は他の実施例を示す系統図。 第4図は第1図実施例の変形例を示す系統図、第5図は
本発明により再循環系のポンプを利用した原子炉冷却材
浄化系の一実施例を示す系統図、第6図は従来のBWR
の一般的系統構成の一例を示す系統図、第7図はその冷
却材浄化系における配管表面i量率の一例を示すグラフ
である。 1・・・原子炉圧力容器、2・・・再循環(PLR)ポ
ンプ、3・・・残留熱除去(RHR)ポンプ、4・・・
残留熱除去系熱交換器、5・・・原子炉冷却材浄化系(
CUW)ポンプ、6・・・再生熱交換器、7・・・非再
生熱交換器、8・・・浄化装置、9・・・タービン、1
0・・・主復水器、15・・・ポンプメンテナンス用止
め弁、16・・・流量調整弁、17・・・バイパス弁、
18・・・給水系配管、20・・・炉水取入れ配管、2
1・・・戻り配管、23,24.25・・・切換え弁。
Fig. 1 is a system diagram showing an embodiment of a reactor coolant purification system using a residual heat removal system pump according to the present invention; Fig. 2;
FIG. 3 is a system diagram showing another embodiment. FIG. 4 is a system diagram showing a modification of the embodiment shown in FIG. 1, FIG. 5 is a system diagram showing an embodiment of a reactor coolant purification system using a recirculation system pump according to the present invention, and FIG. is conventional BWR
FIG. 7 is a system diagram showing an example of a general system configuration, and FIG. 7 is a graph showing an example of the piping surface i amount ratio in the coolant purification system. 1... Reactor pressure vessel, 2... Recirculation (PLR) pump, 3... Residual heat removal (RHR) pump, 4...
Residual heat removal system heat exchanger, 5... Reactor coolant purification system (
CUW) pump, 6... regenerative heat exchanger, 7... non-regenerative heat exchanger, 8... purification device, 9... turbine, 1
0... Main condenser, 15... Stop valve for pump maintenance, 16... Flow rate adjustment valve, 17... Bypass valve,
18... Water supply system piping, 20... Reactor water intake piping, 2
1...Return piping, 23, 24.25...Switching valve.

Claims (1)

