JPS6235033B2 - - Google Patents

Info

Publication number
JPS6235033B2
JPS6235033B2 JP56006304A JP630481A JPS6235033B2 JP S6235033 B2 JPS6235033 B2 JP S6235033B2 JP 56006304 A JP56006304 A JP 56006304A JP 630481 A JP630481 A JP 630481A JP S6235033 B2 JPS6235033 B2 JP S6235033B2
Authority
JP
Japan
Prior art keywords
condensate
pump
condenser
pipe
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006304A
Other languages
Japanese (ja)
Other versions
JPS57122285A (en
Inventor
Kyozumi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP630481A priority Critical patent/JPS57122285A/en
Publication of JPS57122285A publication Critical patent/JPS57122285A/en
Publication of JPS6235033B2 publication Critical patent/JPS6235033B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は、原子力発電プラントの復水系統に係
り、特にプラント停止時に錆発生を低減するため
に復水を循環させると共に、高純度廃棄物を短時
間でプラント再使用水として回収するに好適な復
水系統に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensate system for a nuclear power plant, and in particular, it circulates condensate to reduce the occurrence of rust when the plant is stopped, and it also enables the plant to reuse high-purity waste in a short time. This invention relates to a condensate system suitable for recovering water.

まず従来技術について、第1図、第2図により
説明する。原子力発電プラントにおける蒸気、復
水給水系統は、第1図のように構成され、プラン
ト運転中においては、原子炉1で発生した蒸気は
タービン2で膨張して仕事をした後、復水器3で
冷却され復水となる。この復水は復水ポンプ4で
吸出され、復水管5を介して復水浄化装置6に導
入されてここで不純物が除去された後、復水昇圧
ポンプ7で昇圧され、続いて給水加熱器8で加熱
昇温され、給水ポンプ9で昇圧した上、給水管1
0を介して原子炉1に戻る閉回路を形成してい
る。
First, the prior art will be explained with reference to FIGS. 1 and 2. The steam and condensate water supply system in a nuclear power plant is configured as shown in Figure 1. During plant operation, steam generated in the nuclear reactor 1 expands in the turbine 2 and does work, and then is transferred to the condenser 3. It is cooled and becomes condensate. This condensate is sucked out by a condensate pump 4, introduced into a condensate purification device 6 via a condensate pipe 5, where impurities are removed, and then pressurized by a condensate boost pump 7, and then fed to a feed water heater. 8, the water supply pump 9 increases the pressure, and then the water supply pipe 1
A closed circuit is formed which returns to the nuclear reactor 1 via 0.

この閉回路において、流量バランスがくずれて
復水器3が高水位となつた時には、弁40を開と
し、スピルオーバ管11を介して復水貯蔵タンク
12に復水を排出する。
In this closed circuit, when the flow rate is unbalanced and the water level in the condenser 3 reaches a high level, the valve 40 is opened and condensate is discharged to the condensate storage tank 12 via the spillover pipe 11.

また、給水ポンプ9の軸封は800MW.級以上の
場合は封水方式とし、復水昇圧ポンプ7の吐出管
より分岐した封水供給管13を介して給水ポンプ
9に封水を供給し、該封水は封水戻り管14を介
して復水回収タンク15に回収される。該復水回
収タンク15は、この封水戻り水の他にもいくつ
かのドレンを回収している。回収されたドレン
は、回収ポンプ16により昇圧し、復水回収タン
ク水位調整弁34および復水回収ポンプ吐出管1
7を介して復水器3に回収される。
In addition, the shaft seal of the water supply pump 9 is of a water seal type in the case of 800 MW class or higher, and seal water is supplied to the water supply pump 9 via a water seal supply pipe 13 branched from the discharge pipe of the condensate boost pump 7. The sealed water is collected into a condensate recovery tank 15 via a sealed water return pipe 14. The condensate recovery tank 15 collects some drain water in addition to this sealed water return water. The recovered condensate is pressurized by the recovery pump 16, and then sent to the condensate recovery tank water level adjustment valve 34 and the condensate recovery pump discharge pipe 1.
7 and is recovered to the condenser 3.

