JPS62119302A - Turbine plant with feedwater-heater drain injector - Google Patents

Turbine plant with feedwater-heater drain injector

Info

Publication number
JPS62119302A
JPS62119302A JP25921885A JP25921885A JPS62119302A JP S62119302 A JPS62119302 A JP S62119302A JP 25921885 A JP25921885 A JP 25921885A JP 25921885 A JP25921885 A JP 25921885A JP S62119302 A JPS62119302 A JP S62119302A
Authority
JP
Japan
Prior art keywords
condensate
drain
purification device
feedwater
turbine plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25921885A
Other languages
Japanese (ja)
Other versions
JPH0663607B2 (en
Inventor
修 大久保
文男 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25921885A priority Critical patent/JPH0663607B2/en
Publication of JPS62119302A publication Critical patent/JPS62119302A/en
Publication of JPH0663607B2 publication Critical patent/JPH0663607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はたとえば給水加熱器ドレンが保有する熱をター
ビンプラントの復水系で回収し、プラントの熱効率を高
めるようにした給水加熱器ドレン注入装置を有するター
ビンプラントに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a feedwater heater drain injection device that recovers heat held by the feedwater heater drain in a condensate system of a turbine plant to improve the thermal efficiency of the plant. The present invention relates to a turbine plant having a turbine plant.

[発明の技術的背景とその問題点1 周知のように蒸気タービンから抽出される蒸気により原
子炉あるいはボイラへ送られる復水もしくは給水を加熱
する、いわゆる再生サイクル方式のタービンプラントで
は、給水加熱器は欠くことのできない機器である。この
給水加熱器には上述した油気の他に上段の給水加熱器内
にて復水もしくは給水との熱交換により凝縮した高温流
体、つまりドレンが復水もしくは給水を加熱するために
導かれ、これらはドレンと蒸気とにより順次加熱される
ように構成されている。こうした給水加熱器による復水
もしくは給水の加熱は蒸気タービンの抽出蒸気圧力に応
じて高圧系と低圧系とに大別されるが、各々の系の給水
加熱器ドレンは系の最後の部分で熱回収を終えたならば
復水器等に棄てるのが従来のやり方であった。しかし、
近年この熱回収を終えた給水加熱器ドレンについて、給
水加熱器以外の場所で熱回収を図ることが提唱され、よ
り以上の熱効率の改善を目指す動きのなかで注目を集め
ている。この技術の一例として低圧系に適用された場合
を第2図を参照して説明する。
[Technical background of the invention and its problems 1 As is well known, in a so-called regeneration cycle type turbine plant in which condensate or feed water sent to a nuclear reactor or boiler is heated by steam extracted from a steam turbine, a feed water heater is used. is an indispensable piece of equipment. In addition to the above-mentioned oil and air, this feedwater heater is led to high-temperature fluid, that is, drain, which is condensed by heat exchange with condensate or feedwater in the upper stage of the feedwater heater, in order to heat the condensate or feedwater. These are configured to be heated sequentially by drain and steam. The heating of condensate or feedwater by such feedwater heaters is roughly divided into high-pressure systems and low-pressure systems depending on the extraction steam pressure of the steam turbine, but the feedwater heater drain of each system is heated in the last part of the system. The conventional method was to dispose of the waste in a condenser or the like after collection. but,
In recent years, it has been proposed to recover heat from the feedwater heater drain in a location other than the feedwater heater, which has completed its heat recovery process, and is attracting attention in a movement aimed at further improving thermal efficiency. As an example of this technique, a case where it is applied to a low pressure system will be explained with reference to FIG.

