JPS58126406A - Turbine load reduction equipment - Google Patents

Turbine load reduction equipment

Info

Publication number
JPS58126406A
JPS58126406A JP851782A JP851782A JPS58126406A JP S58126406 A JPS58126406 A JP S58126406A JP 851782 A JP851782 A JP 851782A JP 851782 A JP851782 A JP 851782A JP S58126406 A JPS58126406 A JP S58126406A
Authority
JP
Japan
Prior art keywords
turbine
cooling water
turbine load
steam
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP851782A
Other languages
Japanese (ja)
Inventor
Eizo Usui
薄井 英三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP851782A priority Critical patent/JPS58126406A/en
Publication of JPS58126406A publication Critical patent/JPS58126406A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent turbine trip in such a way that opening degree of a turbine load control valve is controlled through cooling water reduction signals at the time of reducing cooling water supply to a condenser so that its steam rate can be balanced with condensing treatment capability of the condenser. CONSTITUTION:when sea water pumps 17a, 17b are tripped or when pump outlet ports 19a, 19b are closed, cooling water reduction signals S1-S4 generated in respective signal generators 23a, 23b, 24a, 24b are input into a turbine load controller 22. For example, in the event that one pump 17a out of the arranged two the sea water pumps is tripped, opening degree of a turbine load control valve 3 is controlled so that the trip signal S1 is applied as input, and the rate of steam flowing into the high pressure turbine 2 may be equivalent to the turbine load to be balanced with the steam treatment capability of the pump 17b which is not tripped. Thus, turbine trip due to a turbine load increase can be prevented, and working rate in the power plant can be improved.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、タービンに流入する蒸気の流量を制御するタ
ービン負荷低減装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a turbine load reduction device that controls the flow rate of steam flowing into a turbine.

(発明の技術的背明) 一般に発電プラン1−等に配設される蒸気タービンには
、復水器が配設されており、この復水器にはタービンか
ら流入する蒸気を′a縮するために冷却水を流通する熱
交換器が配設されている。熱交換器へ供給される冷却水
は、一般に複数台の冷却水ポンプから供給されているが
、例えば3台の冷却水ポンプのうち1台が停止する、あ
るいはポンプ出口弁が閉じた場合には、熱交換器へ流入
する冷却水流量が減少し、復水器真空度の低下によりタ
ービン停止(以下トリップという)を引き起すおそれが
ある。
(Technical Background of the Invention) Generally, a steam turbine installed in a power generation plan 1-, etc. is equipped with a condenser, and this condenser condenses the steam flowing from the turbine. A heat exchanger is installed to circulate cooling water for this purpose. The cooling water supplied to the heat exchanger is generally supplied from multiple cooling water pumps, but for example, if one of the three cooling water pumps stops or the pump outlet valve closes, , the flow rate of cooling water flowing into the heat exchanger decreases, and the vacuum degree of the condenser decreases, which may cause the turbine to stop (hereinafter referred to as tripping).

づなわち従来の発電プラントでは、複数台配設される冷
却水ポンプのうら、例えば1台が1ヘリツブすると定格
運転中のタービン排気蒸気量冷却する冷却水流量が不足
し、復水器内圧力が上背するため、冷却水ポンプか1〜
リツプした時には、運転負によりタービン負荷が落され
タービン排気蒸気量を少なく覆ることにより、復水器内
真空度が維持されタービントリップが防止されている。
In other words, in a conventional power generation plant, when multiple cooling water pumps are installed, for example, if one pump operates at one time, the flow rate of cooling water to cool the turbine exhaust steam during rated operation is insufficient, and the pressure inside the condenser increases. The cooling water pump or 1~
When a trip occurs, the turbine load is reduced due to negative operation and the amount of steam exhausted from the turbine is reduced, thereby maintaining the degree of vacuum in the condenser and preventing a turbine trip.

しかしながら、このような操作を熟練していない運転員
が行なう時には、冷却水ポンプのトリップを感知し、手
際よくタービン負荷を軽減することは困難であり、最悪
の場合には、復水器内真空度低下にJ:リタービントリ
ップを引き起すおそれがある。
However, when such operations are performed by unskilled operators, it is difficult to detect the tripping of the cooling water pump and quickly reduce the turbine load, and in the worst case, the vacuum inside the condenser J: There is a risk of causing a return turbine trip.

