JPS597885A - Cooling water system - Google Patents
Cooling water systemInfo
- Publication number
- JPS597885A JPS597885A JP11537282A JP11537282A JPS597885A JP S597885 A JPS597885 A JP S597885A JP 11537282 A JP11537282 A JP 11537282A JP 11537282 A JP11537282 A JP 11537282A JP S597885 A JPS597885 A JP S597885A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- condensate
- air extractor
- auxiliary equipment
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/04—Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は発電プラントの冷却水系統に係り、特に原子カ
プラントの蒸気式空気抽出器およびタービンのグランド
蒸気復水器の冷却水源として好適な冷却水系統に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling water system for a power plant, and more particularly to a cooling water system suitable as a cooling water source for a steam air extractor of an atomic couplant and a ground steam condenser of a turbine.
第1図および第2図、第3図により従来技術について説
明する。The prior art will be explained with reference to FIG. 1, FIG. 2, and FIG. 3.
第1図において、原子炉lで発生した蒸気はタービン2
で膨張によシ仕事をした後、復水器3冷却され復水とな
る。復水は復水ポンプ4で吸出され、復水管5を介して
空気抽出器6およびグランド蒸気復水器7で昇温された
後、復水浄化装置&で不純物が除去された後、復水昇圧
ポンプ9、原子炉給水ポンプ10で昇圧され給水加熱器
11で昇温されて原子炉1に戻る閉回路を形成している
。In Figure 1, the steam generated in the reactor 1 is transferred to the turbine 2.
After doing work through expansion in the condenser 3, it is cooled and becomes condensate. Condensate is sucked out by a condensate pump 4, passed through a condensate pipe 5, heated by an air extractor 6 and a gland steam condenser 7, and then impurities are removed by a condensate purifier &, and then the condensate is A closed circuit is formed in which the pressure is increased by the pressure boost pump 9 and the reactor feed water pump 10, the temperature is raised by the feed water heater 11, and then returned to the reactor 1.
一方、空気抽出器6およびグランド蒸気復水器7の最小
冷却水量を確保するため、プラントの起動停止時には、
復水再循環弁12を開運用する。On the other hand, in order to ensure the minimum amount of cooling water for the air extractor 6 and the grand steam condenser 7, when the plant is started or stopped,
The condensate recirculation valve 12 is opened and operated.
また、空気抽出器6は復水器3への胴体ドレン管13の
Uシール寸法(約10m)を確保するため高レベル床に
設置(一般に2階)となシ、グランド蒸気復水器7もグ
ランド蒸気管14を最短にし、かつドレン勾配を確保す
るため、やけシ一般的に2階設置となる。In addition, the air extractor 6 must be installed on a high level floor (generally on the second floor) in order to ensure the U-seal dimension (approximately 10 m) of the fuselage drain pipe 13 to the condenser 3. In order to make the ground steam pipe 14 as short as possible and to ensure a drain slope, it is generally installed on the second floor.
一方、復水ポンプ4は復水器底部分に溜った復水を十分
な入口圧力を確保しながら吸出すため地階設置となる。On the other hand, the condensate pump 4 is installed in the basement in order to suck out the condensate accumulated at the bottom of the condenser while ensuring sufficient inlet pressure.
また、復水浄化装置8は建屋の機器配置上一般に地階と
なる。Further, the condensate purification device 8 is generally located in the basement due to the equipment layout of the building.
以上述べた従来技術の中、空気抽出器6とグランド蒸気
復水器7の冷却水源を復水とする場合には、次のごとき
問題点がある、
第1の問題点は、第3図に示すごとく、空気抽出器6、
グランド蒸気復水器7共、復水の全量を氷室に通水する
ため、氷室が大きくなり、かつ水量がプラント出力によ
シ変動する。また復水再循環流量(再循環弁に含む)も
多くなる。Among the conventional techniques described above, when condensate is used as the cooling water source for the air extractor 6 and the grand steam condenser 7, there are the following problems. The first problem is shown in FIG. As shown, air extractor 6,
In both the grand steam condenser 7, the entire amount of condensed water is passed through the ice chamber, so the ice chamber becomes large and the amount of water fluctuates depending on the plant output. The condensate recirculation flow rate (included in the recirculation valve) also increases.
