JP2001208890A - Feed water heater piping system for nuclear power plant - Google Patents

Feed water heater piping system for nuclear power plant

Info

Publication number
JP2001208890A
JP2001208890A JP2000018134A JP2000018134A JP2001208890A JP 2001208890 A JP2001208890 A JP 2001208890A JP 2000018134 A JP2000018134 A JP 2000018134A JP 2000018134 A JP2000018134 A JP 2000018134A JP 2001208890 A JP2001208890 A JP 2001208890A
Authority
JP
Japan
Prior art keywords
feed water
water heater
low
drain
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000018134A
Other languages
Japanese (ja)
Inventor
Shunichi Goshima
俊一 五島
Masaaki Hikasa
正晃 日笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000018134A priority Critical patent/JP2001208890A/en
Publication of JP2001208890A publication Critical patent/JP2001208890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To eliminate a problem such as radiation exposure due to a large quantity of piping by making the capacity of an emergency system smaller than that of a service system in a drain system of a feed water heater in a BWR plant. SOLUTION: In a BWR plant having a service system drain pipes 14a, 14b, 14c successively carrying drain of a high pressure system feed water heater 12, a second low pressure system feed water heater 10, and a first low pressure system feed water heater 9, and having emergency system drain pipes 15a, 15b, 15c discharging the drain of the feed water heater 12, 10, 9 directly to a steam condenser 5, the capacities of the emergency system drain pipes 15a, 15b, 15c are made to be smaller generally by 40% of the capacities of the service system dram pipes 14a, 14b, 14c. Therefore, with decreasing the area of inner surfaces of the emergency system pipes 15a, 15b, 15c, radiation exposure is reduced and safety is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、沸騰水型原子力発
電プラント(以下、BWRプラントと記す)用給水加熱
器の配管系統に関する。
The present invention relates to a piping system for a feed water heater for a boiling water nuclear power plant (hereinafter, referred to as a BWR plant).

【0002】[0002]

【従来の技術】蒸気タービンから抽出される蒸気により
原子炉へ送られる復水または給水を加熱する、いわゆる
再生サイクル方式のタービンプラントでは、高圧系およ
び低圧系給水加熱器は欠くことのできない機器である。
2. Description of the Related Art In a so-called regeneration cycle type turbine plant for heating condensate or feed water sent to a nuclear reactor by steam extracted from a steam turbine, high-pressure and low-pressure feed water heaters are indispensable equipment. is there.

【0003】これらの給水加熱器には上述した抽気の他
に、上段の高圧給水加熱器により復水または給水との熱
交換により凝縮した高温流体、つまり、ドレンは下段の
低圧給水加熱器の復水または給水を加熱するために導か
れる。
In these feed water heaters, in addition to the bleeding described above, high-temperature fluid condensed by condensing water or heat exchange with feed water by the upper high-pressure feed water heater, that is, drain is recovered by the lower low-pressure feed water heater. Guided to heat water or water supply.

【0004】通常運転中、各々の給水加熱器ドレンは常
用系ドレン管により、順次下段の給水加熱器に導かれ、
最下段の給水加熱器で熱回収を終えたならば復水器に排
出されるが、各々の給水加熱器ドレンは非常用系ドレン
管により直接復水器に排出することも可能である。BW
Rプラントでは、上記非常用系ドレン管の容量は、常用
系ドレン管と同一容量で設計されている。
During normal operation, each feed water heater drain is sequentially led to a lower feed water heater by a common drain pipe.
After the heat recovery in the bottom feedwater heater is completed, it is discharged to the condenser, but each feedwater heater drain can also be discharged directly to the condenser by the emergency drain pipe. BW
In the R plant, the capacity of the emergency drain pipe is designed to be the same as the capacity of the normal drain pipe.

【0005】従来のBWRプラントにおける配管系統の
一例を図5を参照して説明する。図5中、符号1は原子
炉で、原子炉1で発生した蒸気を高圧タービン2、湿分
分離器3および低圧タービン4へ供給する主蒸気系が設
けられている。低圧タービン4から排出する蒸気を復水
器5で凝縮して復水とする。
An example of a piping system in a conventional BWR plant will be described with reference to FIG. In FIG. 5, reference numeral 1 denotes a nuclear reactor, which is provided with a main steam system for supplying steam generated in the nuclear reactor 1 to the high-pressure turbine 2, the moisture separator 3, and the low-pressure turbine 4. The steam discharged from the low-pressure turbine 4 is condensed by the condenser 5 to be condensed.

【0006】復水器5から復水ポンプ6を介して排出さ
れた復水は、復水浄化装置7を通って浄化され、さらに
高圧復水ポンプ8で昇圧され、第1および第2の低圧系
給水加熱器9,10へ導かれる。そして、さらに給水ポン
プ11で昇圧され、高圧系給水加熱器12を通った後、原子
炉1に送水する給水系が設けられている。
The condensate discharged from the condenser 5 via the condensate pump 6 is purified through a condensate purifier 7, and is further pressurized by the high-pressure condensate pump 8, and the first and second low-pressure condensates It is led to the system feed water heaters 9 and 10. Further, a water supply system is provided, which is further pressurized by the water supply pump 11, passes through the high-pressure system feed water heater 12, and sends the water to the reactor 1.

