JP2001280103A - Turbine equipment - Google Patents

Turbine equipment

Info

Publication number
JP2001280103A
JP2001280103A JP2000093600A JP2000093600A JP2001280103A JP 2001280103 A JP2001280103 A JP 2001280103A JP 2000093600 A JP2000093600 A JP 2000093600A JP 2000093600 A JP2000093600 A JP 2000093600A JP 2001280103 A JP2001280103 A JP 2001280103A
Authority
JP
Japan
Prior art keywords
turbine
water supply
steam
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000093600A
Other languages
Japanese (ja)
Other versions
JP4301690B2 (en
Inventor
Yukimasa Nakamoto
行政 中本
Masayuki Murakami
雅幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000093600A priority Critical patent/JP4301690B2/en
Publication of JP2001280103A publication Critical patent/JP2001280103A/en
Application granted granted Critical
Publication of JP4301690B2 publication Critical patent/JP4301690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure a high pressure feed water amount required for cooling extracted air, even at a time of starting where a steam generating amount is small or at a time of low load operation. SOLUTION: The turbine equipment has: a cooling means 51 for the extracted air for cooling a turbine 3 side by using part of the high pressure feed water supplied to a high pressure steam unit 10; and a bypass passage 71 branched from a high pressure feed water passage 55 through which feed water on an outlet side of the cooling means 51 is introduced into a high pressure drum 22, and connected to a condenser 16. Further, the bypass passage 71 has a flow regulating valve 72. When output of a gas turbine 4 is less than a predetermined value such as at a time of starting the turbine equipment, the regulating valve 72 is opened, so that the high pressure feed water that has cooled the extracted air in the cooling means 51 is returned to the condenser 16. Accordingly, even at the time of starting where the steam generating amount is small or at the time of the low load operation, the high pressure feed water amount required for cooling the extracted air is secured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸気発生設備及びガ
スタービンと蒸気タービンを組み合わせたタービン設備
に関する。
The present invention relates to a steam generating facility and a turbine facility combining a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】エネルギー資源の有効利用と経済性の観
点から、発電設備(発電プラント)では様々な高効率化
が図られている。ガスタービンと蒸気タービンを組み合
わせたタービン設備(複合発電プラント)もその一つで
ある。
2. Description of the Related Art From the viewpoints of effective use of energy resources and economic efficiency, various high efficiencies have been achieved in power generation facilities (power generation plants). A turbine facility (combined power plant) combining a gas turbine and a steam turbine is one of them.

【0003】複合発電プラントでは、ガスタービンから
の高温の排気ガスが排熱回収ボイラに送られ、排熱回収
ボイラ内で過熱ユニットを介して蒸気を発生させ、発生
した蒸気を蒸気タービンに送って蒸気タービンで仕事を
するようになっている。過熱ユニットは節炭器、過熱
器、ボイラ(ドラム及び蒸発器)等を有しており、ボイ
ラの熱回収率を向上させるため、複数段(例えば、高
圧、中圧、低圧)の過熱ユニットが備えられている。そ
して、高圧、中圧、低圧の過熱ユニットのそれぞれに過
熱器やドラム等が備えられている。
In a combined cycle power plant, high-temperature exhaust gas from a gas turbine is sent to an exhaust heat recovery boiler, and steam is generated in the exhaust heat recovery boiler via a superheating unit, and the generated steam is sent to a steam turbine. I work in a steam turbine. The superheating unit has a economizer, a superheater, a boiler (drum and evaporator), etc. In order to improve the heat recovery rate of the boiler, a multistage (for example, high pressure, medium pressure, low pressure) superheating unit is provided. Provided. Each of the high-, medium-, and low-pressure superheat units is provided with a superheater, a drum, and the like.

【0004】複合発電プラントでは、全体の効率向上の
ため、高温域の効率を高める工夫がされており、ガスタ
ービン構造体の耐熱性の面から様々な冷却システムが設
けられている。例えば、圧縮機からの圧縮空気の一部を
抽気して熱交換器で冷却し、冷却した抽気がタービンロ
ータ等の構造体の冷却媒体として用いられるようになっ
てきている。この場合、熱交換器で用いられる抽気の冷
却媒体としてはプラント内の軸冷水等が使用される。
In the combined cycle power plant, various measures have been taken to improve the efficiency in a high temperature range in order to improve the overall efficiency, and various cooling systems are provided in view of the heat resistance of the gas turbine structure. For example, a part of compressed air from a compressor is extracted and cooled by a heat exchanger, and the cooled extracted air is used as a cooling medium for a structure such as a turbine rotor. In this case, as a cooling medium of the bleed air used in the heat exchanger, shaft chilled water in a plant or the like is used.

【0005】[0005]

【発明が解決しようとする課題】従来の複合発電プラン
ト(タービン設備)では、圧縮機からの圧縮空気の一部
の抽出空気を用いてタービンロータ等の構造体の冷却空
気としているので、タービンロータ等の構造体を有効に
冷却することが可能である。しかし、抽出空気を冷却す
るための冷媒として、プラント内の軸冷水等を使用し、
抽出空気を冷却した後の軸冷水等はそのまま排出されて
いた。このため、冷媒のエネルギーを有効に回収してい
るとはいえず、プラント全体の効率の向上には改良の余
地が残されているのが現状である。
In a conventional combined cycle power plant (turbine facility), a part of the compressed air from the compressor is extracted and used as cooling air for a structure such as a turbine rotor. Etc. can be effectively cooled. However, as a refrigerant for cooling the extraction air, using shaft chilled water in the plant, etc.
The shaft cold water etc. after cooling the extraction air were discharged as it was. For this reason, it cannot be said that the energy of the refrigerant is effectively recovered, and there is currently room for improvement in improving the efficiency of the entire plant.

【0006】本発明は上記状況に鑑みてなされたもの
で、効率を向上させてタービンの冷却空気を冷却するこ
とができるタービン設備を提供することを目的とする。
[0006] The present invention has been made in view of the above circumstances, and has as its object to provide a turbine facility capable of cooling turbine cooling air with improved efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明のタービン設備は、圧縮機及びタービンからな
るガスタービンと、ガスタービンの排熱を回収して蒸気
を発生させる排熱回収ボイラと、排熱回収ボイラで発生
した蒸気を動力源とする蒸気タービンと、蒸気タービン
の排気蒸気を復水する復水器と、復水器の復水を排熱回
収ボイラに給水する給水手段と、圧縮機の圧縮空気の一
部が抽出空気として導入されると共に排熱回収ボイラの
給水の一部が導入され抽出空気を給水により冷却してガ
スタービンのタービン側に導入する冷却手段とを備えた
ことを特徴とする。
According to the present invention, there is provided a gas turbine comprising a compressor and a turbine, and an exhaust heat recovery boiler for recovering exhaust heat of the gas turbine to generate steam. A steam turbine powered by steam generated by the heat recovery steam generator, a condenser for condensing steam discharged from the steam turbine, and a water supply means for supplying condensate water of the condenser to the heat recovery steam generator. Cooling means for introducing a part of the compressed air of the compressor as extracted air, a part of the feed water of the exhaust heat recovery boiler, cooling the extracted air by the feed water, and introducing the extracted air to the turbine side of the gas turbine. It is characterized by having.