すなわち、復水系は復水器1から低圧復水ポンプ2を介
して復水を抽出し、これを復水浄化装置3を通して浄化
し、さらに高圧復水ポンプ4で昇圧して図示しない給水
加熱器へと導くようにしたものであるが、この系に給水
加熱器ドレン注入装置5、たとえばドレンタンク6から
ドレンポンプ7を介して給水加熱器ドレンを抽出し、こ
れをドレン浄化装置8を通して浄化して後、復水系に注
入するようにしたものを設けるのが一般的な構成とされ
ている。なお、図中符号9はドレンポンプ7の異常停止
に合わせて給水加熱器ドレンを復水器1に逃すための逃
し弁10を有するドしノン排出管、符号11は調節弁を
それぞれ示している。これより、従来復水器1に棄てら
れていた給水加熱器ドレンは復水中に導かれるためにそ
の保有している熱が復水に与えられ、有効な熱回収が図
れるとされている。
That is, the condensate system extracts condensate from a condenser 1 via a low-pressure condensate pump 2, purifies it through a condensate purification device 3, and then increases the pressure with a high-pressure condensate pump 4 to a feedwater heater (not shown). This system includes a feed water heater drain injection device 5, for example, a drain pump 7 from a drain tank 6 to extract the feed water heater drain, and purify it through a drain purification device 8. A common configuration is to provide a device that injects the condensate into the condensate system after the condensation process. In the figure, reference numeral 9 indicates a drain pipe having a relief valve 10 for releasing drain from the feed water heater to the condenser 1 in case of an abnormal stop of the drain pump 7, and reference numeral 11 indicates a control valve. . Accordingly, the feedwater heater drain, which was conventionally disposed of in the condenser 1, is led into the condensate, so that the heat it possesses is given to the condensate, and effective heat recovery can be achieved.

しかしながら、上述の給水加熱器ドレン注入装置5はド
レンポンプ7の異常停止の際、給水加熱器ドレンがドレ
ンタンク6から復水器1に逃されるために、タービン出
力を維持しようとした場合、復水系の復水浄化装@3で
処理しなければならない復水lが大幅に増加することに
なる。通常、復水浄化装置3の処理能力は単位時間当り
ほぼ一定した値であり、復水量の増加は直ちに復水浄化
装置3の容量不足となり、原子炉等へ送られる復水もし
くは給水の水質が低下してしまうことになる。
However, in the above-mentioned feedwater heater drain injection device 5, when the drain pump 7 stops abnormally, the feedwater heater drain is released from the drain tank 6 to the condenser 1. The amount of condensate that must be treated by the water-based condensate purification system @3 will increase significantly. Normally, the processing capacity of the condensate purification device 3 is a nearly constant value per unit time, and an increase in the amount of condensate immediately causes a capacity shortage of the condensate purification device 3, causing the quality of condensate or feed water sent to the reactor etc. to deteriorate. This will result in a decline.

特に、原子力タービンプラントでは原子炉内にで放射化
される物質を減少するために水質を厳しく管理しており
、復水浄化装置3の容量不足で水質の低下が避けられな
いとなれば、タービン出力を制限する必要が生じる。そ
こで、タービン出力を維持するために考えられることは
、容量不足を補なう復水浄化装置3の大容量化である。
In particular, in nuclear turbine plants, water quality is strictly controlled in order to reduce the amount of radioactive substances inside the reactor, and if a decline in water quality is unavoidable due to insufficient capacity of the condensate purification device 3, the turbine It becomes necessary to limit the output. Therefore, in order to maintain the turbine output, it is possible to increase the capacity of the condensate purification device 3 to compensate for the lack of capacity.

しかし、この復水浄化装@3の大言開化はドレンポンプ
7の異常停止がそう頻繁に起こるというわけではないの
で、容量を増した部分が平時は遊んでしまうことになり
、経済性が損なわれるという不都合がある。
However, since the condensate purification system @ 3 has been greatly improved, abnormal stoppages of the drain pump 7 do not occur very often, so the part with increased capacity is left idle during normal times, which impairs economic efficiency. There is an inconvenience that

[発明の目的1 本発明の目的はドレンポンプの異常停止の際にタービン
出力の維持を図りつつ、同時に復水もしくは給水の水質
が低下するのを防止できるようにした給水加熱器ドレン
注入装置を有するタービンプラントを提供り゛ることに
ある。
[Objective of the Invention 1 The object of the present invention is to provide a feedwater heater drain injection device that can maintain the turbine output in the event of an abnormal stop of the drain pump and at the same time prevent the quality of condensate or feedwater from deteriorating. The purpose of the present invention is to provide a turbine plant having the following features.