【0007】第1および第2の低圧系給水加熱器9,10
および高圧系給水加熱器12には、それぞれ低圧タービン
4、高圧タービン2からの抽気管16a,16b,16cを介
して抽気蒸気が導かれ、復水または給水と熱交換してド
レンとなる。第2の低圧系給水加熱器10へは高圧系給水
加熱器12からのドレンが非常ドレン管14aを通して導か
れ、そのドレンも給水系配管を流れる復水の加熱に用い
られる。
First and second low pressure feed water heaters 9 and 10
The extracted steam is led to the high-pressure feed water heater 12 via the extraction pipes 16a, 16b, and 16c from the low-pressure turbine 4 and the high-pressure turbine 2, respectively, and exchanges heat with condensed water or feed water to form a drain. The drain from the high-pressure feed water heater 12 is guided to the second low-pressure feed water heater 10 through the emergency drain pipe 14a, and the drain is also used for heating the condensate flowing through the feed water piping.

【0008】プラント通常運転中、第2の低圧系給水加
熱器10のドレンは、第2の低圧系給水加熱器10と第1の
低圧系給水加熱器9間の圧力差を利用し、常用系ドレン
管14bに設置された水位調節弁17bを介して第1の低圧
系給水加熱器9に導かれる。
During normal operation of the plant, the drain of the second low-pressure feed water heater 10 is drained by utilizing the pressure difference between the second low-pressure feed water heater 10 and the first low-pressure feed water heater 9, and It is led to the first low-pressure feed water heater 9 via a water level control valve 17b installed in the drain pipe 14b.

【0009】ところが、プラントが起動,停止時の低負
荷状態の場合には、上記圧力差が十分確保できないた
め、常用系ドレン管14bではドレンが排出できず、第2
の低圧系給水加熱器10に取り付けた給水加熱器制御器13
bにより非常用系ドレン管15bに設置された高水位調節
弁18bが開いて、復水器に直接排出されるシステム構成
となっている。なお、破線は制御器と弁を結ぶ信号符で
ある。
However, when the plant is in a low load state when the plant is started and stopped, the pressure difference cannot be sufficiently ensured, so that the drain cannot be discharged from the service drain pipe 14b, and
Feed water heater controller 13 attached to the low pressure feed water heater 10
The system configuration is such that the high water level control valve 18b installed in the emergency drain pipe 15b is opened by b to discharge directly to the condenser. The broken line is a signal sign connecting the controller and the valve.

【0010】また、水位調節弁17bが給水加熱器制御器
13bの不調等により全閉した場合、常用ドレン管14a,
14b,14cと同一の容量を有する非常用系ドレン管15b
側に全ドレン量を排出することができるため、原子炉出
力に影響を与えることなく運転を継続可能なシステム構
成となっている。
The water level control valve 17b is a feed water heater controller.
When fully closed due to malfunction of 13b, the normal drain pipe 14a,
Emergency drain tube 15b having the same capacity as 14b, 14c
Since the entire drain amount can be discharged to the side, the system configuration is such that operation can be continued without affecting the reactor output.

【0011】以上のように、給水加熱器制御器13の信頼
性が確保されている現在のBWRプラントでは、非常用
系ドレン管15a,15b,15cにドレンが流れるのは、基
本的にプラント起動,停止時の限られた場合である。
As described above, in the current BWR plant in which the reliability of the feed water heater controller 13 is ensured, the flow of the drain through the emergency drain pipes 15a, 15b and 15c is basically caused by the start of the plant. This is a limited case when stopping.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、従来の
技術の場合、使用頻度が少ない非常用系ドレン管15a,
15b,15cを常用系ドレン管14a,14b,14cと同一の
容量で設計するのは経済性が損なわれ、また必要以上に
配管表面積も大きく、プラントの被ばく低減の観点から
好ましくないという課題がある。
However, in the case of the prior art, the emergency drain pipes 15a, 15
Designing the 15b and 15c with the same capacity as the regular drain pipes 14a, 14b and 14c is problematic in that the economy is impaired, the piping surface area is unnecessarily large, and it is not preferable from the viewpoint of reducing the exposure of the plant. .

【0013】本発明は、上記課題を解決するためになさ
れたもので、BWRプラントの運転は継続して行うもの
として、非常用系ドレン管の容量を最適化し、また放射
線被ばく低減に寄与し、配管の物量を低減して経済性、
安定性にも優れた原子力発電プラント用給水加熱器の配
管系統を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is intended to optimize the capacity of an emergency drain pipe and to reduce radiation exposure, assuming that the operation of a BWR plant is performed continuously. Economical by reducing the amount of piping
An object of the present invention is to provide a piping system of a feed water heater for a nuclear power plant which is excellent in stability.

【0014】[0014]