【0008】そして、排熱回収ボイラには給水が予熱さ
れる予熱器が備えられ、排熱回収ボイラでは予熱器で予
熱された給水から蒸気を発生させ、冷却手段に導入され
る給水は予熱器で予熱された給水であることを特徴とす
る。また、冷却手段の出側における給水を排熱回収ボイ
ラ側に導入する導入路と、導入路から分岐して設けられ
給水量が所定量に満たないときに冷却手段の出側の給水
を復水器に導入するバイパス路とを備えたことを特徴と
する。また、予熱器の前流側と後流側とを連通する連通
路を設け、冷却手段に導入される給水を降温させる際に
連通路を開く弁を設けたことを特徴とする。
The exhaust heat recovery boiler is provided with a preheater for preheating the feedwater. In the exhaust heat recovery boiler, steam is generated from the feedwater preheated by the preheater, and the feedwater introduced into the cooling means is supplied to the preheater. It is characterized by being pre-heated water supply. In addition, an introduction path for introducing the feed water at the outlet side of the cooling means to the exhaust heat recovery boiler side, and a feed water branched from the introduction path and provided at the outlet side of the cooling means when the amount of water supply is less than a predetermined amount. And a bypass for introducing into the vessel. Further, a communication path communicating the upstream side and the downstream side of the preheater is provided, and a valve is provided for opening the communication path when the temperature of the water supplied to the cooling means is lowered.

【0009】また、上記目的を達成するための本発明の
タービン設備は、圧縮機及びタービンからなるガスター
ビンと、給水が予熱される予熱器を有しガスタービンの
排熱を回収して予熱された給水から蒸気を発生させる排
熱回収ボイラと、排熱回収ボイラで発生した蒸気を動力
源とする蒸気タービンと、蒸気タービンの排気蒸気を復
水する復水器と、復水器の復水を排熱回収ボイラに給水
する給水手段と、圧縮機の圧縮空気の一部が抽出空気と
して導入されると共に排熱回収ボイラの給水の一部が導
入され抽出空気を給水により冷却してガスタービンのタ
ービン側に導入する冷却手段と、冷却手段の出側におけ
る給水を排熱回収ボイラ側に導入する導入路と、導入路
から分岐して設けられ給水量が所定量に満たないときに
冷却手段の出側の給水を復水器に導入するバイパス路
と、予熱器の前流側と後流側とを連通する連通路と、冷
却手段に導入される給水を降温させる際に連通路を開く
弁とを備えたことを特徴とする。
Further, the turbine equipment of the present invention for achieving the above object has a gas turbine comprising a compressor and a turbine, and a preheater for preheating supply water, and recovers exhaust heat of the gas turbine to be preheated. Heat recovery boiler that generates steam from the supplied water, a steam turbine that uses steam generated by the heat recovery steam generator as a power source, a condenser that condenses the steam exhausted from the steam turbine, and a condenser that condenses the steam. Means for supplying water to the heat recovery steam generator, a part of the compressed air of the compressor is introduced as extraction air, and a part of the water supply of the heat recovery boiler is introduced to cool the extraction air by the water supply to the gas turbine. A cooling means for introducing into the turbine side of the cooling means, an introduction path for introducing the feedwater on the outlet side of the cooling means to the exhaust heat recovery boiler side, and a cooling means provided when branched from the introduction path and the supplied water amount is less than a predetermined amount. Outgoing A bypass path for introducing water into the condenser, a communication path for communicating the upstream side and the downstream side of the preheater, and a valve for opening the communication path when lowering the temperature of the water supplied to the cooling means are provided. It is characterized by having.

【0010】そして、弁の後流側における給水路に給水
の温度を検出する温度検出手段を設け、温度検出手段の
検出情報に基づいて弁の開閉を制御して冷却手段に導入
される給水の温度を所定温度に保つ温度調整手段を設け
たことを特徴とする。
[0010] A temperature detecting means for detecting the temperature of the water supply is provided in the water supply passage on the downstream side of the valve, and the opening and closing of the valve is controlled based on the information detected by the temperature detecting means to supply the water supplied to the cooling means. A temperature adjusting means for maintaining the temperature at a predetermined temperature is provided.

【0011】[0011]

【発明の実施の形態】図1には本発明の第1実施形態例
に係るタービン設備の全体を表す概略構成、図2には冷
却系統の要部構成を示してある。尚、図1、図2では、
水のラインを実線で示してあり、蒸気及び空気のライン
を点線で示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of the entire turbine equipment according to a first embodiment of the present invention, and FIG. 2 shows a main configuration of a cooling system. In FIGS. 1 and 2,
The water lines are indicated by solid lines and the steam and air lines are indicated by dotted lines.

【0012】図1に示すように、圧縮機1及び燃焼器2
及びタービン3を有するガスタービン4が備えられ、ガ
スタービン4と同軸上に蒸気タービン5が連結されてい
る。蒸気タービン5は、高圧タービン6と中圧タービン
7及び低圧タービン8とが一軸に連結されて構成されて
いる。ガスタービン4からの排気ガスGが排熱回収ボイ
ラとしての排ガスボイラー9に送られるようになってお
り、排ガスボイラー9には上流側(下側)から高圧過熱
ユニット10、中圧過熱ユニット11及び低圧過熱ユニ
ット12が備えられている。また、排ガスボイラー9に
は給水を予熱する予熱器61が備えられている。排ガス
ボイラー9内では予熱器61で予熱された給水から高圧
過熱ユニット10、中圧過熱ユニット11及び低圧過熱
ユニット12を介して蒸気を発生させ、発生した蒸気を
蒸気タービン5に送って蒸気タービン5で仕事をするよ
うになっている。蒸気タービン5の排気蒸気は復水器1
6で凝縮される。図中の符号で13は発電機である。ま
た、19は予熱器61の流入路に設けられた電動弁、2
0は予熱器61からの流出路に設けられた電動弁、30
は予熱器61の流出側と流入側とを連通する再流経路で
あり、再流経路30にはポンプ38及び調整弁39が備
えられている。
As shown in FIG. 1, a compressor 1 and a combustor 2
And a gas turbine 4 having a turbine 3. A steam turbine 5 is connected coaxially with the gas turbine 4. The steam turbine 5 has a configuration in which a high-pressure turbine 6, an intermediate-pressure turbine 7, and a low-pressure turbine 8 are connected uniaxially. Exhaust gas G from the gas turbine 4 is sent to an exhaust gas boiler 9 as an exhaust heat recovery boiler. The exhaust gas boiler 9 has a high-pressure superheating unit 10, a medium-pressure superheating unit 11, A low pressure heating unit 12 is provided. Further, the exhaust gas boiler 9 is provided with a preheater 61 for preheating the feedwater. In the exhaust gas boiler 9, steam is generated from feedwater preheated by a preheater 61 through a high-pressure superheating unit 10, a medium-pressure superheating unit 11, and a low-pressure superheating unit 12, and the generated steam is sent to a steam turbine 5. I'm working from here. The exhaust steam of the steam turbine 5 is supplied to the condenser 1
Condensed at 6. Reference numeral 13 in the drawing denotes a generator. Reference numeral 19 denotes an electric valve provided in the inflow path of the preheater 61, 2
0 is a motor-operated valve provided in the outflow path from the preheater 61, 30
Is a reflow path connecting the outflow side and the inflow side of the preheater 61, and the reflow path 30 is provided with a pump 38 and a regulating valve 39.