(発明の目的) 本発明はかかる従来の事情に対処してなされたもので、
例えば冷却水ポンプがトリップした時、あるいは冷却水
を復水器へ供給する配管に介挿されるポンプ出口弁が閉
じた時にタービンの負荷を自動的に軽減することの出来
るタービン負荷低減装冒を提供しようとするものである
(Object of the invention) The present invention has been made in response to such conventional circumstances,
For example, we provide a turbine load reduction system that can automatically reduce the load on the turbine when the cooling water pump trips or when the pump outlet valve inserted in the piping that supplies cooling water to the condenser closes. This is what I am trying to do.

(発明の概要) すなわち本発明は、ターどンへ流入ザる蒸気の流出を調
整するタービン負荷制御弁と、前記タービンから流出し
た蒸気を凝縮する熱交換器を備えた復水器と、前記熱交
換器に冷却水を供給する複数台の冷却水ポンプと、これ
らの冷却水ポンプから前記熱交換器への前記冷却水の供
給が低減した時に冷却水低減信号を出力する信号発生器
と、この信号発生器から前記冷却水低減信号を入力し、
前記タービン負荷制御弁の開度をこのタービン負荷制御
弁を流れる蒸気流量が前記復水器の凝縮処理能力となる
ように制御するタービン負荷装置とからなることを特徴
とするタービン負荷低減装置である。
(Summary of the Invention) That is, the present invention provides a turbine load control valve that adjusts the outflow of steam flowing into the turbine, a condenser equipped with a heat exchanger that condenses the steam flowing out from the turbine, and a plurality of cooling water pumps that supply cooling water to a heat exchanger; a signal generator that outputs a cooling water reduction signal when the supply of cooling water from these cooling water pumps to the heat exchanger is reduced; Inputting the cooling water reduction signal from this signal generator,
and a turbine load device that controls the opening degree of the turbine load control valve so that the flow rate of steam flowing through the turbine load control valve corresponds to the condensation processing capacity of the condenser. .

(発明の実施例) 以下本発明の詳細を図面に示す一実施例について説明す
る。
(Embodiment of the Invention) The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第1図は本発明の一実施例が適用される発電プラントを
示しており、図において符号1は原子炉−3= 等の蒸気発生装置を示してJ3す、この蒸気発生装置に
は高圧タービン2へ蒸気を供給するタービン負荷制御弁
3を備えた蒸気管4が開口している。
FIG. 1 shows a power generation plant to which an embodiment of the present invention is applied, and in the figure, reference numeral 1 indicates a steam generator such as a nuclear reactor. A steam pipe 4 equipped with a turbine load control valve 3 for supplying steam to 2 is open.

高ロータービン2と低圧タービン5とは配管6により接
続されており、低圧タービン5の回転軸7は発電機8に
接続されている。
The high-low turbine 2 and the low-pressure turbine 5 are connected by a pipe 6, and the rotating shaft 7 of the low-pressure turbine 5 is connected to a generator 8.

低圧タービン5の下方には熱交換器を構成する冷却ヂ1
−19を備えた復水器10が配設されており、この復水
器10の下部に形成される復水器ホラトウ1ル11には
冷却チューブ9により冷却され、復水とされた蒸気を蒸
気発生装置1に循環するための循環ポンプ12を備えた
給水配管13が接続されている。
Below the low pressure turbine 5 is a cooling unit 1 that constitutes a heat exchanger.
A condenser 10 is provided, and a condenser hole 11 formed at the bottom of the condenser 10 is cooled by a cooling tube 9 and contains steam that has been made into condensate. A water supply pipe 13 equipped with a circulation pump 12 for circulating water to the steam generator 1 is connected.

復水器10の冷却デユープ9側方には、復水器水室14
及び出口側水室15が配設されており、復水器水室1/
Iには、一端をモータ16を備えた冷却水ポンプである
海水ポンプ17a、17bの吐出側に接続され、ポンプ
出口弁19a、19bの配設される2本の海水配管20
a 、20bの他端がそれぞれ接続されている。また出
口側水室14− 5には、海に開口する冷却水排出配管21が接続されて
いる。
A condenser water chamber 14 is located on the side of the cooling duplex 9 of the condenser 10.
and an outlet side water chamber 15 are arranged, and a condenser water chamber 1/
I has two seawater pipes 20 connected at one end to the discharge sides of seawater pumps 17a and 17b, which are cooling water pumps equipped with a motor 16, and equipped with pump outlet valves 19a and 19b.
The other ends of a and 20b are connected to each other. Further, a cooling water discharge pipe 21 that opens to the sea is connected to the outlet side water chamber 14-5.