第2の問題点は第2図のごとく、復水ポンプ4から復水
浄化装置8までの大口径(1100MWeクラスで80
0φ)が地階と2階の間を往復し、かつ、2階床上を蛇
行し、かつ復水浄化装置8までは放射能濃度も高いため
配管の遮ヘイも必要となるため、配置配管上大きなスペ
ースを割かざるを得ない。The second problem is as shown in Figure 2.
0φ) goes back and forth between the basement and the second floor, meandering over the second floor, and the radiation concentration is high up to the condensate purification device 8, so it is necessary to shield the piping from moisture. I have no choice but to take up space.
第3の問題点は、復水浄化装置8の上流側機器、配管の
表面積が多いため、溶出不純物が多くなシ、浄化装置の
負荷増大につながる。The third problem is that since the upstream equipment and piping of the condensate purification device 8 have a large surface area, there are many eluted impurities, which leads to an increase in the load on the purification device.
第4の問題点は、復水系統の配管、機器損失水頭の増大
により復水ポンプ4用の所内動力が増大し、かつ復水系
統の最高使用圧力が増大し、配管、機器(特に復水浄化
装置18)のコスト高につながる。The fourth problem is that the internal power for the condensate pump 4 increases due to the increase in the head loss of piping and equipment in the condensate system, and the maximum working pressure of the condensate system increases. This leads to an increase in the cost of the purification device 18).
第5の問題点は、外部電源喪失時の復水系ウォータハン
マーのポテンシャルになっている。The fifth problem is the potential of the condensate water hammer when external power is lost.
本発明の目的は、空気抽出器およびグランド蒸気復水器
の冷却水源を復水から補機冷却水(淡水)に変えること
により、前述した従来技術の問題点を解決することを可
能ならしめる冷却水系統を提供するにある。An object of the present invention is to provide a cooling system that makes it possible to solve the problems of the prior art described above by changing the cooling water source of the air extractor and the gland steam condenser from condensate to auxiliary cooling water (fresh water). Located in providing water system.
以下第5図および第7図により、本発明の一実施例の冷
却水系統について説明する。A cooling water system according to an embodiment of the present invention will be described below with reference to FIGS. 5 and 7.
第7図において冷却水ポンプ15にて吐出された補機冷
却水(淡水)は、冷却水管16を介し、補機淡水冷却器
17で海水による冷却を行ない、冷却水温度調整弁18
h−よびバイパス管19を通る流量の調整により冷却水
温度を一定(一般に35C)に調整される。In FIG. 7, the auxiliary equipment cooling water (fresh water) discharged by the cooling water pump 15 is cooled by seawater in the auxiliary equipment freshwater cooler 17 via the cooling water pipe 16, and then cooled by the cooling water temperature adjustment valve 18.
The cooling water temperature is adjusted to a constant temperature (generally 35C) by adjusting the flow rate through the bypass pipe 19.
温度調整後の冷却水は各被冷却補機20に供給され、昇
温後再び冷却水ポンプ15に戻る閉回路を形成している
。The temperature-adjusted cooling water is supplied to each of the cooled auxiliary machines 20, forming a closed circuit in which it returns to the cooling water pump 15 again after being heated.
本発明は、空気抽出器6とグランド蒸気復水器7の前述
の補機冷却水系に移すことにある。The present invention consists in transferring the air extractor 6 and the gland steam condenser 7 to the aforementioned auxiliary cooling water system.
但し、本機器の冷却水源が万一喪失(冷却水ポンプのト
リップ等)されると継続運転に支障が生じるので、第7
図の如く、冷却水ポンプ15.3台中少なくとも1台を
非常用電源に入れておくか、他系統(例えば原子炉補機
冷却水系統)よりの連絡弁21を設け、冷却水供給可能
としておく。However, in the unlikely event that the cooling water source for this equipment is lost (cooling water pump trips, etc.), continued operation will be hindered, so
As shown in the diagram, at least one of the 15.3 cooling water pumps should be turned on to emergency power, or a communication valve 21 from another system (for example, the reactor auxiliary cooling water system) should be installed to enable the supply of cooling water. .