【課題を解決するための手段】請求項1の発明は、原子
炉で発生した蒸気を高圧タービンおよび低圧タービンへ
供給する主蒸気系と、前記低圧タービンから排出する蒸
気を復水器で復水し、この復水を第1の低圧系給水加熱
器、第2の低圧系給水加熱器および高圧系給水加熱器に
順次導いて加熱し、この加熱された復水を前記原子炉に
送水する給水系とを有する原子力発電プラントにおい
て、前記高圧タービンの蒸気を抽気して前記高圧系給水
加熱器へ移送する第1の抽気管と、前記低圧タービンの
蒸気を抽気して前記第1の低圧系給水加熱器および第2
の低圧系給水加熱器へそれぞれ移送する第2の抽気管お
よび第3の抽気管と、前記高圧系給水加熱器、第1の低
圧系給水加熱器および第2の低圧系給水加熱器のドレン
水をそれぞれ前記復水器に戻す非常用系ドレン管と、前
記高圧系給水加熱器の非常用系ドレン管から分岐して前
記第2の低圧系給水加熱器の二次側へ順次流入する常用
系ドレン管とを具備し、前記非常用系ドレン管の容量を
前記常用系ドレン管の容量よりも小さくしてなることを
特徴とする。
According to a first aspect of the present invention, there is provided a main steam system for supplying steam generated in a nuclear reactor to a high pressure turbine and a low pressure turbine, and condensing steam discharged from the low pressure turbine with a condenser. The condensate is guided to a first low-pressure system feedwater heater, a second low-pressure system feedwater heater and a high-pressure system feedwater heater for heating, and the heated condensate is fed to the reactor. A first extraction pipe for extracting steam from the high-pressure turbine and transferring it to the high-pressure feed water heater, and a first low-pressure feed water for extracting steam from the low-pressure turbine. Heater and second
A second bleed pipe and a third bleed pipe which are respectively transferred to the low-pressure system feedwater heater, and the drain water of the high-pressure system feedwater heater, the first low-pressure system feedwater heater and the second low-pressure system feedwater heater An emergency drain pipe returning the condenser to the condenser, and a normal system branching from the emergency drain pipe of the high-pressure feed water heater and sequentially flowing into the secondary side of the second low-pressure feed water heater. A drain pipe, wherein the capacity of the emergency drain pipe is smaller than the capacity of the normal drain pipe.

【0015】請求項1の発明によれば、複数段の給水加
熱器と、上流段給水加熱器ドレンを下流段給水加熱器へ
移送する管路(常用系ドレン管)と、上流段給水加熱器
ドレンを復水器へ直接排出する管路(非常用系ドレン
管)を有するBWRプラントにおいて、非常用系ドレン
管の容量を常用系ドレン管の容量よりも小さくすること
により、物量および配管内の表面積を低減することがで
きる。
According to the first aspect of the present invention, a plurality of stages of feed water heaters, a pipe line for transferring the drain of the upstream stage feed water heater to the downstream stage feed water heater (a common system drain pipe), and an upstream stage feed water heater In a BWR plant having a pipe (emergency drain pipe) for directly discharging drain to a condenser, the volume of the emergency drain pipe is made smaller than the capacity of the normal drain pipe to reduce the physical quantity and the amount of water in the pipe. The surface area can be reduced.

【0016】請求項2の発明は、前記非常用系ドレン管
の容量は、前記常用系ドレン管の容量のほぼ40%である
か、または前記給水加熱器のタービン抽気蒸気分のドレ
ン量であることを特徴とする。
According to a second aspect of the present invention, the capacity of the emergency drain pipe is approximately 40% of the capacity of the service drain pipe, or the drain amount of turbine extracted steam of the feed water heater. It is characterized by the following.

【0017】請求項2の発明によれば、非常用系ドレン
管の容量を常用系ドレン管の容量に対して約40%程度に
するか、またはタービン抽気蒸気分のドレン量とするこ
とで、物量および配管内の表面積を低減することができ
る。
According to the second aspect of the present invention, the capacity of the emergency system drain pipe is set to about 40% of the capacity of the service system drain pipe, or the drain amount for the steam extracted from the turbine is set as follows. The physical quantity and the surface area in the pipe can be reduced.

【0018】請求項3の発明は、前記第1の抽気管から
第3の抽気管または前記常用系ドレン管に遠隔操作弁を
設けてなることを特徴とする。請求項3の発明によれ
ば、非常用系ドレン管を有するBWRプラントにおい
て、抽気ラインに遠隔操作可能な抽気止め弁を設けるこ
とにより、タービンにドレンが流入するのを防止し、タ
ービンの損傷を防止してタービンを保護することができ
る。また、弁手段に対して前記給水加熱器の水位が規定
値以上になったことを検知して、強制的にインターロッ
クして全閉とすることができる。
The invention of claim 3 is characterized in that a remote control valve is provided from the first bleed pipe to the third bleed pipe or the service drain pipe. According to the third aspect of the present invention, in a BWR plant having an emergency drain pipe, by providing a remotely controllable bleed stop valve in the bleed line, drain is prevented from flowing into the turbine, and damage to the turbine is prevented. Prevention can protect the turbine. Further, it is possible to detect that the water level of the feed water heater has become equal to or higher than a predetermined value with respect to the valve means, and forcibly interlock the valve to completely close the valve.

【0019】請求項4の発明は、前記遠隔操作弁に前記
高圧系給水加熱器のドレン水位または前記第1の低圧系
給水加熱器または第2の低圧系給水加熱器のドレン水位
が規定値以上になったことを検知して、強制的に閉じる
インターロックを設けてなることを特徴とする。
According to a fourth aspect of the present invention, the drain valve of the high-pressure feed water heater or the drain water level of the first low-pressure feed water heater or the second low-pressure feed water heater is equal to or more than a specified value. , And an interlock that is forcibly closed upon detecting that the power supply has been turned off is provided.

