JPH0658161B2 - Waste heat recovery boiler - Google Patents

Waste heat recovery boiler

Info

Publication number
JPH0658161B2
JPH0658161B2 JP60052439A JP5243985A JPH0658161B2 JP H0658161 B2 JPH0658161 B2 JP H0658161B2 JP 60052439 A JP60052439 A JP 60052439A JP 5243985 A JP5243985 A JP 5243985A JP H0658161 B2 JPH0658161 B2 JP H0658161B2
Authority
JP
Japan
Prior art keywords
pressure
low
water supply
economizer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60052439A
Other languages
Japanese (ja)
Other versions
JPS61213401A (en
Inventor
厳 日下
利則 重中
展雄 下野
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP60052439A priority Critical patent/JPH0658161B2/en
Publication of JPS61213401A publication Critical patent/JPS61213401A/en
Publication of JPH0658161B2 publication Critical patent/JPH0658161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は廃熱回収ボイラに係り、とくに起動時の閉ルー
プ節炭器における非圧縮性給水の昇温による異常昇圧を
防止するように構成した廃熱回収ボイラに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a waste heat recovery boiler, and is particularly configured to prevent abnormal pressurization due to temperature rise of incompressible feed water in a closed loop economizer at startup. Regarding the waste heat recovery boiler.

<従来の技術及びその問題点> 高効率発電の一環として、最近複合発電プラントが注目
されている。このプラントはガスタービンにより発電を
行うと共に、ガスタービンより排出された排ガス中の熱
を廃熱回収ボイラで回収し、同ボイラで発生した蒸気に
より蒸気タービンを駆動させて発電させるものである。
本プラントは高効率発電に加え、ガスタービンの特徴で
ある急速起動の容易性、高い負荷応答性等により、近年
の電力需要形態に即した中間負荷運用に最適なプラント
と言える。
<Conventional technology and its problems> As a part of high-efficiency power generation, a combined cycle power plant has recently been drawing attention. In this plant, power is generated by a gas turbine, heat in exhaust gas discharged from the gas turbine is recovered by a waste heat recovery boiler, and steam generated in the boiler drives a steam turbine to generate power.
In addition to high-efficiency power generation, this plant can be said to be the optimum plant for intermediate load operation in line with recent power demand patterns due to the features of gas turbines such as the ease of rapid startup and high load response.

<実施例1> 第1図は本願発明の一実施例をしめすものである。この
図を利用して本発明が適用されるガウタービン1、廃熱
回収ボイラ5、蒸気タービン3から構成される複合発電
プラントの系統の概念を先ず説明する。
Example 1 FIG. 1 shows an example of the present invention. The concept of the system of the combined power generation plant including the gau turbine 1, the waste heat recovery boiler 5, and the steam turbine 3 to which the present invention is applied will be first described with reference to this figure.

図において、この装置は、低圧ドラム9、低圧節炭器7
および低圧蒸発器8からなる低圧ボイラ系統と、高圧ド
ラム13、高圧節炭器11、高圧蒸発器12、および高
圧過熱器14からなる高圧ボイラ系統と、復水器4から
低圧給水ポンプ6により低圧節炭器7、低圧流量調節弁
15を経て低圧ドラム9に水を補給する低圧給水系統、
該給水の一部を取り出し、高圧給水ポンプ10により昇
圧して高圧節炭器11、および高圧流量調整弁16を経
て、高圧ドラム13に水を供給する高圧給水系統と、前
記高圧給水ポンプ10と高圧節炭器12の流路途中から
高圧給水の一部を取り出して低圧給水ポンプ6から低圧
節炭器7の間の流路に再循環させる再循環流路19とか
ら主として構成される。
In the figure, this device is composed of a low pressure drum 9 and a low pressure economizer 7.
And a low-pressure boiler system including a low-pressure evaporator 8, a high-pressure boiler system including a high-pressure drum 13, a high-pressure economizer 11, a high-pressure evaporator 12, and a high-pressure superheater 14, and a low-pressure water supply pump 6 to a low-pressure pump 6. A low-pressure water supply system for supplying water to the low-pressure drum 9 via the economizer 7, the low-pressure flow rate control valve 15,
A part of the water supply is taken out, the pressure is raised by the high-pressure water supply pump 10, and the water is supplied to the high-pressure drum 13 through the high-pressure economizer 11 and the high-pressure flow rate adjusting valve 16, and the high-pressure water supply pump 10 and the high-pressure water supply pump 10. The high-pressure economizer 12 is mainly configured by a recirculation flow passage 19 that takes out a part of the high-pressure feed water from the midway of the high-pressure economizer 12 and recirculates it to the flow passage between the low-pressure feed pump 6 and the low-pressure economizer 7.