[発明の概要] 本発明は低圧給水加熱器で復水ど熱交換して生じたドレ
ンをドレンタンクに回収し、このドレンをドレンポンプ
を介して復水系を流れる復水中に注入すると共に、ドレ
ンポンプの異常停止に合わせでドレンをドレンタンクか
ら復水器に逃すように構成した給水加熱器ドレン注入装
置を有するタービンプラントにおいて、復水系内の復水
浄化装置の上流側から分岐され、該復水浄化装置の下流
側に至る各々第1および第2の゛復水止め弁を有する第
1および第2のバイパス管を設け、さらにこの第1のバ
イパス管の経路内には非常用復水浄化装置を配置したも
のであって、これによりドレンポンプの異常停止の際、
増加する復水のほぼ全量を非常用浄化装はを通して浄化
処理し、残りの一部については浄化処理せずにそのまま
復水中に導くようにしたことを特徴とするものである。
[Summary of the invention] The present invention collects condensate generated by heat exchange with condensate in a low-pressure feedwater heater into a drain tank, injects this condensate into condensate flowing through a condensate system via a condensate pump, and In a turbine plant that has a feedwater heater drain injection device configured to release drain from the drain tank to the condenser in case of an abnormal stop of the pump, the condensate is branched from the upstream side of the condensate purification device in the condensate system, and First and second bypass pipes each having a first and second condensate stop valve are provided downstream of the water purification device, and an emergency condensate purification system is provided in the path of the first bypass pipe. This device is equipped with a device that will prevent the drain pump from stopping abnormally.
This system is characterized in that almost all of the increasing amount of condensate is purified through the emergency purification device, and the remaining part is directly led into the condensate without being purified.

[発明の実施例] 以下、本発明の一実施例を第1図を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to FIG.

なお、図中第2図にて示される部分には同一の符号を付
してその説明を省略する。
In addition, the parts shown in FIG. 2 in the figure are given the same reference numerals, and the explanation thereof will be omitted.

第1図において、本発明は復水浄化装置3の上流側と下
流側とを各々連絡づ−る第1および第2のバイパス管1
2.13を設け、この第1のバイパス管12の経路内に
は非常用復水浄化装置14および第1の復水止め弁15
を、−力筒2のパイバス管13の経路内には第2の復水
止め弁16をそれぞれ配置する。さらに、復水浄化装@
3の下流側には復水流量を検出する流量計17を設けて
いる。これらに加えて本発明は管制部分を構成するυJ
1!11装置18.19が次のとおり設けられる。すな
わち、制御ilIBM18はドレンポンプ7の停止信号
が入力されると、これを逃し弁10および調節弁11に
伝え、これらの弁開度を変化させる。また、同時にこの
信号を低圧復水ポンプ2の予備機および第1の復水止め
弁15にもそれぞれ伝え、当該予備機の起動、そして第
1の復水止め弁15の弁開度を全同位置にするものであ
る。一方、制御装置19は流量計17にて検出される復
水流量が予め決められ値を超えた場合に、第2の復水止
め弁16の弁開度を全開位置にするものである。
In FIG. 1, the present invention includes first and second bypass pipes 1 that connect the upstream side and the downstream side of the condensate purification device 3, respectively.
2.13, and an emergency condensate purification device 14 and a first condensate stop valve 15 are provided in the path of this first bypass pipe 12.
A second condensation stop valve 16 is disposed within the path of the pipe bus pipe 13 of the power cylinder 2. In addition, condensate purification system @
A flow meter 17 for detecting the flow rate of condensate is provided on the downstream side of 3. In addition to these, the present invention provides υJ constituting the control section.
1!11 equipment 18.19 is provided as follows. That is, when the control ILBM 18 receives a stop signal for the drain pump 7, it transmits this to the relief valve 10 and the control valve 11, and changes the opening degrees of these valves. At the same time, this signal is also transmitted to the standby machine of the low-pressure condensate pump 2 and the first condensate stop valve 15, respectively, to start up the standby machine and control the valve opening of the first condensate stop valve 15 at the same time. It is a position. On the other hand, the control device 19 sets the valve opening degree of the second condensate stop valve 16 to the fully open position when the condensate flow rate detected by the flow meter 17 exceeds a predetermined value.