【0020】請求項4の発明によれば、非常用系ドレン
管を有する原子力発電プラントにおいて、常用系ドレン
管に遠隔操作可能な弁手段を設け、上流段の給水加熱器
ドレンの流入を遮断する。また、ドレン遮断弁に対し
て、下流段の給水加熱器のドレン水位が規定値以上にな
ったことを検知し、強制的にインターロックして閉じ
る。これにより水位制御を継続することができ、プラン
トの安全運転を行うことができる。
According to the fourth aspect of the present invention, in the nuclear power plant having the emergency drain pipe, the service drain pipe is provided with a remotely operable valve means to shut off the inflow of the upstream feedwater heater drain. . Further, it detects that the drain water level of the downstream feed water heater has reached a specified value or more with respect to the drain shutoff valve, and forcibly interlocks and closes. Thereby, the water level control can be continued, and the safe operation of the plant can be performed.

【0021】[0021]

【発明の実施の形態】図1により本発明に係る原子力発
電プラント用給水加熱器の配管系統の第1の実施の形態
を説明する。図1中、図5に示した従来の技術と同一部
分には同一符号を付して、重複した説明は省略する。本
実施の形態が従来例と異なる点は非常用系ドレン管15
a,15b,15cの容量を常用系ドレン管14a,14b,14
cの容量よりも小さくしたことにある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a piping system of a feed water heater for a nuclear power plant according to the present invention will be described with reference to FIG. In FIG. 1, the same portions as those of the conventional technique shown in FIG. 5 are denoted by the same reference numerals, and duplicate description will be omitted. This embodiment is different from the conventional example in that the emergency drain pipe 15 is used.
a, 15b, and 15c are replaced with the common drain pipes 14a, 14b, and 14c.
c is smaller than the capacity of c.

【0022】図1に示すように、通常運転中、高圧系給
水加熱器12のドレンは第2の低圧系給水加熱器10との圧
力差を利用し、常用系ドレン管14aに取り付けた水位調
節弁17aを経由して第2の低圧系給水加熱器10に回収さ
れる。
As shown in FIG. 1, during normal operation, the drain of the high-pressure system feed water heater 12 utilizes the pressure difference with the second low-pressure system feed water heater 10 to adjust the water level attached to the service system drain pipe 14a. It is collected by the second low-pressure feedwater heater 10 via the valve 17a.

【0023】第2の低圧系給水加熱器10のドレンは下段
の第1の低圧系給水加熱器9との圧力差を利用し、常用
系ドレン管14bに取り付けた水位調節弁17bを経由して
第1の低圧系給水加熱器9に回収される。通常運転中、
40%容量の非常用系ドレン管15a,15bにドレンが流れ
る確率は極めて低い。この非常用系ドレン管15a,15b
にドレンが流れるのは以下の場合である。
The drain of the second low-pressure feed water heater 10 utilizes the pressure difference with the lower first low-pressure feed water heater 9 and passes through the water level control valve 17b attached to the service drain pipe 14b. The first low-pressure feed water heater 9 collects the water. During normal operation,
The probability that the drain will flow through the 40% capacity emergency drain pipes 15a and 15b is extremely low. These emergency drain pipes 15a, 15b
Drain flows in the following cases.

【0024】すなわち、非常用系ドレン管15a,15bに
ドレンが流れるのは、プラントの起動,停止時におい
て、高圧系給水加熱器12と第2の低圧系給水加熱器10と
の圧力差が小さく、高圧系給水加熱器12に取り付けた給
水加熱器制御器13aからの信号により、非常用系ドレン
管15aに取り付けた高水位調節弁18aが自動的に開い
て、復水器に直接排出される場合である。
That is, the drain flows through the emergency drain pipes 15a and 15b because the pressure difference between the high-pressure feed water heater 12 and the second low-pressure feed water heater 10 is small when the plant is started or stopped. In response to a signal from the feed water heater controller 13a attached to the high pressure feed water heater 12, the high water level control valve 18a attached to the emergency drain pipe 15a is automatically opened and discharged directly to the condenser. Is the case.

【0025】同様に、非常用系ドレン管15bにドレンが
流れるのは、第2の低圧系給水加熱器10と下段の第1の
低圧系給水加熱器9の圧力差が小さく、第2の低圧系給
水加熱器10に取り付けた給水加熱器制御器13bからの信
号により、40%容量の非常用系ドレン管15bに取り付け
た高水位調節弁18bが自動的に開いて、復水器5に直接
排出される場合である。
Similarly, the drain flows through the emergency drain pipe 15b because the pressure difference between the second low pressure feed water heater 10 and the lower first low pressure feed water heater 9 is small, and the second low pressure The signal from the feed water heater controller 13b attached to the system feed water heater 10 automatically opens the high water level control valve 18b attached to the 40% capacity emergency drain pipe 15b and directly connects to the condenser 5 This is the case when it is discharged.

【0026】したがって、限られた運転時にしか使用さ
れない非常用系ドレン管15a,15b,15cの容量を常用
系ドレン管14a,14b,14cの容量と同一で設計するの
は、経済的にメリットがなく、本第1の実施の形態によ
れば、高圧系給水加熱器12の非常用系ドレン管15aおよ
び第2の低圧系給水加熱器10の非常用系ドレン管15bの
容量を、それぞれの常用系ドレン管14a,14bの容量よ
りも小さくすることにより、経済的効果を高めることが
できる。
Therefore, it is economically advantageous to design the capacity of the emergency drain pipes 15a, 15b, 15c, which are used only during limited operation, to be the same as the capacity of the service drain pipes 14a, 14b, 14c. According to the first embodiment, the capacity of the emergency drain pipe 15a of the high-pressure feed water heater 12 and the capacity of the emergency drain pipe 15b of the second low-pressure feed water heater 10 are set to the respective ordinary capacity. By making the capacity smaller than the capacity of the system drain pipes 14a and 14b, the economic effect can be enhanced.