上記構成の装置において、復水器4により脱気された給
水は、低圧給水ポンプ6により節炭器7および流量調節
弁15を経て低圧ドラム9内に送入され、また節炭器7
を出た給水の一部は高圧給水ポンプ10によりさらに昇
圧されて高圧節炭器12および流量調節弁16を経て高
圧ドラム13に送入される。
In the apparatus having the above structure, the feed water deaerated by the condenser 4 is sent into the low pressure drum 9 by the low pressure feed pump 6 through the economizer 7 and the flow control valve 15, and the economizer 7 is also used.
A part of the supplied water is further pressurized by the high-pressure water supply pump 10 and sent to the high-pressure drum 13 via the high-pressure economizer 12 and the flow rate control valve 16.

上述のように、高圧節炭器12の入口の高温給水の一部
を低圧節炭器7の入口側に再循環させ、低圧節炭器7の
入口給水の温度を低温腐食の起らない温度まで加熱する
ことにより、排ガス中の酸性成分による節炭器およびそ
の周辺機器の腐食を防止することができる。
As described above, a part of the high temperature feed water at the inlet of the high pressure economizer 12 is recirculated to the inlet side of the low pressure economizer 7, and the temperature of the inlet feed water of the low pressure economizer 7 is set to a temperature at which low temperature corrosion does not occur. By heating up to 0, it is possible to prevent corrosion of the economizer and its peripheral equipment due to acidic components in the exhaust gas.

廃熱回収ボイラ5は、ガスタービン1からの排熱を最大
限に回収するために符号12、8の如く高、低圧の複数
のドラム式ボイラから構成されるが、起動時及び低負荷
域において、当該ボイラへの流入ガス温度が低く比較的
低温の伝熱管群部、即ち低圧節炭器7、及び高圧節炭器
11内で蒸発現象が生ずるという特性を有する。節炭器
内に気水の混合流体を存在すると制御系が不安定となり
運転継続が困難となつたり、またウオーターハンマーが
生じ機器損傷など種々の不都合な問題発生要因を含んで
いる。
The waste heat recovery boiler 5 is composed of a plurality of high and low pressure drum type boilers as indicated by reference numerals 12 and 8 in order to recover the exhaust heat from the gas turbine 1 to the maximum extent. It has a characteristic that an evaporation phenomenon occurs in the heat transfer tube group portion having a low inflow gas temperature to the boiler and a relatively low temperature, that is, in the low pressure economizer 7 and the high pressure economizer 11. If a mixed fluid of steam and water is present in the economizer, the control system becomes unstable, making it difficult to continue the operation. In addition, water hammer causes various inconvenient problems such as equipment damage.

このため従来の火力ボイラと異なり高低圧節炭器出口に
給水流量調節弁15、16を設置し、ドラム9、13の
水位が所定範囲内にあるように調節するとともに、低圧
給水ポンプ6及び高圧給水ポンプ10の吐出圧力で各節
炭器7及び12の伝熱管の内部流体圧力を必要圧力に保
持し、各節炭器7及び11内の流体温度を該圧力におけ
る飽和温度以下の温度に維持して、当該部での蒸発を防
止できるように工夫されている。
For this reason, unlike the conventional thermal power boiler, the feed water flow rate control valves 15 and 16 are installed at the outlets of the high and low pressure economizers to adjust the water levels of the drums 9 and 13 within a predetermined range, and the low pressure feed pump 6 and high pressure The discharge fluid pressure of the water supply pump 10 keeps the internal fluid pressure of the heat transfer tubes of the economizers 7 and 12 at a required pressure, and maintains the fluid temperature in the economizers 7 and 11 at a temperature equal to or lower than the saturation temperature at the pressure. Then, it is devised so as to prevent evaporation in the relevant part.