以上のように構成された発電プラントでは、蒸気発生器
1で発生した蒸気は蒸気管4を流れタービン負荷制御弁
3を通り高圧タービン2に流入した後、低圧タービン5
に流入し発電機8を駆動する。低圧タービン5を通った
蒸気は復水器10に流入し海水ポンプ17a、17bに
より供給される冷却水を流通する冷却チューブ9により
熱交換され凝縮し、復水器ホットウェル11に貯蔵され
る。復水器ホットウェル11に溜った凝縮水は給水配管
13を通り蒸気発生器@1へ再viJ環する。
In the power plant configured as described above, steam generated in the steam generator 1 flows through the steam pipe 4, passes through the turbine load control valve 3, flows into the high pressure turbine 2, and then flows into the low pressure turbine 5.
and drives the generator 8. The steam that has passed through the low pressure turbine 5 flows into the condenser 10, undergoes heat exchange through the cooling tube 9 through which cooling water supplied by the seawater pumps 17a and 17b flows, is condensed, and is stored in the condenser hot well 11. The condensed water accumulated in the condenser hot well 11 passes through the water supply pipe 13 and returns to the steam generator @1.

一方、海水ポンプ17a、17bによって汲み上げられ
た冷却水は海水配管20a120bに介挿されるポンプ
出目弁19a、191)を通り復水器水室14に流入し
、冷却チューブ9を通った後出口側水室15から冷却水
排出配管21を通り海へ放出される。
On the other hand, the cooling water pumped up by the seawater pumps 17a and 17b flows into the condenser water chamber 14 through the pump outlet valves 19a and 191) inserted in the seawater pipes 20a and 120b, and after passing through the cooling tube 9, the exit side The cooling water is discharged from the water chamber 15 to the sea through the cooling water discharge pipe 21.

しかして、図において符号22はタービン負荷制御弁3
の開度を制御するタービン負荷制御装置を示しでいる3
、このタービン負荷制御装置22に(ま、ン毎水ポンプ
17a、、17bがトリップした時(こは、イれぞれの
ン毎水ポンプ17a、171)に説けられた信号発生器
23a 、23bから冷却水低減信号であるトリップ信
号S1、S2が出力され、まI、=ポンプ出口弁19a
、、19bが閉とされた時には、それぞれのポンプ出口
弁19a、19bに設()られた信号発生器24a ’
+ 24.b hllろ冷却水低減信号(パある出口弁
rj1信号S :+ 、S 4が出力される。そしてこ
のタービン負荷制御装置22は、例えば2台配設される
海水ポンプ17a、1711のうち1台の海水ポンプ1
7aが1〜リツプした場合には、トリップした海水ポン
プ17aに股りられた信号発生器23aから出)Jされ
る1〜リップ信号$1を入力し、高圧タービン2に流入
する蒸気量が、トリップしていない海水ポンプ171+
の蒸気処理能力に見合ったタービン負荷となるようにタ
ービン負荷制御弁3の開度を制御する。
In the figure, reference numeral 22 indicates the turbine load control valve 3.
3 shows the turbine load control device that controls the opening degree of the
, the signal generators 23a, 23b are transmitted to the turbine load control device 22 (when the water pumps 17a, 17b, respectively) trip. Trip signals S1 and S2, which are cooling water reduction signals, are output from the pump outlet valve 19a.
,, 19b are closed, the signal generator 24a' installed in each pump outlet valve 19a, 19b is activated.
+24. The b hll filtration cooling water reduction signal (outlet valve rj1 signal S:+, S4 is output.Then, this turbine load control device 22 is configured to output one of the two seawater pumps 17a and 1711, for example. seawater pump 1
7a is 1~rip, input the 1~rip signal $1 output from the signal generator 23a connected to the tripped seawater pump 17a, and the amount of steam flowing into the high pressure turbine 2 is Seawater pump not tripped 171+
The opening degree of the turbine load control valve 3 is controlled so that the turbine load corresponds to the steam processing capacity of the turbine.

またこのタービン負荷制御装置22は、例えば海水配管
20a、20bに介挿されるポンプ出口弁19a、19
bのうち1つのポンプ出口弁19aが閉とされた場合に
は、閉とされたポンプ出口弁19a1.:設(プられた
信号発生器24.8から出力される出口弁開信号S3を
入力し、高圧タービン2に流入する蒸気量が、開とされ
るポンプ出口弁19(]を備えた海水ポンプ19hの蒸
気処理能力に見合ったタービン負荷となるようにタービ
ン負荷制御弁3の開度を制御する。
Further, this turbine load control device 22 includes, for example, pump outlet valves 19a and 19 inserted in seawater pipes 20a and 20b.
If one of the pump outlet valves 19a is closed among the pump outlet valves 19a1.b, the closed pump outlet valves 19a1. : A seawater pump equipped with a pump outlet valve 19 () that receives an outlet valve opening signal S3 output from a signal generator 24.8 and opens the amount of steam flowing into the high-pressure turbine 2. The opening degree of the turbine load control valve 3 is controlled so that the turbine load corresponds to the steam processing capacity of 19 hours.