【0027】つぎに、図1により本発明の第2の実施の
形態を説明する。本実施の形態は、非常用系ドレン管15
a,15b,15cをプラントの起動,停止時のみに使用す
ることを原則とし、非常用系ドレン管15a,15b,15c
の容量を常用系ドレン管14a,14b,14cの設計容量の
40%とすることにある。
Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the emergency drain pipe 15 is used.
In principle, a, 15b, 15c should be used only when starting and stopping the plant, and emergency drain pipes 15a, 15b, 15c
Of the design capacity of the common system drain pipes 14a, 14b, 14c
40%.

【0028】先行BWRプラントでは、プラント出力の
約30%で給水加熱器のドレンの流れが、非常用系側から
常用系側に切替わることを確認しており、本実施の形態
によれば余裕を見て40%容量とし、配管物量を低減する
ことができる。なお、通常運転中、給水加熱器制御器13
a,13b,13cが不調等のような場合に何らかの異常が
発生し、非常用系ドレン管15a,15b,15cを使用せざ
るを得ない状況になった場合には、原子炉出力を降下さ
せ、運転を継続して行うことができる。
In the preceding BWR plant, it has been confirmed that the flow of the drain of the feed water heater is switched from the emergency system side to the regular system side at about 30% of the plant output. , The volume of piping can be reduced by 40%. During normal operation, the feed water heater controller 13
In the event that any abnormalities occur when a, 13b, and 13c are malfunctioning, and the emergency drain pipes 15a, 15b, and 15c must be used, the reactor power is reduced. The operation can be continued.

【0029】つぎに、図1により本発明の第3の実施の
形態を説明する。第2の低圧系給水加熱器10を例にとり
説明する。第2の低圧系給水加熱器10には低圧タービン
4からの抽気蒸気が抽気管16bを通して流入し、復水と
熱交換しドレンとなる。また、第2の低圧系給水加熱器
10には高圧系給水加熱器12からのドレンが常用系ドレン
管14aから水位調節弁17aを介して供給される。
Next, a third embodiment of the present invention will be described with reference to FIG. The second low pressure feed water heater 10 will be described as an example. The bleed steam from the low-pressure turbine 4 flows into the second low-pressure system feedwater heater 10 through the bleed pipe 16b, and exchanges heat with condensed water to form a drain. Also, a second low pressure feed water heater
Drain from the high-pressure system feed water heater 12 is supplied to 10 from a service system drain pipe 14a via a water level control valve 17a.

【0030】上記各ドレンは、第2の低圧系給水加熱器
10内で混合ドレンとなり、下段の第1の低圧系給水加熱
器9へ排出されるが、本実施の形態では非常用系ドレン
管15の容量を、上記ドレンのうち、タービン抽気分のみ
を復水器4で回収可能な容量とし、配管物量を低減する
ものである。
Each of the drains is provided with a second low-pressure feed water heater.
The mixed drain is formed in 10 and is discharged to the first low-pressure system feed water heater 9 at the lower stage. In the present embodiment, the capacity of the emergency system drain pipe 15 is reduced to only the turbine bleed air portion of the drain. The capacity is set to be recoverable by the water dispenser 4 to reduce the amount of piping.

【0031】つまり、非常用系ドレン管15a,15b,15
cでは、上流段の高圧系給水加熱器12からのドレン分は
排出できないことになる。したがって、上流段の高圧給
水加熱器12からのドレンの影響を受けなければ、原子炉
出力を維持して運転することができる。
That is, the emergency drain pipes 15a, 15b, 15
In (c), the drain from the high pressure feed water heater 12 in the upstream stage cannot be discharged. Therefore, if the reactor is not affected by the drain from the high-pressure feedwater heater 12 at the upstream stage, the reactor can be operated while maintaining the reactor output.

【0032】つぎに、図1により本発明の第4の実施の
形態を説明する。本実施の形態は高圧タービン2と高圧
系給水加熱器12との間を接続した抽気管16に抽気止め弁
19aを設け、また、低圧タービン4と第2の低圧系給水
加熱器10との間を接続した抽気管16に抽気止め弁19bを
設けたことにある。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, a bleed stop valve is provided in a bleed pipe 16 connected between the high-pressure turbine 2 and the high-pressure feedwater heater 12.
19a, and a bleed stop valve 19b is provided in the bleed pipe 16 connecting the low-pressure turbine 4 and the second low-pressure feedwater heater 10.

【0033】非常用系ドレン管15a,15b,15cの容量
を常用系ドレン管14a,14b,14cの容量の40%とした
本実施の形態において、例えば第2の低圧系給水加熱器
10の水位調節弁17bが何らかの原因で全閉となった場
合、給水加熱器制御器13bからの信号により非常用系ド
レン管15bに設置された高水位調節弁18bが全開して
も、ドレン排出能力が不足するため、低圧系給水加熱器
10のドレン水位が上昇を続け、ドレンは抽気管16bを逆
流して、低圧タービン4に流入して、タービンを損傷さ
せる。
In this embodiment in which the capacity of the emergency drain pipes 15a, 15b, 15c is set to 40% of the capacity of the service drain pipes 14a, 14b, 14c, for example, the second low-pressure feed water heater
If the water level control valve 17b of 10 is fully closed for some reason, the drain discharge is performed even if the high water level control valve 18b installed on the emergency drain pipe 15b is fully opened by a signal from the feed water heater controller 13b. Due to lack of capacity, low pressure feed water heater
As the drain water level of 10 continues to rise, the drain flows backward through the bleed pipe 16b, flows into the low-pressure turbine 4, and damages the turbine.