以上が従来技術の概要である。The above is the outline of the conventional technique.

本願発明においては、夜間のプラント停止時には圧力降
下に基づく上記節炭器7及び11における自己蒸発防止
を目的とし高低圧再循環ライン17a及び17bを利用
して、気水混合物に起因する弊害を防止するよう構成し
てある。
In the present invention, when the plant is stopped at night, the high- and low-pressure recirculation lines 17a and 17b are used for the purpose of preventing self-evaporation in the economizers 7 and 11 based on the pressure drop, and prevent the harmful effects caused by the steam-water mixture. It is configured to do.

即ち、節炭器7あるいは11に自己蒸発が発生したとす
るとその部分の気水混合体の比重は軽くなるので、再循
環ライン17a、17bを通じてボイラドラム9、13
内の缶水が循環し節炭器の蒸気部分をドラム内に追い出
すことになる。
That is, if self-evaporation occurs in the economizer 7 or 11, the specific gravity of the steam-water mixture at that portion becomes lighter, so the boiler drums 9 and 13 are recirculated through the recirculation lines 17a and 17b.
The can water in the inside circulates and expels the steam part of the economizer into the drum.

以上の構成により節炭器での蒸気発生防止を可能として
いるが、反面次の様な問題点が指摘されその改善が望ま
れている。
Although the above configuration enables prevention of steam generation in the economizer, on the other hand, the following problems have been pointed out and their improvement is desired.

即ち、起動時は節炭器循環系17a、17bを閉、低圧
給水ポンプ6、高圧給水ポンプ10を起動、高低圧の各
ドラム13、9のドラムレベル制御が可能となつた時点
で、ガスタービン1からの排ガスを導入するが、蒸発器
8及び12内の缶水は昇温により膨張し、ドラム水位が
上昇傾向となる。このため流量調節弁15、16はドラ
ム水位が所定値以上にならないように、起動初期の10
〜30分間閉動作を継続するよう制御している。このた
め節炭器7及び11系内の水は、密閉された管内で加温
され、流体容積が5〜6%増加する。このため節炭器の
容量にもよるが、通常各節炭器系で各々約1m膨張す
る。水は非圧縮性流体のため、鋼管製管寄、チューブ、
配管等は苛酷な荷重を受けることとなり、内部流体の体
積膨張量相当を系外に放出することを配慮しなければ、
破壊または噴破など重大な事故に至ることは明白であ
る。
That is, at the time of start-up, the economizer circulation systems 17a and 17b are closed, the low-pressure water supply pump 6 and the high-pressure water supply pump 10 are started, and the drum level control of the high- and low-pressure drums 13 and 9 becomes possible. Although the exhaust gas from No. 1 is introduced, the can water in the evaporators 8 and 12 expands due to the temperature rise, and the drum water level tends to rise. Therefore, the flow rate control valves 15 and 16 are set to 10 at the initial stage of activation so that the drum water level does not exceed a predetermined value.
It is controlled to continue the closing operation for about 30 minutes. Therefore, the water in the economizers 7 and 11 is heated in the closed pipe, and the fluid volume increases by 5 to 6%. Therefore, it usually expands by about 1 m 3 in each economizer system, although it depends on the capacity of the economizer. Water is an incompressible fluid, so it is made of steel pipes, tubes,
Pipes will be subjected to severe loads, and unless consideration is given to releasing the volume expansion of the internal fluid to the outside of the system,
It is clear that it will lead to serious accidents such as destruction or blast.