すなわち、以上のように構成された発電プラン1へでは
、一般にタービン排気蒸気を凝縮する冷却水としての海
水ポンプ17a、17bからの海水流量が不足すると復
水器10内の真空度は低下するが、上)本のように高圧
タービン2に流入する蒸気量を減少し、低圧タービン5
から復水器10内l\流入する蒸気流■を少なくし、海
水ポンプ17a、17bから流入される海水流量に見合
ったタービン負荷とすることにより、復水器10内の真
空度の低下を防止することができ、高圧タービン2及び
低圧タービン5を低負荷で運転することができる。
That is, in the power generation plan 1 configured as described above, if the flow rate of seawater from the seawater pumps 17a and 17b as cooling water for condensing turbine exhaust steam is insufficient, the degree of vacuum in the condenser 10 will generally decrease. , top) Reduce the amount of steam flowing into the high-pressure turbine 2 and reduce the amount of steam flowing into the low-pressure turbine 5.
By reducing the steam flow (1) flowing into the condenser 10 from the seawater pumps 17a and 17b and setting the turbine load commensurate with the seawater flow rate flowing in from the seawater pumps 17a and 17b, a decrease in the degree of vacuum in the condenser 10 is prevented. Therefore, the high-pressure turbine 2 and the low-pressure turbine 5 can be operated at low load.

 7− (弁明の効果〉 以上)本べたように本発明のタービン負荷低減装置では
、海水ポンプの1〜リップ信号、ポンプ出口弁の閉信号
等の海水低減信号に基づいてタービン負荷制御弁の開度
をタービン負荷が適正となるように制御Jるよ°うにし
たので、タービン負荷の増大によるタービントリップを
防止することができる。
7- (Effect of explanation) As described above, in the turbine load reduction device of the present invention, the turbine load control valve is opened based on seawater reduction signals such as the seawater pump 1-lip signal and the pump outlet valve close signal. Since the engine speed is controlled so that the turbine load is appropriate, it is possible to prevent turbine tripping due to an increase in the turbine load.

従って、複数台配設される冷却水ポンプのうら1台が故
障した場合にらタービンの運転を続行することが可能で
あり、発電プラントの稼働率を大幅に向上することがで
きる。またこの間に1〜リツプした冷7JI水ポンプ、
または全閉したポンプ出口弁の補修を割面的に実施する
ことができる。
Therefore, even if one of the plurality of cooling water pumps is out of order, the turbine can continue to operate, and the operating rate of the power plant can be significantly improved. Also, during this period, the cold 7JI water pump, which had 1 to 1 trip,
Alternatively, a fully closed pump outlet valve can be repaired on a partial basis.

なお、以上述べた実施例では海水ポンプが2台配MQ 
gれている例について説明したが、本発明はかかる実施
例に限定されるものではなく2台以上複数台配設されで
いる場合にも適用できることは勿論である。また熱交換
器の冷却水として海水を使用した例について述べたが、
普通の淡水であっ8− でも良いことは勿論である。
In addition, in the embodiment described above, two seawater pumps are installed in the MQ.
Although an example has been described in which there are two or more devices, the present invention is not limited to this embodiment, and can of course be applied to a case where two or more devices are installed. We also described an example of using seawater as cooling water for a heat exchanger.
Of course, plain fresh water is fine.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のタービン負荷低減装置の一実施例を示すブ
ロック図である。 2・・・・・・・・・・・・高圧タービン3・・・・・
・・・・・・・タービン負荷制御弁5・・・・・・・・
・・・・低圧タービン9・・・・・・・・・・・・冷却
チューブ〈熱交換器)10・・・・・・・・・・・・復
水器 17a、17b・・・海水ポンプ(冷却水ポンプ)19
a、19b・・・ポンプ出口弁 22・・・・・・・・・・・・タービン負荷制御装置2
3a 、23b ’+ 24a 、24b ・・・信号
発生器代理人弁理士   須 山 佐 −
The figure is a block diagram showing an embodiment of the turbine load reduction device of the present invention. 2... High pressure turbine 3...
......Turbine load control valve 5...
......Low pressure turbine 9......Cooling tube (heat exchanger) 10...Condenser 17a, 17b...Seawater pump (Cooling water pump) 19
a, 19b...Pump outlet valve 22...Turbine load control device 2
3a, 23b' + 24a, 24b ...Signal generator representative patent attorney Suyama Sa -