通常運転中はこのようなルートにより運転され
ているが、一方プラント停止時、特に定期点検等
の長期停止時において、腐食生成物の低減のため
には、復水および給水系は低流量による循環保管
運転が有効であることが運転実験により確認され
ていることから、限定されたルートについて低流
量運転がなされており、次にこのプラント停止時
の循環保管運転ルートについて説明する。
During normal operation, this route is used; however, during plant shutdowns, especially during long-term shutdowns such as periodic inspections, in order to reduce corrosion products, the condensate and water supply systems are circulated at low flow rates. Since it has been confirmed through operational experiments that storage operation is effective, low flow rate operation is performed on a limited route.Next, we will explain this circulation storage operation route when the plant is stopped.

プラント停止時には、復水器3内の復水は、所
内動力節減のため、通常運転時には2台運転され
る復水ポンプ4は1台のみを運転し、復水昇圧ポ
ンプ7をさらに1台運転するか、または復水昇圧
ポンプ7は停止してそのバイパス管18を通すか
した後、給水ポンプバイパス管19を通し、給水
管10より分岐した復水給水再循環管20を介し
て復水器3に戻す。
When the plant is stopped, the condensate in the condenser 3 is pumped by operating only one condensate pump 4, which is two in normal operation, and one additional condensate boost pump 7, in order to save power within the plant. Alternatively, the condensate boost pump 7 is stopped and the bypass pipe 18 is passed through, and then the condensate is passed through the feed water pump bypass pipe 19 and the condensate feed water recirculation pipe 20 branched from the water supply pipe 10 to the condenser. Return to 3.

ところが、このプラント停止中の循環保管運転
における復水ポンプ4の軸動力は1000MW.級の
プラントの場合、1台当り約1500KW.前後と大
きく、上記閉回路内においてはこれが機械損失と
して復水系への入熱となり、復水の循環をくり返
している間に復水が昇温し、復水器3を介してタ
ービン2側に復水の蒸発蒸気が逆流し、タービン
2自体およびタービン定期点検作業に影響を及ぼ
す。
However, the shaft power of the condensate pump 4 during circulation storage operation during plant shutdown is large, approximately 1500 KW per unit in the case of a 1000 MW class plant, and in the closed circuit described above, this is transferred to the condensate system as mechanical loss. As the condensate circulates repeatedly, the temperature of the condensate rises, and the evaporated steam of the condensate flows back to the turbine 2 through the condenser 3, causing damage to the turbine 2 itself and periodic turbine inspection work. affect.

そこでこの復水の昇温を防止するため、従来、
通常は、2台または3台運転される循環水ポンプ
21を運転して復水器3に冷却海水を送出してい
る。しかし、この循環水ポンプ21の所内動力
も、1000MW.級プラントの場合で約3000KW.と
大きい。
Therefore, in order to prevent the temperature of this condensate from rising, conventionally,
Usually, two or three circulating water pumps 21 are operated to send cooling seawater to the condenser 3. However, the internal power of this circulating water pump 21 is also large, about 3000 KW in the case of a 1000 MW class plant.

このように、従来技術においては、循環保管運
転のために、少なくとも復水ポンプ4を1台、循
環水ポンプ21を1台、定期点検の約3ケ月間運
転しなければならないため、この運転コストが1
億円以上にものぼる。
As described above, in the conventional technology, at least one condensate pump 4 and one circulating water pump 21 must be operated for about 3 months for periodic inspection for circulation storage operation, which reduces the operating cost. is 1
It amounts to more than 100 million yen.

次に、プラント停止時には機器ドレン抜きが行
われるが、その従来技術について、第2図により
説明する。建屋内ドレンの中、炉水、復水、給
水・排ガス系圧縮水等を内蔵する配管および機器
のよりのドレンは一般に高純度(低電導度)廃液
であり、放射性機器ドレンと称している。
Next, a conventional technique for draining equipment when the plant is stopped will be explained with reference to FIG. Among building drains, drains from pipes and equipment that contain reactor water, condensate, compressed water for water supply and exhaust gas systems, etc. are generally high-purity (low conductivity) waste liquids and are called radioactive equipment drains.