このためこの様な密閉系に対しては安全弁が設けてあ
り、これに対応するようにしており、かつ法規上も安全
弁の取付が義務付けられている。しかし安全弁の設置に
は以下のごとく問題があり、問題の根本的な解決として
は不十分であつて、新たな危険を生じたり、また経済的
にも問題がある。すなわち、高圧水あるいは減圧により
沸騰する高温水を安全弁から噴出させた場合には弁体が
エロージョンにより損傷することは確実であり、外部リ
ーク事故に至る可能性が極めて高い。特に上述した装置
においては起動時毎に安全弁が作動することになり、実
用運転に耐えることはできない。また不純物除去、溶存
酸素除去処理を施した高価なボイラ水を系外に排出して
しまい経済的不利益も無視できない。
For this reason, a safety valve is provided for such a closed system so that the safety valve can be dealt with, and it is obligatory to install the safety valve according to the regulations. However, the installation of the safety valve has the following problems, and it is not sufficient as a fundamental solution to the problem, which causes a new danger and also has an economical problem. That is, when high-pressure water or high-temperature water that boils due to reduced pressure is ejected from the safety valve, it is certain that the valve body will be damaged by erosion, and the possibility of an external leak accident is extremely high. In particular, in the above-mentioned device, the safety valve is activated every time it is started, and it cannot withstand practical operation. In addition, the expensive boiler water that has been subjected to impurity removal and dissolved oxygen removal treatment is discharged out of the system, and economic disadvantages cannot be ignored.

<発明の目的> 本発明は上述した問題点に鑑み構成したものであり、起
動時に系外に放出するボイラ水の量を最少にし得ると共
に、熱回収量を大きくすることができる廃熱回収ボイラ
を提供することを目的とする。
<Object of the Invention> The present invention is configured in view of the above-mentioned problems, and is capable of minimizing the amount of boiler water discharged to the outside of the system at the time of startup and increasing the amount of heat recovery, a waste heat recovery boiler. The purpose is to provide.

<発明の概要> 要するに本発明は節炭器内の昇圧した流体を自動的に復
水器等に戻せるよう構成した管路を配置した廃熱回収ボ
イラである。
<Summary of the Invention> In short, the present invention is a waste heat recovery boiler in which a pipeline configured to automatically return the pressurized fluid in the economizer to a condenser or the like is arranged.

<実施例1> 以下本発明の第1の実施例につき説明する。第1図にお
いて、符号19は低圧節炭器出口ライン25に接続する
再循環管路である。18は上記出口ライン25に設けた
逆止め弁、21は再循環管路19の制御弁である。この
再循環管路19は高圧節炭器11の入口ライン26とも
接続しており、従来型装置では前記ライン25と26と
が接続し、低圧節炭器7の給水の少なくとも一部が高圧
節炭器11に流入するように構成してある。再循環管路
19の下流側に給水供給ライン27と接続している。
Example 1 Hereinafter, a first example of the present invention will be described. In FIG. 1, reference numeral 19 is a recirculation pipeline connected to the low pressure economizer outlet line 25. Reference numeral 18 is a check valve provided in the outlet line 25, and 21 is a control valve for the recirculation pipeline 19. This recirculation line 19 is also connected to the inlet line 26 of the high pressure economizer 11, the lines 25 and 26 are connected in the conventional device, and at least a part of the feed water of the low pressure economizer 7 is connected to the high pressure economizer. It is configured to flow into the charcoal vessel 11. A water supply supply line 27 is connected to the downstream side of the recirculation pipeline 19.

以上の装置において、例えば夜間、電力需要が低下した
場合には復水器4は夜間停止時真空を破壊し、補記停止
操作を行う。このため復水器4内で給水が大気と接触す
ることになりOが給水中に溶け込み、例えば1000
ppb程度の溶存酸素が復水中に含まれてしまう。従っ
て起動に先立って系統20により復水を循環させ、復水
中の溶存酸素を除去し、溶存酸素量が規定値(10pp
b以下)に達したならばガスタービン1を起動しプラン
ト起動に入る。
In the above apparatus, for example, when the power demand decreases at night, the condenser 4 breaks the vacuum at night stop and performs the supplementary stop operation. For this reason, the feed water comes into contact with the atmosphere in the condenser 4, and O 2 is dissolved in the feed water.
Dissolved oxygen of about ppb is included in the condensate. Therefore, before the start-up, the condensate is circulated by the system 20 to remove the dissolved oxygen in the condensate, and the dissolved oxygen amount is the specified value (10 pp.
When it reaches (b or less), the gas turbine 1 is started and the plant starts.