【0013】高圧過熱ユニット10は、高圧過熱器2
1、高圧ドラム22及び高圧蒸発器23、高圧節炭器2
4を有している。高圧ドラム22の水は排ガスボイラー
9内に配された高圧蒸発器23で過熱循環され、高圧ド
ラム22内で高圧蒸気を発生する。高圧ドラム22で発
生した高圧蒸気は高圧過熱器21で過熱され、高圧蒸気
ライン25を通って蒸気タービン5の高圧タービン6側
に導入される。高圧ドラム22には、低圧節炭器44で
過熱された水が高・中圧給水ポンプ15により圧送され
て給水路26及び高圧節炭器24を介して給水される。
The high-pressure superheater unit 10 includes a high-pressure superheater 2
1, high pressure drum 22, high pressure evaporator 23, high pressure economizer 2
Four. The water in the high-pressure drum 22 is superheated and circulated in a high-pressure evaporator 23 disposed in the exhaust gas boiler 9, and generates high-pressure steam in the high-pressure drum 22. The high-pressure steam generated by the high-pressure drum 22 is superheated by the high-pressure superheater 21, and is introduced into the high-pressure turbine 6 of the steam turbine 5 through the high-pressure steam line 25. Water superheated by the low-pressure economizer 44 is fed to the high-pressure drum 22 by the high / medium-pressure water supply pump 15 and supplied through the water supply passage 26 and the high-pressure economizer 24.

【0014】中圧過熱ユニット11は、中圧過熱器3
1、中圧ドラム32及び中圧蒸発器33、中圧節炭器3
4を有している。中圧ドラム32の水は排ガスボイラー
9内に配された中圧蒸発器33で過熱循環され、中圧ド
ラム32内で中圧蒸気を発生する。中圧ドラム32で発
生した中圧蒸気は中圧過熱器31を通って再熱器28で
過熱され、中圧蒸気ライン35から蒸気タービン5の中
圧タービン7に導入される。中圧ドラム32には、予熱
器61で予熱された給水及び低圧節炭器44で過熱され
た水が高・中圧給水ポンプ15により圧送されて給水路
36及び中圧節炭器34を介して給水される。一方、高
圧タービン6の排気蒸気は再熱器28に送られ、過熱さ
れて中圧蒸気ライン35から蒸気タービン5の中圧ター
ビン7に導入される。
The medium-pressure superheater 11 is a medium-pressure superheater 3
1, medium pressure drum 32, medium pressure evaporator 33, medium pressure economizer 3
Four. The water in the medium pressure drum 32 is superheated and circulated in a medium pressure evaporator 33 disposed in the exhaust gas boiler 9, and generates medium pressure steam in the medium pressure drum 32. The intermediate-pressure steam generated by the intermediate-pressure drum 32 passes through the intermediate-pressure superheater 31, is superheated by the reheater 28, and is introduced from the intermediate-pressure steam line 35 to the intermediate-pressure turbine 7 of the steam turbine 5. To the medium pressure drum 32, the water preheated by the preheater 61 and the water superheated by the low pressure economizer 44 are pumped by the high / intermediate water feed pump 15, and are fed through the water supply channel 36 and the intermediate economizer 34. Water. On the other hand, the exhaust steam of the high-pressure turbine 6 is sent to the reheater 28, overheated, and introduced from the intermediate-pressure steam line 35 to the intermediate-pressure turbine 7 of the steam turbine 5.

【0015】低圧過熱ユニット12は、低圧過熱器4
1、低圧ドラム42及び低圧蒸発器43、低圧節炭器4
4を有している。低圧ドラム42の水は排ガスボイラー
9内に配された低圧蒸発器43で過熱循環され、低圧ド
ラム42内で低圧蒸気を発生する。低圧ドラム42で発
生した低圧蒸気は低圧過熱器41を通って低圧蒸気ライ
ン45から蒸気タービン5の中圧タービン7及び低圧タ
ービン8に導入される。低圧ドラム42には、給水手段
である復水器16及び復水ポンプ17を介して蒸気を凝
縮した水が予熱器61で予熱されると共に低圧節炭器4
4で過熱されて給水される。
The low-pressure superheater 12 is provided with a low-pressure superheater 4
1, low pressure drum 42 and low pressure evaporator 43, low pressure economizer 4
Four. The water in the low-pressure drum 42 is superheated and circulated in a low-pressure evaporator 43 disposed in the exhaust gas boiler 9 to generate low-pressure steam in the low-pressure drum 42. The low-pressure steam generated by the low-pressure drum 42 passes through the low-pressure superheater 41 and is introduced from the low-pressure steam line 45 to the medium-pressure turbine 7 and the low-pressure turbine 8 of the steam turbine 5. The low-pressure drum 42 is preheated by a preheater 61 with water condensed through a condenser 16 and a condensate pump 17 serving as water supply means.
The water is heated at 4 and supplied.

【0016】図1、図2に示すように、ガスタービン4
の圧縮機1で圧縮された圧縮空気の一部が抽出空気とし
て抽出空気路52から冷却手段51に導入される。一
方、排ガスボイラー9側の給水が給水導入路53から冷
却手段51に導入される。つまり、高・中圧給水ポンプ
15により給水を圧送する給水路26は、高圧節炭器2
4に給水を送る流路58と、冷却手段に給水を送る給水
導入路53とに分岐し、給水導入路53から排ガスボイ
ラー9側の給水が冷却手段51に導入される。冷却手段
51では、給水導入路53からの高圧給水により抽出空
気が冷却されると共に、冷却手段51で冷却された抽出
空気はタービン3側の翼等の冷却用として冷却空気路5
4からタービン3に導入され、冷却手段51で抽出空気
を冷却した高圧給水は導入路としての高圧給水路55か
ら高圧ドラム22に送られる。
As shown in FIGS. 1 and 2, the gas turbine 4
A part of the compressed air compressed by the compressor 1 is introduced into the cooling means 51 from the extraction air passage 52 as extraction air. On the other hand, the water supply on the exhaust gas boiler 9 side is introduced into the cooling means 51 from the water supply introduction passage 53. In other words, the water supply passage 26 for pumping the water supply by the high / medium pressure water supply pump 15 is connected to the high pressure
The feed water is supplied to the exhaust gas boiler 9 from the feed water introduction passage 53 and is introduced into the cooling means 51. In the cooling means 51, the extracted air is cooled by the high-pressure water supplied from the water supply introduction path 53, and the extracted air cooled by the cooling means 51 is used for cooling the blades and the like on the turbine 3 side in the cooling air path 5.
The high-pressure water supplied to the turbine 3 from the cooling water 4 and cooled by the cooling means 51 is sent to the high-pressure drum 22 from a high-pressure water supply path 55 serving as an introduction path.