給水加熱器7の胴体ドレン、復水管5、給水管
10からのドレン、およびその他の前記機器ドレ
ンは、機器ドレン弁22を順次開とすることによ
り、各機器ドレン受口23を介して機器ドレンサ
ンプ24に入り、機器ドレンポンプ25、廃液収
集タンク、廃液収集ポンプ27を介して廃液フイ
ルター28に入り、ここで過処理され、その後
廃液脱塩器29で脱塩処理された後、廃液サンプ
ルタンク30、廃液サンプルポンプ31によりプ
ラント補給水として復水貯蔵タンク12に回収さ
れる。
The body drain of the feed water heater 7, the drain from the condensate pipe 5, the water supply pipe 10, and other equipment drains are drained into the equipment drain sump via each equipment drain port 23 by sequentially opening the equipment drain valves 22. 24, the equipment drain pump 25, the waste liquid collection tank, the waste liquid collection pump 27, and then the waste liquid filter 28, where it is over-treated and then desalted in the waste liquid demineralizer 29, after which it is transferred to the waste liquid sample tank 30. , and is collected by the waste liquid sample pump 31 into the condensate storage tank 12 as plant make-up water.

このような機器ドレン処理設備の廃棄物処理所
要負荷をできるだけ低減させる手段として、前記
機器ドレンの中でも比較的高純度の給水加熱器
8、復水管5および給水管10内ドレン等を、機
器ドレンサンプル24ではなく、復水回収タンク
15に回収し、回収ポンプ16、回収ポンプ吐出
管17、復水器3、復水浄化装置6、スピルオー
バ管11を介して復水貯蔵タンク12に回収して
いるプラントもある。但し、この場合も復水ポン
プ4を運転するため、復水ポンプ4の安定運転
上、前記比較的高純度のドレンを復水器3に導入
する前に、復水器3自身が保有していたドレン
は、予め他の機器ドレンと同様に、機器ドレンサ
ンプ24に回収し、その時には復水ポンプ4は停
止していなければならない。しかし、この復水器
3自身が保有していたドレン量は、復水回収タン
ク15に回収した分以外のドレン量の約半分近く
を占めるため、前記機器ドレン処理設備の大きな
負荷となつている。
As a means of reducing the load required for waste treatment in such equipment drain processing equipment as much as possible, the drains in the feed water heater 8, the condensate pipe 5, the water supply pipe 10, etc., which have relatively high purity among the equipment drains, are used as equipment drain samples. 24, it is collected in a condensate recovery tank 15, and is collected in a condensate storage tank 12 via a recovery pump 16, a recovery pump discharge pipe 17, a condenser 3, a condensate purification device 6, and a spillover pipe 11. There are also plants. However, in this case as well, since the condensate pump 4 is operated, in order to ensure stable operation of the condensate pump 4, before introducing the comparatively high-purity condensate into the condenser 3, The condensate drain must be collected in advance into the device drain sump 24 in the same way as other device drains, and the condensate pump 4 must be stopped at that time. However, the amount of condensate held by the condenser 3 itself accounts for about half of the amount of condensate other than the amount collected in the condensate recovery tank 15, which places a large load on the equipment drain processing equipment. .

一方、該機器ドレン処理設備の処理容量は、プ
ラント停止時必要ドレン抜き量の数十分の一しか
無いのが一般的である。このため、現状において
は、機器ドレン弁22の開操作個数を制限し、数
十回に分割してドレン抜きを行つている。このた
め、この作業に要する多数の作業員確保、数週間
に及ぶドレン抜き日程はプラント停止時の大きな
問題点となつている。
On the other hand, the processing capacity of the equipment drain processing equipment is generally only a few tenths of the amount of drain required when the plant is stopped. For this reason, at present, the number of opening operations of the device drain valve 22 is limited, and draining is performed in several tens of times. For this reason, securing a large number of workers for this work and requiring several weeks to remove the drain become a major problem when the plant is shut down.

本発明の目的は、上記した従来技術の問題点を
解決すること、即ち循環保管運転時の所内動力を
低減すると共に、機器ドレン処理負荷を低減しう
る構成の復水系統を提供することにある。
An object of the present invention is to solve the problems of the prior art described above, that is, to provide a condensate system configured to reduce the internal power during circulation storage operation and reduce the equipment drain processing load. .