本発明は上記の構成からなり、ドレンポンプ7のうちの
1台が異常停止すると、逃し弁10を開とする信号が発
せられ、ドレンタンク6から給水加熱器ドレンの一部が
復水器1に流れてドレンタンク6の水位が玉貸するのを
防止する。このとき同時に調節弁11の弁開度が絞られ
て復水系に流れる給水加熱器ドレンが減少し、これに伴
なって復水量も減少するが、ドレンポンプ7の停止信号
により低圧復水ポンプ2の予@機を起動する信号が発せ
られ、タービン出力を維持するのに必要な復水量が確保
される。この復水系を通過する復水量の増加で復水浄化
装置3は容量が不足することになるが、低圧復水ポンプ
2の予備機の起動と同時に第1のバイパス管12内に設
けられた復水止め弁15を開とする信号も発せられるた
め、一部の復水が非常用復水浄化装置14に導かれ、こ
こで浄化処理されて復水浄化装置3の下流側にて再び復
水中に送り込まれる。これにより、復水浄化装置3の容
量は従来と同じでもタービン出力を維持するうえで何ら
支障は生じず、一方復水は非常用浄化装置14で浄化さ
れるために水質が低下する心配もない。非常用浄化装置
14の容量はドレンポンプ7の1台の吐出口との見合い
で決められるが、それほど大きな容量とする必要はない
。それには復水浄化装e13の下流側で復水が合流した
後の流量を流量計17により監視し、万−容量の点で復
水浄化装置3と非常用浄化装置14とを合わせたもので
も足りない場合には不足分に限り浄化処理しない復水を
用いることで容量の増加を抑える。すなわち、復水流量
が予め決められた値を超えるような場合には第2のバイ
パス管13内に設けられた第2の復水止め弁16を開と
する信号が梵せられるため、復水浄化装置3および非常
用復水浄化装M14の双方を迂回する最低流量の復水の
流れが形成され、これにより常に必要な出の復水が確保
される。
The present invention has the above configuration, and when one of the drain pumps 7 stops abnormally, a signal is issued to open the relief valve 10, and a part of the feed water heater drain from the drain tank 6 is transferred to the condenser 1. This prevents the water level in the drain tank 6 from becoming too high. At the same time, the valve opening of the control valve 11 is throttled to reduce the feed water heater drain flowing into the condensate system, and the amount of condensate decreases accordingly, but a stop signal from the drain pump 7 causes the low pressure condensate pump 2 to A signal is issued to start the pre-equipment, ensuring the amount of condensate necessary to maintain turbine output. Due to the increase in the amount of condensate passing through the condensate system, the condensate purification device 3 will run out of capacity. Since a signal to open the water stop valve 15 is also issued, some of the condensate is guided to the emergency condensate purification device 14, where it is purified and then returned to the condensate on the downstream side of the condensate purification device 3. sent to. As a result, even if the capacity of the condensate purification device 3 is the same as before, there will be no problem in maintaining the turbine output, and on the other hand, since the condensate is purified by the emergency purification device 14, there is no worry that the water quality will deteriorate. . The capacity of the emergency purifier 14 is determined based on the discharge port of one drain pump 7, but the capacity does not need to be that large. For this purpose, the flow rate after the condensate joins on the downstream side of the condensate purification device e13 is monitored by a flow meter 17, and even if the condensate purification device 3 and the emergency purification device 14 are combined in terms of capacity, If there is insufficient water, unpurified condensate is used to cover the shortage, thereby suppressing the increase in capacity. That is, when the condensate flow rate exceeds a predetermined value, a signal is generated to open the second condensate stop valve 16 provided in the second bypass pipe 13, so that the condensate flow rate exceeds a predetermined value. A flow of condensate with the lowest flow rate is formed that bypasses both the purification device 3 and the emergency condensate purification device M14, thereby ensuring the necessary amount of condensate at all times.