【0017】流路58には給水流量を検出する主流量計
62が設けられ、主流量計62により流路58の給水流
量が検出される。また、高圧給水路55には流量計63
及び流量調整弁64が設けられている。一方、ガスター
ビン4には出力を検出する図示しない負荷検出手段が設
けられている。流量計63で検出される蒸気流量及び負
荷検出手段で検出されるガスタービン4の負荷状況に基
づいて流量調整弁64が制御され、給水路26から流路
58を通って高圧節炭器24に送られる給水量と、給水
路26から給水導入路53を通って冷却手段51に送ら
れる給水量とが調整される。
A main flow meter 62 for detecting the flow rate of the supplied water is provided in the flow path 58, and the flow rate of the supplied water in the flow path 58 is detected by the main flow meter 62. The high-pressure water supply channel 55 has a flow meter 63.
And a flow control valve 64. On the other hand, the gas turbine 4 is provided with load detection means (not shown) for detecting the output. The flow regulating valve 64 is controlled based on the steam flow rate detected by the flow meter 63 and the load condition of the gas turbine 4 detected by the load detecting means. The amount of water supplied and the amount of water supplied from the water supply passage 26 to the cooling means 51 through the water supply introduction passage 53 are adjusted.

【0018】上述したタービン設備では、排ガスボイラ
ー9でガスタービン4の排熱が回収されて蒸気を発生さ
せ、排ガスボイラー9で発生した蒸気が蒸気タービン5
に送られて蒸気タービン5で仕事が行われるようになっ
ている。また、給水路26からの高圧給水(例えば、温
度150 ℃)が給水導入路53を通って冷却手段51に送
られる。一方、圧縮機1からの抽出空気が抽出空気路5
2から冷却手段51に送られ、冷却手段51では、高圧
給水により抽出空気が冷却され(例えば、温度200
℃)、冷却された抽出空気はタービン3に導入されてタ
ービン翼等を冷却する。また、抽出空気を冷却した後の
給水は高圧給水路55から高圧ドラム22に送られる。
このため、排ガスボイラー9側の高圧給水により抽出空
気を冷却することができ、抽出空気を冷却した後の高圧
給水を回収することができ、効率のよいタービン設備と
することが可能となる。
In the above-described turbine equipment, the exhaust heat of the gas turbine 4 is recovered by the exhaust gas boiler 9 to generate steam, and the steam generated by the exhaust gas boiler 9 is
And the work is performed by the steam turbine 5. High-pressure water (for example, at a temperature of 150 ° C.) from the water supply passage 26 is sent to the cooling means 51 through the water supply introduction passage 53. On the other hand, the extraction air from the compressor 1
2 to the cooling means 51, where the extracted air is cooled by high-pressure water (for example, at a temperature of 200
C), the cooled extraction air is introduced into the turbine 3 to cool turbine blades and the like. The water supply after cooling the extracted air is sent from the high-pressure water supply channel 55 to the high-pressure drum 22.
For this reason, the extraction air can be cooled by the high-pressure water supply on the exhaust gas boiler 9 side, the high-pressure water supply after cooling the extraction air can be collected, and efficient turbine equipment can be provided.

【0019】図3、図4に基づいて第2実施形態例のタ
ービン設備を説明する。図3には本発明の第2実施形態
例に係るタービン設備の全体を表す概略構成、図4には
冷却系統の要部構成を示してある。尚、図1、図2で示
した部材と同一部材には同一符号を付して重複する説明
は省略してある。
The turbine equipment according to the second embodiment will be described with reference to FIGS. FIG. 3 shows a schematic configuration of the entire turbine equipment according to a second embodiment of the present invention, and FIG. 4 shows a main configuration of a cooling system. Note that the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted.

【0020】図3、図4に示したタービン設備は、冷却
手段51の出側における給水を高圧ドラム22に導入す
る高圧給水路55(導入路)から分岐して復水器16に
つながるバイパス路71が設けられ、バイパス路71に
は流量調整弁72が設けられている。タービン設備の起
動時等、排ガスボイラー9の給水量が所定量に満たない
ときに流量調整弁72を開き、冷却手段51で抽出空気
を冷却した高圧給水をバイパス路71から復水器16に
戻し、所定の給水量を確保する。
The turbine equipment shown in FIGS. 3 and 4 has a bypass passage branched from a high-pressure water supply passage 55 (introduction passage) for introducing the water supply at the outlet side of the cooling means 51 to the high-pressure drum 22 and leading to the condenser 16. The bypass passage 71 is provided with a flow regulating valve 72. When the amount of water supplied to the exhaust gas boiler 9 is less than a predetermined amount, such as when the turbine equipment is started, the flow control valve 72 is opened, and the high-pressure water cooled by the cooling means 51 to cool the extracted air is returned from the bypass 71 to the condenser 16. , Ensure a predetermined amount of water supply.

【0021】一方、電動弁19の前流側の予熱器61へ
の流入路と、電動弁20の後流側の予熱器61からの流
出路とを連通する連通路75が設けられ、連通路75に
は冷却手段51に導入される給水を降温させる際に連通
路75を開く弁としての電動弁76が設けられている。
つまり、電動弁76により連通路75を開くことで、予
熱器61への給水が予熱器61を通らずに流出路側に送
られ、給水導入路53に送られる給水の温度を低下さ
る。また、冷却手段51の冷却空気路54には冷却され
た抽出空気の温度を検出する温度検出器77が設けら
れ、温度検出器77により冷却された抽出空気の温度が
所定以上になった際に電動弁76が開かれるようになっ
ている。尚、計画的に電動弁76を開けて給水温度を低
下させるようにしてもよい。
On the other hand, a communication passage 75 is provided for communicating an inflow passage into the preheater 61 on the upstream side of the motor-operated valve 19 and an outflow passage from the preheater 61 on the downstream side of the motor-operated valve 20. An electric valve 76 is provided at 75 as a valve for opening the communication passage 75 when the temperature of the water supplied to the cooling means 51 is lowered.
That is, by opening the communication passage 75 by the electric valve 76, the water supply to the preheater 61 is sent to the outflow path side without passing through the preheater 61, and the temperature of the water supply to the water supply introduction path 53 is reduced. Further, a temperature detector 77 for detecting the temperature of the cooled extracted air is provided in the cooling air passage 54 of the cooling means 51, and when the temperature of the extracted air cooled by the temperature detector 77 becomes equal to or higher than a predetermined value. The motor-operated valve 76 is opened. In addition, you may make it open the motor-operated valve 76 and lower the supply water temperature systematically.

【0022】上述したタービン設備では、第1実施形態
例と同様に、排ガスボイラー9でガスタービン4の排熱
が回収されて蒸気を発生させ、排ガスボイラー9で発生
した蒸気が蒸気タービン5に送られて蒸気タービン5で
仕事が行われるようになっている。また、給水路26か
らの高圧給水(例えば、温度150 ℃)が給水導入路53
を通って冷却手段51に送られる。一方、圧縮機1から
の抽出空気が抽出空気路52から冷却手段51に送ら
れ、冷却手段51では、高圧給水により抽出空気が冷却
され(例えば、温度200 ℃)、冷却された抽出空気はタ
ービン3に導入されてタービン翼等を冷却する。また、
抽出空気を冷却した後の給水は高圧給水路55から高圧
ドラム22に送られる。このため、排ガスボイラー9側
の高圧給水により抽出空気を冷却することができ、抽出
空気を冷却した後の高圧給水を回収することができ、効
率のよいタービン設備とすることが可能となる。
In the above-described turbine equipment, similarly to the first embodiment, the exhaust heat of the gas turbine 4 is recovered by the exhaust gas boiler 9 to generate steam, and the steam generated by the exhaust gas boiler 9 is sent to the steam turbine 5. The work is performed in the steam turbine 5. The high-pressure water (for example, at a temperature of 150 ° C.) from the water supply passage 26 is supplied to the water supply introduction passage 53
Through the cooling means 51. On the other hand, the extracted air from the compressor 1 is sent from the extraction air passage 52 to the cooling means 51, where the extracted air is cooled by high-pressure water (for example, at a temperature of 200 ° C.), and the cooled extracted air is cooled by the turbine. 3 to cool turbine blades and the like. Also,
The water supply after cooling the extracted air is sent from the high-pressure water supply channel 55 to the high-pressure drum 22. For this reason, the extraction air can be cooled by the high-pressure water supply on the exhaust gas boiler 9 side, the high-pressure water supply after cooling the extraction air can be collected, and efficient turbine equipment can be provided.