【0034】しかし、本実施の形態によれば、タービン
を保護する観点から、抽気管16a,16bに高圧タービン
2および低圧タービン4との隔離用の抽気止め弁19a,
19bを設けることにより、高圧タービン2および低圧タ
ービン4を保護することができる。
However, according to the present embodiment, from the viewpoint of protecting the turbine, the bleed stop valves 19a, 19a for isolating the bleed pipes 16a, 16b from the high-pressure turbine 2 and the low-pressure turbine 4 are provided.
By providing 19b, the high-pressure turbine 2 and the low-pressure turbine 4 can be protected.

【0035】つぎに、図2により本発明の第5の実施の
形態を説明する。本実施の形態は図2に示すように、常
用系ドレン管14aに取り付けた水位調節弁17aと第2の
低圧系給水加熱器10との間にドレンしゃ断弁20を設けた
ことにある。非常用系ドレン管15a,15bラインの容量
をタービン抽気分の容量とした場合、たとえば第2の低
圧系給水加熱器10の水位調節弁17bが何らかの原因で全
閉となった場合、第2の低圧系給水加熱器10のドレン水
位が上昇する。
Next, a fifth embodiment of the present invention will be described with reference to FIG. In this embodiment, as shown in FIG. 2, a drain shutoff valve 20 is provided between a water level control valve 17a attached to a service drain pipe 14a and the second low-pressure feedwater heater 10. If the capacity of the emergency drain pipes 15a and 15b is set to the capacity of the turbine bleed air, for example, if the water level control valve 17b of the second low-pressure feed water heater 10 is fully closed for some reason, the second The drain water level of the low pressure feed water heater 10 rises.

【0036】給水加熱器制御器13bからの信号により非
常用系ドレン管15bに設置された高水位調節弁18bが全
開しても、上流側の高圧系給水加熱器12からのドレンま
で排出する能力がない。そのため、低圧系給水加熱器10
のドレン水位が上昇を続け、抽気管16bを逆流して、低
圧タービン4に流入して、タービンを損傷させる必要が
ある。
Even if the high water level control valve 18b installed on the emergency drain pipe 15b is fully opened by the signal from the feed water heater controller 13b, the ability to discharge the drain from the high pressure feed water heater 12 on the upstream side There is no. Therefore, low-pressure feedwater heater 10
It is necessary to continue the rising of the drain water level, flow backward through the bleed pipe 16b, flow into the low-pressure turbine 4, and damage the turbine.

【0037】本実施の形態は、給水加熱器の常用系ドレ
ン管に、下段側の給水加熱器へドレンが流入するのを遮
断するドレンしゃ断弁20を設けて、給水加熱器10のドレ
ン水位を規定値に制御しようとするものである。本実施
の形態によれば、全ての給水加熱器ドレンを復水器へ直
接排出することになるので、プラント熱効率は低下する
が、原子炉出力は降下させずに運転することができる。
In the present embodiment, a drain shutoff valve 20 for blocking drainage from flowing into the lower feedwater heater is provided in the service system drain pipe of the feedwater heater, and the drain water level of the feedwater heater 10 is controlled. It is intended to control to a specified value. According to the present embodiment, all the feedwater heater drains are directly discharged to the condenser, so that the plant thermal efficiency is reduced, but the reactor can be operated without lowering the reactor output.

【0038】つぎに、図1および図3により本発明の第
6の実施の形態を説明する。本実施の形態は抽気管16
a,16bに設置された抽気止め弁19(19a,19b)を給
水加熱器制御器13(13a,13b)からの信号によりイン
ターロックに入力して自動的に全閉とすることにある。
なお、その他の部分は第1の実施の形態と同様である。
Next, a sixth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the bleed tube 16 is used.
The bleed stop valve 19 (19a, 19b) installed in each of the a and 16b is input to the interlock in response to a signal from the feed water heater controller 13 (13a, 13b) and is automatically fully closed.
The other parts are the same as in the first embodiment.

【0039】本実施の形態によれば、給水加熱器の水位
が異常に上昇した場合、自動的に抽気止め弁19(19a,
19b)が全閉となるため、高圧タービン2および低圧タ
ービン4へのドレン流入防止に対する信頼性を高くする
ことができる。
According to the present embodiment, when the water level of the feed water heater rises abnormally, the bleed stop valve 19 (19a,
Since 19b) is fully closed, it is possible to increase the reliability of preventing the drain from flowing into the high-pressure turbine 2 and the low-pressure turbine 4.

【0040】つぎに、図2および図4により本発明の第
7の実施の形態を説明する。本実施の形態は常用系ドレ
ン管14aに設置されたドレンしゃ断弁20を給水加熱器制
御器13aからの信号によりインターロックに入力して自
動的に全閉とすることにある。なお、その他の部分は、
第1の実施の形態と同様である。
Next, a seventh embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the drain shutoff valve 20 installed in the service system drain pipe 14a is input to the interlock by a signal from the feed water heater controller 13a and is automatically fully closed. In addition, other parts
This is the same as in the first embodiment.