Claims (2)

【特許請求の範囲】[Claims] (1)タービンへ流入する蒸気の流量を調整するタービ
ン負荷制御弁と、前記タービンから流出した蒸気を凝縮
する熱交換器を備えた復水器と、前記熱交換器に冷却水
を供給する複数台の冷却水ポンプと、これらの冷却水ポ
ンプから前記熱交換器へ供給される前記冷却水の流量が
低減した時に冷加水低減信号を出力づる信号発生器と、
この信号発生器から前記冷却水低減信号を入力し前記タ
ービン負仙制御弁の開度をこのタービン負荷制御弁を流
れる蒸気原石が前記復水器の凝縮処理能力となるにうに
制御りるタービン負荷装置とからなることを特徴とする
タービン負荷低減装置。
(1) A turbine load control valve that adjusts the flow rate of steam flowing into the turbine, a condenser that includes a heat exchanger that condenses the steam that flows out of the turbine, and a plurality of condensers that supply cooling water to the heat exchanger. a signal generator that outputs a chilled water reduction signal when the flow rate of the cooling water supplied from the cooling water pumps to the heat exchanger is reduced;
The cooling water reduction signal is input from this signal generator, and the opening degree of the turbine negative control valve is controlled so that the steam ore flowing through the turbine load control valve becomes the condensation processing capacity of the condenser. A turbine load reduction device comprising:
(2)信号発生器は冷却水ポンプの停止により、冷却水
低減信号を出力することを特徴とする特許請求の範囲第
1項記載のタービン負荷低減装置。 〈3)信号発生器は冷却水ポンプから熱交換器に冷加水
を供給する冷却水配管に介挿されるポンプ出目弁が閉と
されたときに冷却水低減信号を出力することを特徴とす
る特許請求の範囲第1項記載のタービン負荷低減装置。
(2) The turbine load reduction device according to claim 1, wherein the signal generator outputs a cooling water reduction signal when the cooling water pump is stopped. <3) The signal generator is characterized in that it outputs a cooling water reduction signal when a pump outlet valve inserted in a cooling water pipe that supplies chilled water from the cooling water pump to the heat exchanger is closed. A turbine load reduction device according to claim 1.
JP851782A 1982-01-22 1982-01-22 Turbine load reduction equipment Pending JPS58126406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP851782A JPS58126406A (en) 1982-01-22 1982-01-22 Turbine load reduction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP851782A JPS58126406A (en) 1982-01-22 1982-01-22 Turbine load reduction equipment

Publications (1)

Publication Number Publication Date
JPS58126406A true JPS58126406A (en) 1983-07-27

Family

ID=11695330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP851782A Pending JPS58126406A (en) 1982-01-22 1982-01-22 Turbine load reduction equipment

Country Status (1)

Country Link
JP (1) JPS58126406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138807A (en) * 1984-12-11 1986-06-26 Hitachi Ltd Load controlling method of auxiliary cooling system for generating plant and equipment thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138807A (en) * 1984-12-11 1986-06-26 Hitachi Ltd Load controlling method of auxiliary cooling system for generating plant and equipment thereof

Similar Documents

Publication Publication Date Title
KR101316560B1 (en) Energy saving system of ship by using waste heat
JP2007163126A (en) Composite cycle power generation system improved in efficiency
JP4127854B2 (en) Steam turbine equipment
JP3866288B2 (en) Method and apparatus for cooling low pressure turbine section of steam turbine
JP3679094B2 (en) Operation method and equipment of gas / steam combined turbine equipment
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
US20150226090A1 (en) Gas and steam turbine system having feed-water partial-flow degasser
JPS58126406A (en) Turbine load reduction equipment
EP1202006A2 (en) Absorption refrigerator
JP2001280103A (en) Turbine equipment
RU2779216C1 (en) Method for operation of the npp power unit with a water-cooled power reactor at reduced loads
JPS6280492A (en) Condensate recirculating device
JP2630882B2 (en) Condensate recovery equipment
CN212671881U (en) External condensate cooling system of exhaust steam recovery heat supply supercritical unit
JP2003014207A (en) Fluid feed pump recirculator
JPS6235033B2 (en)
JPH0146684B2 (en)
JPH01179805A (en) Recirculation device for supply water pump
JPS58110986A (en) Condenser system
TWI564469B (en) Steam turbine overturning system and power plant
JPH0198895A (en) Vacuum control device for condenser
JP5361079B2 (en) Method for cooling hydrogen cooling device
JPS6088878A (en) Geothermal binary cycle plant
JP2003029849A (en) Cooling water controller
JPS597885A (en) Cooling water system