【0023】ところで、起動時や低負荷運転時等、ガス
タービンの負荷が十分に上がっていない時には、排ガス
ボイラー9での蒸気発生量は少なく排ガスボイラー9へ
の給水量が少ない。一方で、抽出空気を冷却するために
は多くの給水を必要としている。このため、起動時や低
負荷運転時等では、給水量が不足することになる。そこ
で、起動時や低負荷運転時等、図示しない負荷検出手段
で検出されるガスタービン4の出力が所定値に満たない
場合は、流量調整弁64を閉じると共に流量調整弁72
を開き、冷却手段51で抽出空気を冷却した高圧給水
を、高圧ドラム22に送らずにバイパス路71から復水
器16に戻すようになっている。これにより、蒸気発生
量が少ない起動時や低負荷運転時等であっても、抽出空
気を冷却するために必要な高圧給水の量を確保すること
ができる。
By the way, when the load of the gas turbine is not sufficiently increased, such as at the time of start-up or low load operation, the amount of steam generated in the exhaust gas boiler 9 is small and the amount of water supplied to the exhaust gas boiler 9 is small. On the other hand, much water is required to cool the extraction air. For this reason, at the time of start-up, low-load operation, or the like, the amount of supplied water is insufficient. Therefore, when the output of the gas turbine 4 detected by the load detecting means (not shown) is less than a predetermined value, such as at the time of startup or low load operation, the flow regulating valve 64 is closed and the flow regulating valve 72 is closed.
And the high-pressure water cooled by the cooling means 51 to cool the extracted air is returned to the condenser 16 from the bypass passage 71 without being sent to the high-pressure drum 22. Thereby, even at the time of start-up or low-load operation with a small amount of generated steam, the amount of high-pressure supply water necessary for cooling the extracted air can be ensured.

【0024】負荷検出手段でガスタービン4の出力が所
定値以上になったことが検出されると、流路58に送ら
れる給水の量が所定量以上となったことが主流量計62
により検出され、流量調整弁64を開くと共に流量調整
弁72を閉じ、冷却手段51で抽出空気を冷却した高圧
給水を高圧ドラム22に送る。そして、流量調整弁73
は通常運転時には閉じたままとして緊急時等のバックア
ップ用として使用し、給水量が急減した時等に開くよう
にする。
When the load detecting means detects that the output of the gas turbine 4 has become equal to or greater than a predetermined value, the main flow meter 62 indicates that the amount of water supplied to the flow passage 58 has become equal to or greater than the predetermined amount.
The flow control valve 64 is opened, the flow control valve 72 is closed, and the high-pressure feed water whose extracted air is cooled by the cooling means 51 is sent to the high-pressure drum 22. And the flow control valve 73
Is closed during normal operation and used as a backup for emergencies, etc., and is opened when the amount of water supply drops rapidly.

【0025】例えば、冷却手段51の必要給水量が60to
n/h であり、排ガスボイラー9の総蒸発量が300ton/hで
あるとした場合、起動時から主流量計62で検出される
給水流量が、例えば、100ton/hになるまでは、抽出空気
を冷却した高圧給水を高圧ドラム22に送らずにバイパ
ス路71から復水器16に戻し、主流量計62で検出さ
れる給水流量が100ton/hを越えた時にガスタービン4が
所定以上の出力となったことを条件に流量調整弁64を
開くと共に流量調整弁72を閉じて冷却手段51で抽出
空気を冷却した高圧給水を高圧ドラム22に送るように
する。尚、ガスタービン4の出力に拘らず主流量計62
で検出される給水流量が十分に増加した時に高圧給水を
高圧ドラム22に送るようにしてもよい。
For example, if the required water supply amount of the cooling means 51 is 60 to
n / h and the total evaporation amount of the exhaust gas boiler 9 is 300 ton / h, the extracted air is supplied from the time of startup until the feedwater flow rate detected by the main flow meter 62 becomes, for example, 100 ton / h. The high-pressure feed water cooled is returned to the condenser 16 from the bypass 71 without being sent to the high-pressure drum 22. When the feed water flow rate detected by the main flow meter 62 exceeds 100 ton / h, the gas turbine 4 Under the condition, the flow control valve 64 is opened, the flow control valve 72 is closed, and the high-pressure feed water whose extracted air is cooled by the cooling means 51 is sent to the high-pressure drum 22. In addition, regardless of the output of the gas turbine 4, the main flow meter 62
The high-pressure water may be sent to the high-pressure drum 22 when the flow rate of the water supply detected by the above is sufficiently increased.

【0026】一方、冷却手段51で冷却された抽出空気
の温度が温度検出器77により所定以上になったことが
検出されると、電動弁76により連通路75が開かれ、
予熱器61への給水が予熱器61を通らずに流出路側に
送られ、給水導入路53に送られる給水の温度を低下さ
せる。尚、計画的に電動弁76を開けて給水温度を低下
させてもよい。これにより、降温された給水が冷却手段
51に送られ、所定以上になった抽出空気の温度を所定
値(例えば200 ℃、あるいはそれ以下)まで低下させる
ことができる。尚、温度検出器77で検出される抽出空
気の温度の情報に基づいて流量調整弁72の開閉を制御
し、給水量を調整して抽出空気の温度を低下させること
もできる。
On the other hand, when the temperature of the extracted air cooled by the cooling means 51 is detected by the temperature detector 77 to be equal to or higher than a predetermined value, the communication passage 75 is opened by the electric valve 76,
The water supply to the preheater 61 is sent to the outflow path side without passing through the preheater 61, and the temperature of the supply water sent to the water supply introduction path 53 is reduced. The electric water supply temperature may be lowered by opening the electric valve 76 intentionally. As a result, the supply water whose temperature has been lowered is sent to the cooling means 51, and the temperature of the extracted air which has become equal to or higher than a predetermined value can be reduced to a predetermined value (for example, 200 ° C. or lower). The opening and closing of the flow control valve 72 may be controlled based on the information on the temperature of the extracted air detected by the temperature detector 77 to adjust the amount of water supply to lower the temperature of the extracted air.

【0027】従って、タービン設備の起動時等、ガスタ
ービン4の負荷が低く蒸気発生量が少なく給水流量が少
ない場合であっても、冷却手段51に必要な給水流量を
確保することができるので、タービン設備の運転状態に
拘らず抽出空気を確実に冷却することができる。また、
抽出空気の温度が上昇しても、冷却手段への給水温度を
低下させることができるので、抽出空気を確実に冷却す
ることができる。
Therefore, even when the load on the gas turbine 4 is low, the steam generation amount is small, and the feedwater flow rate is small, such as when the turbine equipment is started, the feedwater flow rate necessary for the cooling means 51 can be secured. The extracted air can be reliably cooled regardless of the operation state of the turbine equipment. Also,
Even if the temperature of the extraction air rises, the temperature of the water supplied to the cooling means can be lowered, so that the extraction air can be reliably cooled.