本発明の効果としては、次の点が挙げしれる。The effects of the present invention include the following points.
第1点は第5図に示す如く、空気抽出器6とグランド蒸
気復水器7へは必要水量のみ流せば良いため、氷室が大
巾に小形化となり、出入口配管も従来の1100MWe
クラスの800φから200φ程に小径化可能となる。The first point is that, as shown in Fig. 5, only the required amount of water needs to flow into the air extractor 6 and the grand steam condenser 7, so the ice chamber has become much smaller in width, and the inlet and outlet piping has been changed from the conventional 1100 MWe.
The diameter can be reduced from 800φ for the class to about 200φ.
第2点は、復水との接触表面積が低減され、復水浄化装
置8で処理する不純物の量が低減する。The second point is that the contact surface area with condensate is reduced, and the amount of impurities treated by the condensate purification device 8 is reduced.
第3点は、復水ポンプ4の所内動力が低減する。The third point is that the internal power of the condensate pump 4 is reduced.
冷却水ポンプ15の容量が多少増大するが、復水ポンプ
用動力の運転コストの低減の方が太きい。Although the capacity of the cooling water pump 15 increases somewhat, the reduction in operating cost of the power for the condensate pump is greater.
第4点は復水再循環流量が復水ポンプ4の最小流量分だ
けで良いため、大巾に低減する。The fourth point is that the condensate recirculation flow rate only needs to be equal to the minimum flow rate of the condensate pump 4, so it is significantly reduced.
第5点は、復水系の最高使用圧力の低減によシ復水浄化
装置及び配管、弁の設備費が安価となる。Fifth, by reducing the maximum operating pressure of the condensate system, equipment costs for the condensate purification device, piping, and valves are reduced.
第6点は、空気抽出器6およびグランド蒸気復水器7の
最高使用圧力が約20Kf 7cm” gから10Kp
7cm ” gに大巾低減し、氷室と冷却管のコスト
が安価となる。The sixth point is that the maximum working pressure of the air extractor 6 and the gland steam condenser 7 is approximately 20Kf 7cm”g to 10Kp.
The width has been reduced to 7cm''g, reducing the cost of the ice chamber and cooling pipe.
第7点は、前述のウォータハンマーのポラン7ヤルの除
去となる。The seventh point is the removal of the aforementioned water hammer Poran 7-yal.
前述の運転コスト、設備費コス)f合計すると2〜3億
円のコスト低減となる。The above-mentioned operating costs and facility costs) will result in a total cost reduction of 200 to 300 million yen.