[発明の効果〕 以上述べたように本発明は復水系内の復水浄化装置の上
流側から分岐され、該復水浄化装置の下流側に至る各々
第1および第2の復水止め弁を有する第1および第2の
バイパス管を設け、さらにこの第1のバイパス管の経路
内には非常用復水浄化装置を配置しているので、ドレン
ポンプの異常停止の際にタービン出力の維持が図れ、し
かも給水の水質が低下するのを防止できるという優れた
効果を奏する。
[Effects of the Invention] As described above, the present invention provides first and second condensate stop valves that are branched from the upstream side of the condensate purification device in the condensate system and reach the downstream side of the condensate purification device. Since the first and second bypass pipes are provided, and an emergency condensate purification device is placed in the path of the first bypass pipe, the turbine output can be maintained in the event of an abnormal stop of the drain pump. Moreover, it has the excellent effect of preventing the quality of water supply from deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による給水加熱器ドレン注入装置をター
ビンプラントの一実施例を示す系統図、第2図は従来技
術における給水加熱器ドレン注入i装置を有するタービ
ンプラントの一例を示す系統図である。 1・・・・・・・・・・・・復水器 3・・・・・・・・・・・・復水浄化装置5・・・・・
・・・・・・・給水加熱器ドレン注入装置6・・・・・
・・・・・・・ドレンタンク7・・・・・・・・・・・
・ドレンポンプ8・・・・・・・・・・・・ドレン浄化
装置10・・・・・・・・・・・・逃し弁 12・・・・・・・・・・・・第1のバイパス管13・
・・・・・・・・・・・第2のバイパス管14・・・・
・・・・・・・・非常用復水浄化装置15・・・・・・
・・・・・・第1の復水止め弁16・・・・・・・・・
・・・第2の復水止め弁17・・・・・・・・・・・・
流吊計 18.19・・・制tIl装置
FIG. 1 is a system diagram showing an example of a turbine plant using the feedwater heater drain injection device according to the present invention, and FIG. 2 is a system diagram showing an example of a turbine plant having the feedwater heater drain injection device according to the prior art. be. 1... Condenser 3... Condensate purification device 5...
......Feed water heater drain injection device 6...
・・・・・・Drain tank 7・・・・・・・・・・・・
・Drain pump 8...Drain purifier 10...Relief valve 12...First Bypass pipe 13・
......Second bypass pipe 14...
......Emergency condensate purification device 15...
......First condensate stop valve 16...
...Second condensate stop valve 17...
Flow hanging meter 18.19... Control tIl device

Claims (1)