【0028】尚、上記実施形態例では、第1実施形態例
のタービン設備に、予熱器61をバイパスさせる連通路
75、電動弁76を設けると共に、抽出空気を冷却した
給水を復水器16に送るバイパス路71、流量調整弁7
2を設けたが、連通路75、電動弁76もしくはバイパ
ス路71、流量調整弁72のいずれか一方を省略するこ
とも可能である。また、流量調整弁72を制御する情報
としては、負荷検出手段、主流量計63や温度検出器7
7の情報以外にも、給水流量や給水温度を導出できる情
報であれば、冷却手段51の出側の流量計63等他の機
器の情報を用いることが可能である。また、流量調整弁
72の開閉状況も、冷却手段51に必要な給水流量が確
保できれば、段階的に開閉する等、種々の状況で開閉す
ることができる。
In the above-described embodiment, the turbine equipment of the first embodiment is provided with a communication passage 75 for bypassing the preheater 61 and an electric valve 76, and feed water cooled with extracted air is supplied to the condenser 16. Feeding bypass 71, flow control valve 7
Although two are provided, it is also possible to omit any one of the communication passage 75, the electric valve 76 or the bypass passage 71, and the flow regulating valve 72. The information for controlling the flow regulating valve 72 includes load detecting means, the main flow meter 63 and the temperature detector 7.
In addition to the information of 7, the information of the other devices such as the flow meter 63 on the outlet side of the cooling means 51 can be used as long as the information can derive the flow rate and the temperature of the feed water. In addition, the open / close state of the flow rate adjusting valve 72 can be opened / closed in various situations, such as in a stepwise manner, as long as the required water supply flow rate for the cooling means 51 can be secured.

【0029】図5に基づいて第3実施形態例のタービン
設備を説明する。図5には本発明の第3実施形態例に係
るタービン設備の冷却系統の要部構成を示してある。
尚、図4で示した部材と同一部材には同一符号を付して
重複する説明は省略してある。
The turbine equipment according to the third embodiment will be described with reference to FIG. FIG. 5 shows a main configuration of a cooling system of a turbine facility according to a third embodiment of the present invention.
Note that the same members as those shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

【0030】図5に示したタービン設備は、図4で示し
たタービン設備の電動弁76に代えて流量調整弁81を
設け、連通路75の後流側における流路に温度検出手段
82を設けた構成となっている。そして、予熱器61で
予熱された給水の温度が温度検出手段82によって検出
され、検出された温度に基づいて流量調整弁81の開閉
量が制御される(温度調整手段)ようになっている。
In the turbine equipment shown in FIG. 5, a flow regulating valve 81 is provided in place of the motor-operated valve 76 of the turbine equipment shown in FIG. Configuration. Then, the temperature of the feedwater preheated by the preheater 61 is detected by the temperature detecting means 82, and the opening / closing amount of the flow control valve 81 is controlled based on the detected temperature (temperature adjusting means).

【0031】これにより、予熱器61で予熱された給水
の温度に応じて予熱器61を通過させない低温の給水を
適宜量連通路75から導入することができ、予熱器61
の後流側の給水の温度を所望の温度に調整して保つこと
が可能になる。
With this arrangement, low-temperature feedwater that does not pass through the preheater 61 can be introduced from the communication passage 75 in a suitable amount in accordance with the temperature of the feedwater preheated by the preheater 61.
The temperature of the feedwater on the downstream side can be adjusted and maintained at a desired temperature.

【0032】[0032]

【発明の効果】本発明のタービン設備は、圧縮機及びタ
ービンからなるガスタービンと、ガスタービンの排熱を
回収して蒸気を発生させる排熱回収ボイラと、排熱回収
ボイラで発生した蒸気を動力源とする蒸気タービンと、
蒸気タービンの排気蒸気を復水する復水器と、復水器の
復水を排熱回収ボイラに給水する給水手段と、圧縮機の
圧縮空気の一部が抽出空気として導入されると共に排熱
回収ボイラの給水の一部が導入され抽出空気を給水によ
り冷却してガスタービンのタービン側に導入する冷却手
段とを備えたので、排熱回収ボイラの給水を用いてター
ビン冷却用の抽出空気を冷却することができる。この結
果、排熱回収ボイラの給水を有効に利用することが可能
になり、効率のよいタービン設備となる。
The turbine equipment of the present invention comprises a gas turbine comprising a compressor and a turbine, an exhaust heat recovery boiler for recovering exhaust heat of the gas turbine to generate steam, and a steam generated by the exhaust heat recovery boiler. A steam turbine as a power source,
A condenser for condensing the exhaust steam of the steam turbine, water supply means for supplying the condensate of the condenser to the exhaust heat recovery boiler, and a part of the compressed air of the compressor is introduced as extraction air and exhaust heat is released. A cooling means for introducing a part of the feed water of the recovery boiler and cooling the extracted air by the feed water and introducing it to the turbine side of the gas turbine is provided, so that the extracted air for turbine cooling is supplied using the feed water of the exhaust heat recovery boiler. Can be cooled. As a result, it is possible to effectively use the water supply of the exhaust heat recovery boiler, and it becomes an efficient turbine facility.

【0033】また、冷却手段の出側における給水を排熱
回収ボイラ側に導入する導入路と、導入路から分岐して
設けられ給水量が所定量に満たないときに冷却手段の出
側の給水を復水器に導入するバイパス路とを備えたの
で、ガスタービンの運転状態に拘らず冷却手段への給水
量を確保することができる。
Also, an introduction path for introducing the feedwater at the outlet side of the cooling means to the exhaust heat recovery boiler, and a water supply at the outlet side of the cooling means provided when the amount of water supplied is branched from the introduction path and is less than a predetermined amount. Is provided to the condenser, so that the amount of water supplied to the cooling means can be ensured regardless of the operating state of the gas turbine.

【0034】また、予熱器の前流側と後流側とを連通す
る連通路を設け、冷却手段に導入される給水を降温させ
る際に連通路を開く弁を設けたので、冷却手段に導入さ
れる給水を所定温度以下に保つことができる。
In addition, a communication passage communicating between the upstream side and the downstream side of the preheater is provided, and a valve is provided for opening the communication passage when the temperature of the water supplied to the cooling means is lowered. The supplied water can be kept below a predetermined temperature.