系統20は給水が規定溶存酸素濃度に達した場合には、
制御弁22にて閉とすることは可能であるが、前記安全
性、機器保護の面より給水流量計23により給水が連続
的に流れることが確認されるまで、もしくはタービンバ
イパス弁24の開信号が発信されるまでは全閉とならぬ
ように制御する。一方排ガスの通過により各節炭器7及
び11内の給水も昇圧するが、これらの給水は、低圧節
炭器7からの場合にはライン25、逆止弁18を経て再
循環管路19に、また高圧節炭器11からの場合にはラ
イン26を経て再循環管路19に流入し、過剰となる給
水は低圧給水ライン27、復水循環ライン20を経て復
水器4に戻され、各節炭器内圧力を所定の値に保持し、
起動運転を完了し定格運転にはいる。ここで制御弁21
は定格に入った後も最低流量開度を設定することによ
り、全閉とならないようにし、定格運転中の異常昇圧等
に対応し得るように構成しておくのが良い。なお図中符
号2は発電機、3は蒸気タービン、14は過熱器であ
る。
When the water supply reaches the specified dissolved oxygen concentration, the system 20
It can be closed by the control valve 22, but from the aspect of safety and equipment protection, it is confirmed that the feed water flow meter 23 continuously feeds water, or an open signal of the turbine bypass valve 24. It is controlled not to be fully closed until is transmitted. On the other hand, the feed water in each economizer 7 and 11 is also increased in pressure by the passage of the exhaust gas, but the feed water from the low-pressure economizer 7 is passed through the line 25 and the check valve 18 to the recirculation pipeline 19. In addition, in the case of the high-pressure coal economizer 11, it flows into the recirculation pipeline 19 via the line 26, and the excess water is returned to the condenser 4 via the low-pressure water supply line 27 and the condensate circulation line 20. Hold the pressure inside the economizer at a specified value,
The startup operation is completed and the rated operation is started. Here, the control valve 21
It is preferable to set the minimum flow rate opening even after the rated value is entered so that it will not be fully closed, and it is possible to cope with abnormal pressure rise during rated operation. In the figure, reference numeral 2 is a generator, 3 is a steam turbine, and 14 is a superheater.

<実施例2> 第2図は第2の実施例を示す。前述の実施例1は高圧節
炭器11側と低圧節炭器7側との接続部から再循環管路
19を分岐させる構成となつており、かつ低圧節炭器入
口ライン28とこの再循環管路19とは連通状態となつ
ていた。この構成は管路構成が簡易となる反面、高圧節
炭器側の圧力が相当に高い場合には弁22の開度調節を
誤ると、再循環管路19を出た給水の一部がライン28
を経て低圧節炭器側に逆流する事態も考えられる。
<Embodiment 2> FIG. 2 shows a second embodiment. In the first embodiment described above, the recirculation pipeline 19 is branched from the connecting portion between the high pressure economizer 11 side and the low pressure economizer 7 side, and the low pressure economizer inlet line 28 and this recirculation. It was in communication with the conduit 19. While this configuration simplifies the pipeline configuration, when the pressure on the high pressure economizer side is considerably high and the opening degree of the valve 22 is erroneously adjusted, part of the water supply that has exited the recirculation pipeline 19 will become a line. 28
There may be a situation in which the gas flows back to the low-pressure economizer side after passing through.