この目的を達成するため、本発明の復水系統
は、復水器と復水回収タンクとを接続する弁を有
するラインと、復水回収ポンプ吐出管から分岐し
て復水浄化装置入口の復水管に接続する弁を有す
るラインとを設けたことを特徴とする。
To achieve this objective, the condensate system of the present invention includes a line having a valve connecting the condenser and the condensate recovery tank, and a line branching from the condensate recovery pump discharge pipe to the inlet of the condensate purification device. A line having a valve connected to the water pipe is provided.

以下本発明の一実施例を第3図、第4図により
説明する。第3図において、32,33は第1図
に示した従来の復水系統に対して本発明により付
設された配管で、配管32は復水器3と復水回収
タンク15とを接続する復水器ドレン管、配管3
3は復水回収ポンプ吐出管17から分岐して復水
ポンプ4と復水浄化装置6との間の復水管5に接
続した復水連絡管、41,36はこれらの配管3
2,33に設けた弁である。このうち、弁36
は、第4図に示すように、復水回収タンク15の
液面レベルを検出するレベル発信器38の出力を
入力とレベル調整器39により開度が調整されて
復水回収タンク15の液面レベルを調整する水位
調整弁として作動させられるものである。37は
復水回収ポンプ16制御用レベルスイツチ、4
2,43は通常運転時に復水回収タンク15の水
位調整を行う水位調整弁34用のレベル発信器お
よびレベル調整器である。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In FIG. 3, 32 and 33 are pipes added according to the present invention to the conventional condensate system shown in FIG. Water appliance drain pipe, piping 3
3 is a condensate communication pipe branched from the condensate recovery pump discharge pipe 17 and connected to the condensate pipe 5 between the condensate pump 4 and the condensate purification device 6; 41 and 36 are these pipes 3;
This is the valve installed at 2 and 33. Of these, valve 36
As shown in FIG. 4, the output of the level transmitter 38 that detects the liquid level of the condensate recovery tank 15 is input, and the opening degree is adjusted by the level regulator 39 to adjust the liquid level of the condensate recovery tank 15. It is operated as a water level control valve to adjust the level. 37 is a level switch for controlling the condensate recovery pump 16, 4
Reference numerals 2 and 43 designate a level transmitter and a level adjuster for a water level adjustment valve 34 that adjusts the water level of the condensate recovery tank 15 during normal operation.

この構成において、まず循環保管運転時におけ
る復水の流れについて説明する。循環保管運転時
には、水位調整弁34、スピルオーバ管11に設
けられた弁40、封水供給管13の弁44および
復水器3のドレン弁22は閉とする一方、本発明
により付設した弁36,41、復水昇圧ポンプバ
イパス管18の弁35、給水ポンプバイパス弁4
5および復水給水再循環管20の弁46を開と
し、復水回収ポンプ16を運転させて復水を循環
させる。従つて、この時の復水器3内のドレン
は、本発明により付設された復水ドレン管32を
介し、復水回収タンク15に回収される。該回収
復水は、復水回収ポンプ16により吸出され、本
発明により付設された復水連絡管33を介して復
水浄化装置6に導入され、ここで浄化された復水
は、復水昇圧ポンプバイパス管18、給水加熱器
8、給水ポンプバイパス管19、復水給水再循環
管20を介して復水器3に戻る。この場合、復水
回収タンク15の液面レベルはレベル発信器38
で検出され、レベル調整器39で弁36の開度を
調整することによつて設定レベルに保持される。
In this configuration, the flow of condensate during circulation storage operation will first be explained. During circulation storage operation, the water level adjustment valve 34, the valve 40 provided on the spillover pipe 11, the valve 44 of the water seal supply pipe 13, and the drain valve 22 of the condenser 3 are closed, while the valve 36 provided according to the present invention is closed. , 41, valve 35 of condensate boost pump bypass pipe 18, water supply pump bypass valve 4
5 and the valve 46 of the condensate feedwater recirculation pipe 20 are opened, and the condensate recovery pump 16 is operated to circulate the condensate. Therefore, the drain in the condenser 3 at this time is recovered to the condensate recovery tank 15 via the condensate drain pipe 32 provided according to the present invention. The recovered condensate is sucked out by the condensate recovery pump 16 and introduced into the condensate purification device 6 via the condensate communication pipe 33 provided according to the present invention, and the condensate purified here is used to increase the condensate pressure. It returns to the condenser 3 via the pump bypass pipe 18, the feedwater heater 8, the feedwater pump bypass pipe 19, and the condensate feedwater recirculation pipe 20. In this case, the liquid level in the condensate recovery tank 15 is determined by the level transmitter 38.
is detected and maintained at a set level by adjusting the opening degree of the valve 36 with the level regulator 39.