【0041】本実施の形態によれば、第2の低圧系給水
加熱器10内の水位が異常に上昇した場合、自動的に高圧
系給水加熱器12から流入するドレンが遮断されるため、
第2の低圧給水加熱器10の非常用系ドレン管の容量が抽
気蒸気分しかなくても、水位制御を継続することが可能
となり、プラントの安定運転に対する信頼性を高くする
ことができる。
According to the present embodiment, when the water level in the second low-pressure feed water heater 10 rises abnormally, the drain flowing from the high-pressure feed water heater 12 is automatically shut off.
Even if the capacity of the emergency drain pipe of the second low-pressure feed water heater 10 is only for the extracted steam, the water level control can be continued, and the reliability for stable operation of the plant can be increased.

【0042】[0042]

【発明の効果】本発明によれば、非常用系ドレンライン
の容量を最適化(物量低減)することができ、かつ配管
表面積縮小によりプラント被ばく低減にも寄与でき、経
済性および安全性に優れたBWRプラントのドレン排出
装置を提供できる。
According to the present invention, it is possible to optimize the capacity of the emergency drain line (reduce the amount of material), and to contribute to the reduction of the exposure to the plant by reducing the surface area of the piping, which is excellent in economy and safety. And a drain discharge device for a BWR plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る原子力発電プラント用給水加熱器
の配管系統の第1から第4の実施の形態を示す配管系統
図。
FIG. 1 is a piping diagram showing first to fourth embodiments of a piping system of a feedwater heater for a nuclear power plant according to the present invention.

【図2】本発明に係る原子力発電プラント用給水加熱器
の配管系統の第5の実施の形態を示す配管系統図。
FIG. 2 is a piping diagram showing a fifth embodiment of a piping system of a feedwater heater for a nuclear power plant according to the present invention.

【図3】本発明の第6の実施の形態における制御例を示
すブロック図。
FIG. 3 is a block diagram showing a control example according to a sixth embodiment of the present invention.

【図4】本発明の第7の実施の形態における制御例を示
すブロック図。
FIG. 4 is a block diagram showing a control example according to a seventh embodiment of the present invention.

【図5】従来の原子力発電プラント用給水加熱器の配管
系統を示す配管系統図。
FIG. 5 is a piping diagram showing a piping system of a conventional feed water heater for a nuclear power plant.

【符号の説明】[Explanation of symbols]

1…原子炉、2…高圧タービン、3…湿分分離器、4…
低圧タービン、5…復水器、6…復水ポンプ、7…復水
浄化装置、8…高圧復水ポンプ、9…第1の低圧系給水
加熱器、10…第2の低圧系給水加熱器、11…給水ポン
プ、12…高圧系給水加熱器、13…給水加熱器制御器、14
…常用系ドレン管、15…非常用系ドレン管、16…抽気
管、17…水位調節弁、18…高水位調節弁、19…抽気止め
弁、20…ドレン遮断弁。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... High pressure turbine, 3 ... Moisture separator, 4 ...
Low-pressure turbine, 5: condenser, 6: condensate pump, 7: condensate purification device, 8: high-pressure condensate pump, 9: first low-pressure feedwater heater, 10: second low-pressure feedwater heater , 11 ... feed water pump, 12 ... high pressure feed water heater, 13 ... feed water heater controller, 14
… Regular drain pipe, 15 emergency drain pipe, 16 bleed pipe, 17 water level control valve, 18 high water level control valve, 19 bleed stop valve, 20 drain drain valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21D 3/04 G21D 1/00 Q E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21D 3/04 G21D 1/00 Q E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉で発生した蒸気を高圧タービンお
よび低圧タービンへ供給する主蒸気系と、前記低圧ター
ビンから排出する蒸気を復水器で復水し、この復水を第
1の低圧系給水加熱器、第2の低圧系給水加熱器および
高圧系給水加熱器に順次導いて加熱し、この加熱された
復水を前記原子炉に送水する給水系とを有する原子力発
電プラントにおいて、前記高圧タービンの蒸気を抽気し
て前記高圧系給水加熱器へ移送する第1の抽気管と、前
記低圧タービンの蒸気を抽気して前記第1の低圧系給水
加熱器および第2の低圧系給水加熱器へそれぞれ移送す
る第2の抽気管および第3の抽気管と、前記高圧系給水
加熱器、第1の低圧系給水加熱器および第2の低圧系給
水加熱器のドレン水をそれぞれ前記復水器に戻す非常用
系ドレン管と、前記高圧系給水加熱器の非常用系ドレン
管から分岐して前記第2の低圧系給水加熱器の二次側へ
順次流入する常用系ドレン管とを具備し、前記非常用系
ドレン管の容量を前記常用系ドレン管の容量よりも小さ
くしてなることを特徴とする原子力発電プラント用給水
加熱器の配管系統。
1. A main steam system for supplying steam generated in a nuclear reactor to a high-pressure turbine and a low-pressure turbine, and steam condensed from a steam discharged from the low-pressure turbine in a first low-pressure system. A feed water heater, a second low-pressure feed water heater, and a high-pressure feed water heater, which are sequentially heated to supply a heated condensate to the nuclear reactor. A first extraction pipe for extracting steam from the turbine and transferring the steam to the high-pressure feed water heater; and a first low-pressure feed water heater and a second low-pressure feed water heater for extracting steam from the low-pressure turbine. And a second bleed pipe and a third bleed pipe which are respectively transferred to the condenser and the drain water of the high-pressure feed water heater, the first low-pressure feed water heater, and the second low-pressure feed water heater, respectively. Emergency drain pipe to return to the A service drain pipe which branches off from an emergency drain pipe of the high pressure feed water heater and sequentially flows into the secondary side of the second low pressure feed water heater, and the capacity of the emergency drain pipe is reduced. A piping system for a feed water heater for a nuclear power plant, wherein the piping system has a capacity smaller than a capacity of the service drain pipe.
【請求項2】 前記非常用系ドレン管の容量は、前記常
用系ドレン管の容量のほぼ40%であるか、または前記給
水加熱器のタービン抽気蒸気分のドレン量であることを
特徴とする請求項1記載の原子力発電プラント用給水加
熱器の配管系統。
2. The capacity of the emergency drain pipe is approximately 40% of the capacity of the service drain pipe, or the drain amount of turbine extraction steam of the feed water heater. A piping system for a feed water heater for a nuclear power plant according to claim 1.
【請求項3】 前記第1の抽気管から第3の抽気管また
は前記常用系ドレン管に遠隔操作弁を設けてなることを
特徴とする請求項1記載の原子力発電プラント用給水加
熱器の配管系統。
3. The piping of a feed water heater for a nuclear power plant according to claim 1, wherein a remote control valve is provided from the first bleed pipe to the third bleed pipe or the service drain pipe. system.
【請求項4】 前記遠隔操作弁に前記高圧系給水加熱器
のドレン水位または前記第1の低圧系給水加熱器または
第2の低圧系給水加熱器のドレン水位が規定値以上にな
ったことを検知して、強制的に閉じるインターロックを
設けてなることを特徴とする請求項1記載の原子力発電
プラント用給水加熱器の配管系統。
4. The remote control valve according to claim 1, wherein the drain water level of the high-pressure feed water heater or the drain water level of the first low-pressure feed water heater or the second low-pressure feed water heater has exceeded a specified value. 2. The piping system of a feed water heater for a nuclear power plant according to claim 1, wherein an interlock for detecting and forcibly closing is provided.
JP2000018134A 2000-01-27 2000-01-27 Feed water heater piping system for nuclear power plant Pending JP2001208890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018134A JP2001208890A (en) 2000-01-27 2000-01-27 Feed water heater piping system for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018134A JP2001208890A (en) 2000-01-27 2000-01-27 Feed water heater piping system for nuclear power plant