【特許請求の範囲】[Claims] 低圧給水加熱器で復水と熱交換して生じたドレンをドレ
ンタンクに回収し、このドレンをドレンポンプを介して
復水系を流れる復水中に注入すると共に、前記ドレンポ
ンプの異常停止に合わせてドレンを前記ドレンタクンか
ら復水器に逃すように構成した給水加熱器ドレン注入装
置を有するタービンプラントにおいて、前記復水系内の
復水浄化装置の上流側から分岐され、該復水浄化装置の
下流側に至る各々第1および第2の復水止め弁を有する
第1および第2のバイパス管を設け、さらにこの第1の
バイパス管の経路内には非常用復水浄化装置を配置し、
これにより前記ドレンポンプの異常停止の際、増加する
復水のほぼ全量を前記非常用復水浄化を通して浄化処理
し、残りの一部については浄化処理せずそのまま復水中
に導くようにしたことを特徴とする給水加熱器ドレン注
入装置を有するタービンプラント。
Drain generated by heat exchange with condensate in a low-pressure feedwater heater is collected into a drain tank, and this drain is injected into the condensate flowing through the condensate system via a drain pump. In a turbine plant having a feedwater heater drain injection device configured to release drain from the drain tank to a condenser, the system is branched from an upstream side of a condensate purification device in the condensate system and downstream of the condensate purification device. providing first and second bypass pipes each having first and second condensate stop valves, further disposing an emergency condensate purification device in the path of the first bypass pipe,
As a result, in the event of an abnormal stop of the drain pump, almost the entire amount of increasing condensate is purified through the emergency condensate purification, and the remaining part is directly guided into the condensate without being purified. A turbine plant having a featured feedwater heater drain injection device.
JP25921885A 1985-11-19 1985-11-19 Turbine plant with feedwater heater drain injection device Expired - Lifetime JPH0663607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25921885A JPH0663607B2 (en) 1985-11-19 1985-11-19 Turbine plant with feedwater heater drain injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25921885A JPH0663607B2 (en) 1985-11-19 1985-11-19 Turbine plant with feedwater heater drain injection device

Publications (2)

Publication Number Publication Date
JPS62119302A true JPS62119302A (en) 1987-05-30
JPH0663607B2 JPH0663607B2 (en) 1994-08-22

Family

ID=17331040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25921885A Expired - Lifetime JPH0663607B2 (en) 1985-11-19 1985-11-19 Turbine plant with feedwater heater drain injection device

Country Status (1)

Country Link
JP (1) JPH0663607B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203805A (en) * 1988-02-08 1989-08-16 Hitachi Ltd Method and device for controlling condensate system
JPH0252802A (en) * 1988-04-08 1990-02-22 Schorling Gmbh & Co Waggonbau Garbage wagon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203805A (en) * 1988-02-08 1989-08-16 Hitachi Ltd Method and device for controlling condensate system
JPH0252802A (en) * 1988-04-08 1990-02-22 Schorling Gmbh & Co Waggonbau Garbage wagon

Also Published As

Publication number Publication date
JPH0663607B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPS62119302A (en) Turbine plant with feedwater-heater drain injector
US4434620A (en) Condensation system for power plant
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
CN209763032U (en) Boiler blowdown pot water zero discharge apparatus
JPS61237903A (en) Controller for water level in drain tank for feedwater heater
JP2614350B2 (en) Feed water heater drain pump up system
JP2597594B2 (en) Feed water heater drain injection device
JP2519306B2 (en) Drain recovery system purification device
JPS62106207A (en) Feedwater supply system in steam turbine plant
JPH01203804A (en) Feed water heater drain system
JPS582794A (en) Drain processing method of atomic power plant
JP2909301B2 (en) How to pump up the feedwater heater drain
JPH0445642B2 (en)
SU985565A1 (en) Steam-turbine plant regenaration system
JPS61132897A (en) Method of operating nuclear power plant
SU1097811A1 (en) Power unit dearatorless regeneration system
JPS6064107A (en) Additional heater drain recovery device
JP2001208890A (en) Feed water heater piping system for nuclear power plant
JP2752226B2 (en) Drain pump warming device
JP2679980B2 (en) Control device for water supply drain pump up system
JPH04270995A (en) Purification system of nuclear reactor coolant
JPS6235033B2 (en)
JPS63251703A (en) Feedwater-heater drain system oxygen-concentration controller
JPH0428964B2 (en)
JPS6379099A (en) Feedwater dissolved oxygen regulator