この循環保管運転時には給水ポンプ9の封水を
行う必要がないため、復水回収ポンプ16の容量
は、通常運転時の所要量(封水戻り他)より算出
した容量のままで、循環時容量も十分確保され
る。この復水回収ポンプ16の容量は、
1000MW.級プラントの場合、約100KW.前後であ
り、この程度のポンプの機械損失による復水中へ
の入熱では、循環保管閉回路内の機器、配管から
の熱放散により発散し、前述の復水器3よりター
ビン2側への蒸発蒸気の逆流は生じない。
During this circulation storage operation, there is no need to seal the water supply pump 9, so the capacity of the condensate recovery pump 16 remains the same as the capacity calculated from the required amount during normal operation (sealed water return, etc.), and the capacity during circulation remains the same. will also be adequately secured. The capacity of this condensate recovery pump 16 is
In the case of a 1000 MW class plant, it is approximately 100 KW. With this level of heat input into the condensate water due to mechanical loss from the pump, heat is dissipated by heat dissipation from equipment and piping in the closed circulation storage circuit, and the above-mentioned condensate A backflow of evaporated steam from the water container 3 to the turbine 2 side does not occur.

従つて、循環水ポンプ21も運転する必要が無
い。また、復水ポンプ4、復水昇圧ポンプ6も全
台停止させておくことができる。
Therefore, there is no need to operate the circulating water pump 21 either. Furthermore, all of the condensate pump 4 and condensate boost pump 6 can be stopped.

次に復水器3の機器ドレン回収について説明す
る。従来技術において問題となつた復水器内ドレ
ンの回収を行う場合は、復水器のドレン弁22、
通常運転時に操作される水位調整弁34、復水昇
圧ポンプバイパス管18の弁35を閉とし、復水
器ドレン管32の弁41、復水連絡管33の弁3
6、スピルオーバ管11の弁40を開とし、復水
回収ポンプ16を運転しながら回収する。この場
合、復水器3内ドレンは、復水器ドレン管32を
介して復水回収タンク15に入り、続いて復水回
収ポンプ吐出管17、復水連絡管33を介して復
水浄化装置6に送水され浄化された後、スピルオ
ーバ管11を介して復水貯蔵タンク12に回収さ
れる。
Next, equipment drain recovery from the condenser 3 will be explained. When recovering the drain inside the condenser, which was a problem in the prior art, the drain valve 22 of the condenser,
The water level adjustment valve 34 and the valve 35 of the condensate boost pump bypass pipe 18 that are operated during normal operation are closed, and the valve 41 of the condenser drain pipe 32 and the valve 3 of the condensate communication pipe 33 are closed.
6. Open the valve 40 of the spillover pipe 11 and collect the condensate while operating the condensate recovery pump 16. In this case, the drain in the condenser 3 enters the condensate recovery tank 15 via the condenser drain pipe 32, and then passes through the condensate recovery pump discharge pipe 17 and the condensate communication pipe 33 to the condensate purification device. After being purified, the water is collected in a condensate storage tank 12 via a spillover pipe 11.

この場合、この回収ラインに万一トラブルが発
生するケースを考慮して、従来の復水器ドレンの
ドレン受口23への切換え機構も設けておく。ま
た、給水加熱器8および給水、復水まわりのドレ
ンを復水回収タンク15に回収・浄化する方法は
踏襲して併用する。
In this case, a mechanism for switching the conventional condenser drain to the drain port 23 is also provided in consideration of the case where trouble should occur in this recovery line. Further, the method of collecting and purifying the drain around the feed water heater 8, the feed water, and the condensate into the condensate recovery tank 15 is followed and used in combination.