この第2実施例は、この点についての対策をより効果的
に行えるよう構成したもいのである。即ち、前記再循環
管路19を低圧節炭器出口ライン25の逆止弁18の上
流側から分岐し、再循環管路19に対しては高圧節炭器
11からの給水の流入を防止して低圧節炭器専用の圧力
逃がしラインとし、高圧節炭器11側には高圧節炭器入
口ライン26から分岐して、高圧側専用の圧力逃がしラ
イン29を配置する。この場合ライン26に圧力検知器
30を配置し、この検知器30の検知結果に基づいて弁
31を制御するように構成すれば高圧節炭器の圧力自動
調節が可能である。
The second embodiment can be constructed so as to more effectively take measures against this point. That is, the recirculation pipe 19 is branched from the upstream side of the check valve 18 of the low pressure economizer outlet line 25 to prevent the feed water from flowing into the recirculation pipe 19 from the high pressure economizer 11. A pressure relief line dedicated to the low-pressure economizer is provided, and a pressure relief line 29 dedicated to the high-pressure economizer is branched from the high-pressure economizer inlet line 26 on the high-pressure economizer 11 side. In this case, if the pressure detector 30 is arranged in the line 26 and the valve 31 is controlled based on the detection result of the detector 30, the pressure of the high pressure economizer can be automatically adjusted.

<効 果> 本発明は以上の構成となつているので、安全弁を介して
高圧流体を噴出させる必要がないので、弁の損傷による
プラントの運転停止を防止することができ、プラント全
体の運転効率を大幅に向上させることができる。
<Effect> Since the present invention is configured as described above, it is not necessary to eject the high-pressure fluid through the safety valve, so it is possible to prevent the plant from being stopped due to valve damage, and to improve the operating efficiency of the entire plant. Can be significantly improved.

また膨張水量は全て系内で回収することが可能であるた
め、起動停止の激しい本装置においては高価な給水を有
効利用でき経済性を向上させることができる。
In addition, since all the amount of expanded water can be collected in the system, expensive water supply can be effectively used in this device, which is frequently started and stopped, and economic efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す複合発電プラント
の系統図、第2図は第2の実施例を示すプラント系統部
分図である。 7……低圧節炭器 11……高圧節炭器 19……再循環管路 25……低圧節炭器出口ライン 26……高圧節炭器入口ライン 18……逆止弁
FIG. 1 is a system diagram of a combined cycle power plant showing a first embodiment of the present invention, and FIG. 2 is a plant system partial view showing a second embodiment. 7 ... Low-pressure economizer 11 ... High-pressure economizer 19 ... Recirculation pipe 25 ... Low-pressure economizer outlet line 26 ... High-pressure economizer inlet line 18 ... Check valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高圧蒸発器および低圧蒸発器にそれぞれ連
結された高圧ドラムおよび低圧ドラムと、低圧ドラムに
低圧節炭器およびその出口に設けた流量調節弁を介して
補給水を補給する低圧給水ポンプを含む低圧給水系統
と、低圧節炭器出口流量調節弁の前より分岐して高圧給
水ポンプ、高圧節炭器、高圧節炭器出口流量調節弁の順
に通過して補給水を高圧ドラムに補給する高圧給水系統
と、前記高圧節炭器入口の給水の一部を高圧給水ポンプ
を介して前記低圧節炭器の上流域の低圧給水系統に再循
環する再循環管路を前記低圧給水系統に接続し、過剰と
なるボイラ缶水量を処理する管路を前記再循環管路、低
圧給水系統、及び該低圧給水系統の低圧給水ポンプの出
口側管路より分岐しタービン復水器に接続する復水循環
ラインとで構成したことを特徴とする廃熱回収ボイラ。
1. A high-pressure drum and a low-pressure drum connected to a high-pressure evaporator and a low-pressure evaporator, respectively, and a low-pressure water supply for replenishing makeup water to the low-pressure drum via a low-pressure economizer and a flow control valve provided at its outlet. The low-pressure water supply system including the pump and the front of the low-pressure coal economizer outlet flow rate control valve are branched to pass through the high-pressure water supply pump, the high-pressure economizer, and the high-pressure economizer outlet flow control valve in this order, and make-up water is supplied to the high-pressure drum. The high-pressure water supply system for replenishing and a recirculation pipeline for recirculating a part of the water supply at the inlet of the high-pressure economizer to the low-pressure water supply system upstream of the low-pressure economizer via the high-pressure water supply pump. And a pipeline for treating an excessive boiler can water amount are branched from the recirculation pipeline, the low pressure water supply system, and the outlet side pipeline of the low pressure water supply pump of the low pressure water supply system and connected to the turbine condenser. Consists of condensate circulation line Waste heat recovery boiler, wherein the door.
【請求項2】特許請求の範囲第1項記載の廃熱回収ボイ
ラにおいて、前記高圧節炭器入口の給水管路から分岐す
る高圧側専用の過剰缶水処理ラインを設けたことを特徴
とする特許請求の範囲第1項記載の廃熱回収ボイラ。
2. The waste heat recovery boiler according to claim 1, characterized in that an excess can water treatment line dedicated to the high pressure side, which branches from the water supply pipe line at the inlet of the high pressure economizer, is provided. The waste heat recovery boiler according to claim 1.
JP60052439A 1985-03-18 1985-03-18 Waste heat recovery boiler Expired - Fee Related JPH0658161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60052439A JPH0658161B2 (en) 1985-03-18 1985-03-18 Waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60052439A JPH0658161B2 (en) 1985-03-18 1985-03-18 Waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPS61213401A JPS61213401A (en) 1986-09-22
JPH0658161B2 true JPH0658161B2 (en) 1994-08-03