【0035】また、本発明のタービン設備は、圧縮機及
びタービンからなるガスタービンと、給水が予熱される
予熱器を有しガスタービンの排熱を回収して予熱された
給水から蒸気を発生させる排熱回収ボイラと、排熱回収
ボイラで発生した蒸気を動力源とする蒸気タービンと、
蒸気タービンの排気蒸気を復水する復水器と、復水器の
復水を排熱回収ボイラに給水する給水手段と、圧縮機の
圧縮空気の一部が抽出空気として導入されると共に排熱
回収ボイラの給水の一部が導入され抽出空気を給水によ
り冷却してガスタービンのタービン側に導入する冷却手
段と、冷却手段の出側における給水を排熱回収ボイラ側
に導入する導入路と、導入路から分岐して設けられ給水
量が所定量に満たないときに冷却手段の出側の給水を復
水器に導入するバイパス路と、予熱器の前流側と後流側
とを連通する連通路と、冷却手段に導入される給水を降
温させる際に連通路を開く弁とを備えたので、排熱回収
ボイラの給水を用いてタービン冷却用の抽出空気を冷却
することができ、ガスタービンの運転状態に拘らず冷却
手段への給水量を確保することができると共に冷却手段
に導入される給水を所定温度以下に保つことができる。
この結果、所望の給水量及び温度での排熱回収ボイラの
給水を運転状態に拘らず有効に利用することが可能にな
り、効率のよいタービン設備となる。
Further, the turbine equipment of the present invention has a gas turbine comprising a compressor and a turbine, and a preheater for preheating the feed water, and recovers exhaust heat of the gas turbine to generate steam from the preheated feed water. An exhaust heat recovery boiler, a steam turbine powered by steam generated by the exhaust heat recovery boiler,
A condenser for condensing the exhaust steam of the steam turbine, water supply means for supplying the condensate of the condenser to the exhaust heat recovery boiler, and a part of the compressed air of the compressor is introduced as extraction air and exhaust heat is released. Cooling means for introducing a part of the water supply of the recovery boiler, cooling the extracted air by the water supply and introducing it to the turbine side of the gas turbine, and an introduction path for introducing the water supply at the outlet side of the cooling means to the exhaust heat recovery boiler side, A bypass path which is provided branching from the introduction path and which introduces the supply water on the outlet side of the cooling means to the condenser when the amount of supplied water is less than a predetermined amount communicates with the upstream side and downstream side of the preheater. Since the communication passage and the valve that opens the communication passage when the temperature of the feed water introduced into the cooling unit is lowered are provided, it is possible to cool the extraction air for turbine cooling using the feed water of the exhaust heat recovery boiler, Regardless of the operating state of the turbine, It is possible to maintain the feed water introduced into the cooling means it is possible to coercive below a predetermined temperature.
As a result, the water supply of the exhaust heat recovery boiler at the desired water supply amount and temperature can be effectively used regardless of the operation state, and the turbine equipment becomes efficient.

【0036】また、弁の後流側における給水路に給水の
温度を検出する温度検出手段を設け、温度検出手段の検
出情報に基づいて弁の開閉を制御して冷却手段に導入さ
れる給水の温度を所定温度に保つ温度調整手段を設けた
ので、冷却手段に導入される給水の温度を所望の温度に
調整して保つことができる。
Further, a temperature detecting means for detecting the temperature of the water supply is provided in a water supply passage on the downstream side of the valve, and the opening and closing of the valve is controlled based on the detection information of the temperature detecting means to supply the water supplied to the cooling means. Since the temperature adjusting means for maintaining the temperature at the predetermined temperature is provided, the temperature of the supply water introduced into the cooling means can be adjusted and maintained at a desired temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例に係るタービン設備の
全体を表す概略構成図。
FIG. 1 is a schematic configuration diagram illustrating an entire turbine facility according to a first embodiment of the present invention.

【図2】冷却系統の要部構成図。FIG. 2 is a configuration diagram of a main part of a cooling system.

【図3】本発明の第2実施形態例に係るタービン設備の
全体を表す概略構成図。
FIG. 3 is a schematic configuration diagram illustrating an entire turbine facility according to a second embodiment of the present invention.

【図4】冷却系統の要部構成図。FIG. 4 is a configuration diagram of a main part of a cooling system.

【図5】本発明の第3実施形態例に係るタービン設備の
冷却系統の要部構成図。
FIG. 5 is a main part configuration diagram of a cooling system of a turbine facility according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 燃焼器 3 タービン 4 ガスタービン 5 蒸気タービン 9 排ガスボイラー 10 高圧過熱ユニット 11 中圧過熱ユニット 15 高・中圧給水ポンプ 16 復水器 17 復水ポンプ 21 高圧過熱器 22 高圧ドラム 23 高圧蒸発器 25 高圧蒸気ライン 26 給水路 51 冷却手段 52 抽出空気路 53 給水導入路 54 冷却空気路 55 高圧給水路 61 予熱器 62 主流量計 63 流量計 64,72,81 流量調整弁 71 バイパス路 75 連通路 76 電動弁 77 温度検出器 82 温度検出手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 4 Gas turbine 5 Steam turbine 9 Exhaust gas boiler 10 High pressure superheat unit 11 Medium pressure superheat unit 15 High / medium pressure feed pump 16 Condenser 17 Condensate pump 21 High pressure superheater 22 High pressure drum 23 High pressure Evaporator 25 High-pressure steam line 26 Water supply path 51 Cooling means 52 Extraction air path 53 Water supply introduction path 54 Cooling air path 55 High-pressure water supply path 61 Preheater 62 Main flow meter 63 Flow meters 64, 72, 81 Flow control valve 71 Bypass path 75 Communication passage 76 Motor-operated valve 77 Temperature detector 82 Temperature detection means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機及びタービンからなるガスタービ
ンと、ガスタービンの排熱を回収して蒸気を発生させる
排熱回収ボイラと、排熱回収ボイラで発生した蒸気を動
力源とする蒸気タービンと、蒸気タービンの排気蒸気を
復水する復水器と、復水器の復水を排熱回収ボイラに給
水する給水手段と、圧縮機の圧縮空気の一部が抽出空気
として導入されると共に排熱回収ボイラの給水の一部が
導入され抽出空気を給水により冷却してガスタービンの
タービン側に導入する冷却手段とを備えたことを特徴と
するタービン設備。
1. A gas turbine including a compressor and a turbine, an exhaust heat recovery boiler that recovers exhaust heat of the gas turbine to generate steam, and a steam turbine that uses steam generated by the exhaust heat recovery boiler as a power source. A condenser for condensing the exhaust steam of the steam turbine, a water supply means for supplying condensate of the condenser to the exhaust heat recovery boiler, and a part of compressed air of the compressor is introduced as extracted air and discharged. A turbine facility, comprising: cooling means for introducing a part of feed water of a heat recovery boiler, cooling extracted air by the feed water, and introducing the extracted air to the turbine side of the gas turbine.
【請求項2】 請求項1において、排熱回収ボイラには
給水が予熱される予熱器が備えられ、排熱回収ボイラで
は予熱器で予熱された給水から蒸気を発生させ、冷却手
段に導入される給水は予熱器で予熱された給水であるこ
とを特徴とするタービン設備。
2. The exhaust heat recovery boiler according to claim 1, further comprising a preheater for preheating the feedwater, wherein the exhaust heat recovery boiler generates steam from the feedwater preheated by the preheater and is introduced into cooling means. The turbine equipment is characterized in that the feedwater is feedwater preheated by a preheater.
【請求項3】 請求項1もしくは請求項2において、冷
却手段の出側における給水を排熱回収ボイラ側に導入す
る導入路と、導入路から分岐して設けられ給水量が所定
量に満たないときに冷却手段の出側の給水を復水器に導
入するバイパス路とを備えたことを特徴とするタービン
設備。
3. The cooling water supply system according to claim 1, wherein the water supply at the outlet of the cooling means is introduced to the exhaust heat recovery boiler, and the water supply is branched from the introduction and is less than a predetermined amount. And a bypass for introducing water supplied to the outlet side of the cooling means into the condenser.
【請求項4】 請求項2において、予熱器の前流側と後
流側とを連通する連通路を設け、冷却手段に導入される
給水を降温させる際に連通路を開く弁を設けたことを特
徴とするタービン設備。
4. A communication device according to claim 2, further comprising a communication passage communicating between the upstream side and the downstream side of the preheater, and a valve for opening the communication passage when the temperature of the water supplied to the cooling means is lowered. Turbine equipment characterized by the following.
【請求項5】 圧縮機及びタービンからなるガスタービ
ンと、給水が予熱される予熱器を有しガスタービンの排
熱を回収して予熱された給水から蒸気を発生させる排熱
回収ボイラと、排熱回収ボイラで発生した蒸気を動力源
とする蒸気タービンと、蒸気タービンの排気蒸気を復水
する復水器と、復水器の復水を排熱回収ボイラに給水す
る給水手段と、圧縮機の圧縮空気の一部が抽出空気とし
て導入されると共に排熱回収ボイラの給水の一部が導入
され抽出空気を給水により冷却してガスタービンのター
ビン側に導入する冷却手段と、冷却手段の出側における
給水を排熱回収ボイラ側に導入する導入路と、導入路か
ら分岐して設けられ給水量が所定量に満たないときに冷
却手段の出側の給水を復水器に導入するバイパス路と、
予熱器の前流側と後流側とを連通する連通路と、冷却手
段に導入される給水を降温させる際に連通路を開く弁と
を備えたことを特徴とするタービン設備。
5. A gas turbine comprising a compressor and a turbine, an exhaust heat recovery boiler having a preheater for preheating feedwater, recovering exhaust heat of the gas turbine and generating steam from the preheated feedwater, and an exhaust heat recovery boiler. A steam turbine powered by steam generated by the heat recovery boiler, a condenser for condensing exhaust steam of the steam turbine, water supply means for supplying condensate from the condenser to the waste heat recovery boiler, and a compressor A part of the compressed air is introduced as extraction air, a part of the water supply of the exhaust heat recovery boiler is introduced, the extracted air is cooled by the water supply, and introduced into the turbine side of the gas turbine. Path for introducing the water supply on the side to the waste heat recovery boiler side, and a bypass path that is provided branching from the introduction path and that introduces water supply on the outlet side of the cooling means to the condenser when the amount of water supply is less than a predetermined amount. When,
A turbine facility comprising: a communication path that connects a upstream side and a downstream side of a preheater; and a valve that opens the communication path when cooling water supplied to cooling means.
【請求項6】 請求項4もしくは請求項5において、弁
の後流側における給水路に給水の温度を検出する温度検
出手段を設け、温度検出手段の検出情報に基づいて弁の
開閉を制御して冷却手段に導入される給水の温度を所定
温度に保つ温度調整手段を設けたことを特徴とするター
ビン設備。
6. A valve according to claim 4, further comprising a temperature detecting means for detecting a temperature of the water supply in a water supply passage on a downstream side of the valve, wherein opening and closing of the valve is controlled based on information detected by the temperature detecting means. And a temperature adjusting means for maintaining a temperature of feed water introduced into the cooling means at a predetermined temperature.
JP2000093600A 2000-03-30 2000-03-30 Turbine equipment Expired - Lifetime JP4301690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093600A JP4301690B2 (en) 2000-03-30 2000-03-30 Turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093600A JP4301690B2 (en) 2000-03-30 2000-03-30 Turbine equipment