Publications (1)

Publication Number Publication Date
JP2001208890A true JP2001208890A (en) 2001-08-03

Family

ID=18545027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018134A Pending JP2001208890A (en) 2000-01-27 2000-01-27 Feed water heater piping system for nuclear power plant

Country Status (1)

Country Link
JP (1) JP2001208890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103836610A (en) * 2014-03-05 2014-06-04 华电电力科学研究院 Heat supply network water drainage heating system capable of improving economical efficiency of heat supply unit
CN104748100A (en) * 2015-04-21 2015-07-01 中国电力工程顾问集团中南电力设计院有限公司 High-pressure heater emergency draining depressurization steam escaping system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103836610A (en) * 2014-03-05 2014-06-04 华电电力科学研究院 Heat supply network water drainage heating system capable of improving economical efficiency of heat supply unit
CN103836610B (en) * 2014-03-05 2015-12-09 华电电力科学研究院 A kind of hydrophobic heating system of heat supply network improving thermal power plant unit economy
CN104748100A (en) * 2015-04-21 2015-07-01 中国电力工程顾问集团中南电力设计院有限公司 High-pressure heater emergency draining depressurization steam escaping system
CN104748100B (en) * 2015-04-21 2016-06-29 中国电力工程顾问集团中南电力设计院有限公司 Height adds urgent Draining hook ease vapour system

Similar Documents

Publication Publication Date Title
JP3784413B2 (en) Waste heat boiler operation method and waste heat boiler operated by this method
CN105157007B (en) Steam pipe washing method for 1000MW ultra-supercritial double reheat boiler
CN106887265B (en) The start and stop shut-down system of one bulb bed modular high temperature gas cooled reactor
KR20130139326A (en) Retrofitting a heating steam extraction facility in a fossil-fired power plant
JP2009293871A (en) Start bypass system in steam power generation facility and its operating method
JP4643470B2 (en) Steam turbine overspeed prevention device
JP2001208890A (en) Feed water heater piping system for nuclear power plant
CN112128734A (en) Undisturbed switching control method for electric feed pump of subcritical unit of 135MW coal-fired drum furnace
CN111237735A (en) Emergency industrial steam supply system for realizing shutdown and non-shutdown of large coal-fired generator set
CN111735037B (en) High-pressure heater accident drainage system capable of recycling accident drainage heat
JP3664759B2 (en) Flash prevention device
JPH044481B2 (en)
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JPH0658161B2 (en) Waste heat recovery boiler
JPH0392507A (en) Turbine bypass device for steam turbine
JP2614350B2 (en) Feed water heater drain pump up system
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JP2001090507A (en) Electric power plant
JP3745419B2 (en) Waste heat recovery boiler
JP3871804B2 (en) Auxiliary boiler equipment for nuclear power plants
JP3317536B2 (en) Saturated drain discharge piping system
JPS5993906A (en) Steam turbine plant
JP3597683B2 (en) Nuclear power plant
JPS582794A (en) Drain processing method of atomic power plant
JPS6218832B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202