第1図は原子力発電プラントにおける蒸気、復水、給水
系の概略系統図、第2図は復水系の機器相対設置レベル
関連図、第3図は空気抽出器とグランド蒸気復水器の従
来の構造図、第4図は第3図の特性概念図、第5図は本
発明が適用されるグランド蒸気復水器の構造図、第6図
は第5図の特性概念図、第7図は本発明の一実施例であ
る補機冷却水系統図である。
4・・・復水ポンプ、5・・・復水管、6・・・空気抽
出器、7・・・グランド蒸気復水器、8・・・復水浄化
装置、12・・・復水再循環弁、15・・・冷却水ポン
プ、17茅4P
署zffl
フlラニレFb■llt%ノFigure 1 is a schematic system diagram of the steam, condensate, and water supply systems in a nuclear power plant, Figure 2 is a diagram showing the relative installation levels of equipment in the condensate system, and Figure 3 is a diagram of the conventional air extractor and grand steam condenser. 4 is a conceptual characteristic diagram of FIG. 3, FIG. 5 is a structural diagram of a gland steam condenser to which the present invention is applied, FIG. 6 is a conceptual characteristic diagram of FIG. 5, and FIG. 7 is a conceptual diagram of characteristics of FIG. FIG. 2 is an auxiliary cooling water system diagram according to an embodiment of the present invention. 4... Condensate pump, 5... Condensate pipe, 6... Air extractor, 7... Grand steam condenser, 8... Condensate purification device, 12... Condensate recirculation Valve, 15... Cooling water pump, 17 4P Station zffl Furanile Fb■llt%ノ
Claims (1)
蒸気を冷却復水化する該空気抽出器の冷却部と、蒸気タ
ービンのグランドから排出されるグランド蒸気を冷却復
水化するグランド蒸気復水器の冷却部との冷却水源とし
て、発電プラントの補機冷却水を使用するようにしたこ
とを特徴とする冷却水系統。1. In a power generation plant, a cooling section of the air extractor that cools and condenses the driving steam of the steam air extractor, and a gland steam condensate that cools and condenses the gland steam discharged from the gland of the steam turbine. A cooling water system characterized in that auxiliary cooling water of a power generation plant is used as a cooling water source for a cooling part of a power generation plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11537282A JPS597885A (en) | 1982-07-05 | 1982-07-05 | Cooling water system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11537282A JPS597885A (en) | 1982-07-05 | 1982-07-05 | Cooling water system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS597885A true JPS597885A (en) | 1984-01-17 |
Family
ID=14660893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11537282A Pending JPS597885A (en) | 1982-07-05 | 1982-07-05 | Cooling water system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS597885A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105806012A (en) * | 2014-12-31 | 2016-07-27 | 国家电网公司 | Circulating cooling water system for gas-fired thermal power plant and start and stop control method of circulating cooling water system |
CN105807803A (en) * | 2014-12-31 | 2016-07-27 | 国家电网公司 | Closed-type cooling system for fuel gas thermal power plant, and starting/stopping control method for closed-type cooling system |
-
1982
- 1982-07-05 JP JP11537282A patent/JPS597885A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105806012A (en) * | 2014-12-31 | 2016-07-27 | 国家电网公司 | Circulating cooling water system for gas-fired thermal power plant and start and stop control method of circulating cooling water system |
CN105807803A (en) * | 2014-12-31 | 2016-07-27 | 国家电网公司 | Closed-type cooling system for fuel gas thermal power plant, and starting/stopping control method for closed-type cooling system |
CN105807803B (en) * | 2014-12-31 | 2018-11-06 | 国家电网公司 | Gas power station closed cooling water system and its start-up and shut-down control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6354882B2 (en) | ||
US4402183A (en) | Sliding pressure flash tank | |
JPS597885A (en) | Cooling water system | |
JP2001108201A (en) | Multiple pressure waste heat boiler | |
JPH0842803A (en) | Water feeding device for double pressure type exhaust heat recovery boiler | |
JPS6280492A (en) | Condensate recirculating device | |
JP7178159B2 (en) | Energy recovery device control method | |
JP2923122B2 (en) | Drain recovery equipment for nuclear power plants | |
JPS5993906A (en) | Steam turbine plant | |
JPS6017695A (en) | Control device for deaeration steam series of condenser | |
JPH0476204A (en) | Condensation system for steam turbine | |
JPS6235033B2 (en) | ||
JP3010086B2 (en) | Cogeneration power plant | |
JPS62107208A (en) | Electric power plant | |
JPS58126406A (en) | Turbine load reduction equipment | |
JPS6334404A (en) | Deaerating system in combined cycle plant | |
JPH0238844B2 (en) | ||
JPH0152720B2 (en) | ||
JPS5843303A (en) | Mixed pressure type waste heat recovery boiler | |
SU1163015A1 (en) | Regenerative and supply-line plant of extraction steam turbine | |
JPS582794A (en) | Drain processing method of atomic power plant | |
JPS6055445B2 (en) | How to extract uranium from seawater | |
JPS5851195B2 (en) | condensate equipment | |
JPS6364710B2 (en) | ||
JPH0633958B2 (en) | Condensate system |