復水回収タンク15の水位調整は、前述のよう
に、通常運転時には水位調整弁34により行い、
前記復水器ドレン回収時および循環運転時には水
位調整弁36により行うが、各運転時の容量の差
異および制御の信頼性向上のため、図示のように
レベル発信器を別々に設置し、運転時期により片
側の水位調整弁は強制閉とする。また、復水器ド
レン回収時に復水器ドレンが全量排水された場合
には、レベルスイツチ37が作動して、復水回収
ポンプ16を自動トリツプさせる。
As mentioned above, the water level of the condensate recovery tank 15 is adjusted by the water level adjustment valve 34 during normal operation.
The water level adjustment valve 36 is used during the condenser drain collection and circulation operation, but in order to improve the reliability of control and the difference in capacity during each operation, level transmitters are installed separately as shown in the figure to adjust the operation timing. Therefore, the water level adjustment valve on one side is forced to close. Furthermore, when the condenser drain is completely drained during condenser drain recovery, the level switch 37 is activated to automatically trip the condensate recovery pump 16.

なお本実施例においては、従来から設置されて
いる復水回収タンク15に復水器ドレンを回収す
ることとしたが、復水器ドレン回収用の専用の復
水回収タンクを設けると共に、別置の専用ポンプ
によつて復水浄化装置6の入口復水管5に送水す
るようにしてもよい。
In this embodiment, condenser drain is collected in the conventionally installed condensate recovery tank 15, but a dedicated condensate recovery tank for condenser drain recovery is provided, and a separate Water may be supplied to the inlet condensate pipe 5 of the condensate purification device 6 by a dedicated pump.

以上述べたように、本発明においては、復水器
と復水回収タンクとを接続する弁を有する配管
と、復水回収ポンプ吐出管と復水浄化装置入口側
復水管とを接続する弁を有する配管とを設けたこ
とにより、プラント長期停止時の循環保管運転に
おいて、所内動力の大きい復水ポンプおよび循環
水ポンプの運転が不要となり、これにより、運転
コストは大巾に低減される。具体的には、1回の
定期点検で運転コストが約2〜3億円も低減さ
れ、プラント寿命中には数十億円以上も低減され
る。
As described above, in the present invention, a pipe having a valve that connects a condenser and a condensate recovery tank, and a valve that connects a condensate recovery pump discharge pipe and a condensate pipe on the inlet side of a condensate purification device are provided. By providing piping with this system, it is no longer necessary to operate condensate pumps and circulating water pumps that require large amounts of power in the plant during circulation storage operations during long-term plant shutdowns, thereby significantly reducing operating costs. Specifically, one periodic inspection can reduce operating costs by approximately 200 to 300 million yen, and over the life of the plant, the operating costs can be reduced by several billion yen or more.