【特許請求の範囲】 1、ポンプと熱交換器と浄化装置とを含み原子炉通常運
転時には再循環系の再循環ポンプの吸込配管側から炉水
を取込み所定温度まで冷却し浄化した後に原子炉圧力容
器に戻す原子炉冷却材浄化系において、前記浄化系のポ
ンプを前記浄化装置よりも下流に配置するとともに、原
子炉停止時に前記循環ポンプの吸込配管側に代えて残留
熱除去系ポンプの出口側から炉水を取入れる配管を設け
たことを特徴とする原子炉冷却材浄化系。 2、特許請求の範囲第1項において、原子炉停止時の炉
水取入れ配管を前記浄化装置よりも上流の前記熱交換器
入口に接続したことを特徴とする原子炉冷却材浄化系。 3、特許請求の範囲第1項または第2項において、前記
残留熱除去系が2系統あり、前記炉水取入れ配管を両系
統から接続したことを特徴する原子炉冷却材浄化系。 4、上記特許請求の範囲のいずれか一項において、原子
炉停止時に前記浄化系のポンプを系統から切り離す切換
え弁を備えたことを特徴とする原子炉冷却材浄化系。 5、ポンプと熱交換器と浄化装置とを含み両循環系から
取込んだ炉水を所定温度まで冷却し浄化した後に原子炉
圧力容器に戻す原子炉冷却材浄化系において、前記浄化
系のポンプの前後に切換え弁を配して原子炉通常運転時
にこのポンプをバイパスする弁を並列に設けこれらを前
記浄化装置よりも下流に配置するとともに、前記熱交換
器への炉水取入れ配管を原子炉停止時に流量を調節する
弁を介して再循環系ポンプの下流に接続したことを特徴
とする原子炉冷却材浄化系。
[Claims] 1. During normal operation of the reactor, which includes a pump, a heat exchanger, and a purification device, reactor water is taken in from the suction pipe side of the recirculation pump of the recirculation system, cooled to a predetermined temperature, purified, and then released into the reactor. In the reactor coolant purification system that returns the reactor coolant to the pressure vessel, the purification system pump is placed downstream of the purification device, and when the reactor is shut down, the outlet of the residual heat removal system pump is placed in place of the suction piping side of the circulation pump. A reactor coolant purification system characterized by having piping that takes in reactor water from the side. 2. A reactor coolant purification system according to claim 1, characterized in that a reactor water intake pipe at the time of reactor shutdown is connected to the inlet of the heat exchanger upstream of the purification device. 3. A reactor coolant purification system according to claim 1 or 2, characterized in that there are two residual heat removal systems, and the reactor water intake piping is connected from both systems. 4. A nuclear reactor coolant purification system according to any one of the above claims, further comprising a switching valve that disconnects the pump of the purification system from the system when the reactor is shut down. 5. In a reactor coolant purification system that includes a pump, a heat exchanger, and a purification device and returns reactor water taken in from both circulation systems to a predetermined temperature and purified, and then returned to the reactor pressure vessel, the purification system pump Switching valves are placed before and after the reactor, and valves that bypass this pump during normal reactor operation are provided in parallel, and these are placed downstream of the purification device, and the reactor water intake piping to the heat exchanger is connected to the reactor. A nuclear reactor coolant purification system, characterized in that it is connected downstream of a recirculation system pump via a valve that adjusts the flow rate during shutdown.
JP61060075A 1986-03-18 1986-03-18 Reactor coolant purification system Expired - Lifetime JPH0679073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060075A JPH0679073B2 (en) 1986-03-18 1986-03-18 Reactor coolant purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060075A JPH0679073B2 (en) 1986-03-18 1986-03-18 Reactor coolant purification system

Publications (2)

Publication Number Publication Date
JPS62215894A true JPS62215894A (en) 1987-09-22
JPH0679073B2 JPH0679073B2 (en) 1994-10-05

Family

ID=13131600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060075A Expired - Lifetime JPH0679073B2 (en) 1986-03-18 1986-03-18 Reactor coolant purification system

Country Status (1)

Country Link
JP (1) JPH0679073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018179834A (en) * 2017-04-17 2018-11-15 日立Geニュークリア・エナジー株式会社 System and method for removing radioactive particles in fluid

Also Published As

Publication number Publication date
JPH0679073B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US4138319A (en) Nuclear reactor installation with a light-water reactor
US4043864A (en) Nuclear power plant having a pressurized-water reactor
JPS62215894A (en) Purification system of coolant for nuclear reactor
JPS6398597A (en) Condensate system
JP2001091684A (en) Fuel pool cooling equipment
JPS6189591A (en) Purifier for coolant of nuclear reactor
JPS6235033B2 (en)
JPH04136794A (en) Cooling facility of nuclear power plant
JP2895267B2 (en) Reactor water purification system
JPS5941155B2 (en) Reactor shutdown cooling system
JPH0479438B2 (en)
JPS62190496A (en) Purifier for coolant of nuclear reactor
JPH04270995A (en) Purification system of nuclear reactor coolant
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPS58201094A (en) Reactor coolant cleanup system
JPH01185492A (en) Feed water tubing circulating facility in nuclear power plant
JPS62107208A (en) Electric power plant
JPS60196592A (en) Condensate feedwater recirculating system
JPS6030917B2 (en) Reactor decontamination cooling method and decontamination cooling device
JPS62606A (en) Distributor for power plant
JP2563506B2 (en) Reactor coolant purification equipment
JPS5864485A (en) Condenser
JPH0192695A (en) Motor part cooler for recirculation pump
JPS5882193A (en) Device for cleaning residual heat removal pipeline
JPS6042693A (en) Method of cooling condenser for exhaust gas