Publications (2)

Publication Number Publication Date
JP2001280103A true JP2001280103A (en) 2001-10-10
JP4301690B2 JP4301690B2 (en) 2009-07-22

Family

ID=18608762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093600A Expired - Lifetime JP4301690B2 (en) 2000-03-30 2000-03-30 Turbine equipment

Country Status (1)

Country Link
JP (1) JP4301690B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213208A (en) 2001-01-18 2002-07-31 Toshiba Corp Combined cycle power generating equipment and operating method thereof
EP1249581A2 (en) * 2001-04-10 2002-10-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
WO2003074854A1 (en) * 2002-03-04 2003-09-12 Mitsubishi Heavy Industries, Ltd. Turbine equipment, compound power generating equipment, and turbine operating method
JP2010112274A (en) * 2008-11-06 2010-05-20 Mitsubishi Heavy Ind Ltd Turbine cooling system control device, turbine cooling system, and turbine cooling system control method
JP2015183594A (en) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 Feed water preheating device, gas turbine plant including the same, and feed water preheating method
JP2015183596A (en) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 Exhaust heat recovery system, gas turbine plant including the same, and exhaust heat recovery method
JP2020020301A (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ株式会社 Steam turbine plant and method for starting the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213208A (en) 2001-01-18 2002-07-31 Toshiba Corp Combined cycle power generating equipment and operating method thereof
EP1249581A2 (en) * 2001-04-10 2002-10-16 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
EP1249581A3 (en) * 2001-04-10 2003-11-12 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
US6698182B2 (en) 2001-04-10 2004-03-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
EP1698763A1 (en) * 2001-04-10 2006-09-06 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
WO2003074854A1 (en) * 2002-03-04 2003-09-12 Mitsubishi Heavy Industries, Ltd. Turbine equipment, compound power generating equipment, and turbine operating method
JP2010112274A (en) * 2008-11-06 2010-05-20 Mitsubishi Heavy Ind Ltd Turbine cooling system control device, turbine cooling system, and turbine cooling system control method
JP2015183594A (en) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 Feed water preheating device, gas turbine plant including the same, and feed water preheating method
JP2015183596A (en) * 2014-03-24 2015-10-22 三菱日立パワーシステムズ株式会社 Exhaust heat recovery system, gas turbine plant including the same, and exhaust heat recovery method
JP2020020301A (en) * 2018-08-01 2020-02-06 三菱日立パワーシステムズ株式会社 Steam turbine plant and method for starting the same
JP7120839B2 (en) 2018-08-01 2022-08-17 三菱重工業株式会社 STEAM TURBINE PLANT AND START-UP METHOD THEREOF

Also Published As

Publication number Publication date
JP4301690B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US6983585B2 (en) Combined cycle plant
EP1179664B1 (en) Steam cooled gas turbine system
JPH06264763A (en) Combined plant system
JP3068925B2 (en) Combined cycle power plant
JP3716188B2 (en) Gas turbine combined plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JP2001280103A (en) Turbine equipment
JPH11173111A (en) Thermal power plant
JP3919883B2 (en) Combined cycle power plant
JP4004800B2 (en) Combined cycle power generation system
JP2000154704A (en) Combined cycle power generation plant
WO1999037889A1 (en) Combined cycle power plant
JP4090584B2 (en) Combined cycle power plant
JP2002213208A (en) Combined cycle power generating equipment and operating method thereof
JP4209069B2 (en) Turbine equipment
JP3122234B2 (en) Steam power plant repowering system
JPH11148315A (en) Combined cycle power plant
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH10331608A (en) Closed steam cooling gas turbine combined plant
CN217400983U (en) Safe and efficient heat supply system of gas-steam combined cycle straight condensing generator set
JP2001193413A (en) Combined plant and its operating method
JP2960190B2 (en) Steam turbine bypass spray system in combined cycle power plant
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant
JP2002303158A (en) Steam cooling system and method for gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4301690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term