また、機器ドレン処理設備の負荷低減が達成さ
れるから、プラント停止時のドレン抜きが短時間
にでき、大巾な作業員の減少、日数の低減が可能
となり、ひいては定期点検時の停止日数の縮少に
も大きな役割を果す。また、他の機器ドレンとの
処理時期調整の手数も省ける。
In addition, since the load on the equipment drain processing equipment is reduced, drain can be removed in a short time when the plant is stopped, which greatly reduces the number of workers and the number of days required. It also plays a major role in shrinkage. In addition, the trouble of coordinating the processing timing with other equipment drains can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子力発電プラントにおける蒸
気、復水給水系の概略系統図、第2図は従来の放
射性機器ドレン設備の概略系統図、第3図は本発
明の一実施例を示す蒸気、復水給水系の概略系統
図、第4図はその要部詳細系統図である。 3…復水器、4…復水ポンプ、6…復水浄化装
置、11…スピルオーバ管、12…復水貯蔵タン
ク、15…復水回収タンク、16…復水回収ポン
プ、17…復水回収ポンプ吐出管、32…復水器
ドレン管、33…復水連絡管。
Fig. 1 is a schematic system diagram of a steam and condensate water supply system in a conventional nuclear power plant, Fig. 2 is a schematic system diagram of a conventional radioactive equipment drain facility, and Fig. 3 is a schematic diagram of a steam and condensate water supply system in a conventional nuclear power plant. A schematic system diagram of the condensate water supply system, and FIG. 4 is a detailed system diagram of its main parts. 3... Condenser, 4... Condensate pump, 6... Condensate purification device, 11... Spillover pipe, 12... Condensate storage tank, 15... Condensate recovery tank, 16... Condensate recovery pump, 17... Condensate recovery Pump discharge pipe, 32...Condenser drain pipe, 33...Condensate communication pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気タービンからの蒸気を復水させる復水器
と、復水器中の復水を吸出する復水ポンプと、該
復水ポンプにより吸出された復水を過、脱塩す
る復水浄化装置と、原子炉に給水を供給する給水
ポンプの軸封戻り水等を回収する復水回収タンク
と、該復水回収タンク中の復水を吸出して復水器
に送水する復水回収ポンプおよび復水回収ポンプ
吐出管とを備えた原子力発電プラントの復水系統
において、前記復水器と復水回収タンクとを接続
しかつ弁を有する復水器ドレン管を設けると共
に、前記復水回収ポンプ吐出管から分岐して前記
復水ポンプと前記復水浄化装置とを結ぶ復水管に
接続しかつ弁を有する復水連絡管を設けたことを
特徴とする復水系統。
1. A condenser that condenses steam from a steam turbine, a condensate pump that sucks out condensate from the condenser, and a condensate purification device that filters and desalinates the condensate sucked out by the condensate pump. , a condensate recovery tank that collects return water from the shaft seal of the feedwater pump that supplies water to the reactor, a condensate recovery pump that sucks out condensate from the condensate recovery tank, and sends it to the condenser. In a condensate system of a nuclear power plant equipped with a water recovery pump discharge pipe, a condenser drain pipe connecting the condenser and a condensate recovery tank and having a valve is provided, and the condensate recovery pump discharge pipe 1. A condensate system comprising a condensate communication pipe branched from a pipe, connected to a condensate pipe connecting the condensate pump and the condensate purification device, and having a valve.
JP630481A 1981-01-21 1981-01-21 Condensation system Granted JPS57122285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP630481A JPS57122285A (en) 1981-01-21 1981-01-21 Condensation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP630481A JPS57122285A (en) 1981-01-21 1981-01-21 Condensation system

Publications (2)

Publication Number Publication Date
JPS57122285A JPS57122285A (en) 1982-07-30
JPS6235033B2 true JPS6235033B2 (en) 1987-07-30

Family

ID=11634628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP630481A Granted JPS57122285A (en) 1981-01-21 1981-01-21 Condensation system

Country Status (1)

Country Link
JP (1) JPS57122285A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442474B2 (en) * 2010-01-29 2014-03-12 中国電力株式会社 Power generation facility and operation method of power generation facility
JP6116113B2 (en) * 2011-04-07 2017-04-19 株式会社豊田中央研究所 Condenser and condensing system provided with the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141903A (en) * 1978-04-25 1979-11-05 Toshiba Corp Condensing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141903A (en) * 1978-04-25 1979-11-05 Toshiba Corp Condensing equipment

Also Published As

Publication number Publication date
JPS57122285A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
JPS6126957Y2 (en)
US4510755A (en) Demineralization of feed water in a steam system
JP3161072B2 (en) Condenser and its operation method, and condenser system and its operation method
JPS6235033B2 (en)
JPS6179905A (en) Drain recovery system
JPS6338804A (en) Condensate device
JPS6141807A (en) Feedwater-heater drain system
JP2563506B2 (en) Reactor coolant purification equipment
JPH01185492A (en) Feed water tubing circulating facility in nuclear power plant
RU2776440C1 (en) Circulating water supply and treatment device for heat exchange equipment
JP2597594B2 (en) Feed water heater drain injection device
JPH0428964B2 (en)
JPS62215894A (en) Purification system of coolant for nuclear reactor
JPH04270995A (en) Purification system of nuclear reactor coolant
JPS582794A (en) Drain processing method of atomic power plant
JPS6144204A (en) Clean-up method of steam power plant
JPS58126406A (en) Turbine load reduction equipment
JPH0445642B2 (en)
JPH0425798A (en) Condensate purification system
JPS6379099A (en) Feedwater dissolved oxygen regulator
JPH07325193A (en) Radioactive gas waste processing system
Fath Improvement of CANDU-1000 MW (e) power cycle by moderator heat recovery
JPS62119302A (en) Turbine plant with feedwater-heater drain injector
JPS62228805A (en) Drain-system cleanup device for steam turbine plant
JPS597885A (en) Cooling water system