Family

ID=12914769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60052439A Expired - Fee Related JPH0658161B2 (en) 1985-03-18 1985-03-18 Waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH0658161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024017A (en) * 2014-09-26 2017-03-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, combined cycle plant, and boiler operation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290303A (en) * 1987-05-22 1988-11-28 バブコツク日立株式会社 Steam generator
JP2531801B2 (en) * 1989-09-12 1996-09-04 株式会社東芝 Exhaust heat recovery heat exchanger controller
JP5613921B2 (en) * 2010-11-29 2014-10-29 バブコック日立株式会社 Exhaust heat recovery boiler and method for preventing corrosion in the can
JP5982192B2 (en) * 2012-06-21 2016-08-31 株式会社東芝 Condensate water supply control device and condensate water supply cycle system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935705A (en) * 1982-08-23 1984-02-27 株式会社日立製作所 Method of controlling boiler device
JPS59103002U (en) * 1982-12-24 1984-07-11 株式会社日立製作所 Exhaust heat recovery boiler equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024017A (en) * 2014-09-26 2017-03-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, combined cycle plant, and boiler operation method

Also Published As

Publication number Publication date
JPS61213401A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
US5048466A (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
CN112128734A (en) Undisturbed switching control method for electric feed pump of subcritical unit of 135MW coal-fired drum furnace
JPH0658161B2 (en) Waste heat recovery boiler
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
CN113864849B (en) Dry-wet state undisturbed switching system and control method suitable for supercritical unit under deep peak regulation state
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JP5448883B2 (en) Once-through exhaust heat recovery boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH0392507A (en) Turbine bypass device for steam turbine
JP3335696B2 (en) Steam generator and method of operating the same
JP3745419B2 (en) Waste heat recovery boiler
JP2971597B2 (en) Waste heat recovery boiler
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
JP4031872B2 (en) Water supply control method in a power plant using a drum boiler
JPH10176804A (en) Vertical waste heat recovery boiler and operating method thereof
JP2971629B2 (en) Waste heat recovery boiler
JPS63290303A (en) Steam generator
JP2736192B2 (en) Steam supply equipment
JP3286023B2 (en) Waste heat recovery boiler condensate water supply protection system
JPS63156902A (en) Waste-heat recovery boiler
JPS62106207A (en) Feedwater supply system in steam turbine plant
JP2637194B2 (en) Combined plant startup bypass system and its operation method
SU1097811A1 (en) Power unit dearatorless regeneration system
JPH0330763B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees