JP3664759B2 - Flash prevention device - Google Patents

Flash prevention device Download PDF

Info

Publication number
JP3664759B2
JP3664759B2 JP31298894A JP31298894A JP3664759B2 JP 3664759 B2 JP3664759 B2 JP 3664759B2 JP 31298894 A JP31298894 A JP 31298894A JP 31298894 A JP31298894 A JP 31298894A JP 3664759 B2 JP3664759 B2 JP 3664759B2
Authority
JP
Japan
Prior art keywords
deaerator
water
pipe
storage tank
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31298894A
Other languages
Japanese (ja)
Other versions
JPH08170805A (en
Inventor
隆男 神薗
重造 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31298894A priority Critical patent/JP3664759B2/en
Publication of JPH08170805A publication Critical patent/JPH08170805A/en
Application granted granted Critical
Publication of JP3664759B2 publication Critical patent/JP3664759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は汽力発電プラント等の給水設備に係わり、特にプラントの負荷しゃ断時等の急激な負荷降下過程にて発生する脱気器フラッシュ現象を防止するフラッシュ防止装置に関する。
【0002】
【従来の技術】
汽力発電プラントでは、プラントの負荷しゃ断時等の急激な負荷降下にて脱気器貯水タンク内にてフラッシュ現象が発生することがある。
また、ユニット起動時の給水ポンプ起動時に脱気器降水管及び給水ポンプ連絡管にてフラッシュ現象が発生する場合もある。
【0003】
このフラッシュ現象を従来給水設備系統の一部を示す図7を参照して以下に説明する。
図7に示す様に、従来の給水設備においては、脱気器1及び脱気器貯水タンク2は給水ブースタポンプ3の吸込圧力を確保する為に給水ブースタポンプ3より高い位置に設置されている。給水は復水器(図示せず)から脱気器水位調節弁5、低圧ヒータ8を介して給水配管17から脱気器1へ導かれ、この脱気器1で加熱脱気された給水は脱気器貯水タンク2へ導かれている。通常、復水器から導かれる給水はプラント負荷運転時は脱気器1の器内圧力の飽和温度とほぼ等しい温度となっている。この給水を脱気器貯水タンク2に溜め脱気器貯水タンク2内給水量は脱気器水位調節弁5により一定に保たれている。そして、この脱気器貯水タンク2内の給水は脱気器降水管15から給水ブースタポンプ3、給水ポンプ連絡管11、主給水ポンプ4を介して昇圧され供給配管18からボイラ(図示せず)へ給水される構成となっている。この供給配管18の主給水ポンプ4の下流側には再循環配管19が接続されており、この再循環配管19は給水ポンプ再循環弁12を介して脱気器貯水タンク2の上部に接続されている。
【0004】
さらに、脱気器降水管15には脱気器循環配管20および脱気器ブロー回収配管21が接続されており、脱気器循環配管20は脱気器循環ポンプ13を介して給水配管17の低圧ヒータ8下流側に接続され、脱気器ブロー回収配管21は脱気器ブロー回収弁7を介して復水器に接続されている。
【0005】
以上の構成において、負荷しゃ断時等の急激な負荷降下が発生した場合には、脱気器1への加熱蒸気源であるタービン抽気がしゃ断され、脱気器1の器内圧力が急激に低下し、脱気器貯水タンク2の給水温度は脱気器1の器内圧力の飽和温度より高くなってしまい、フラッシュ現象が発生する。同様にプラント停止過程においても脱気器1へのタービン抽気の減少により、器内圧力の降下スピードが脱気器貯水タンク2内の給水温度の降下スピードより速い為、脱気器貯水タンク2の給水温度は脱気器1の器内圧力の飽和温度より高くなってしまいフラッシュ現象が発生する。
【0006】
従来、この様なフラッシュ現象を防止する為、実開昭53−101101号に記載されているように、脱気器1の器内圧力が低下した場合、脱気器1への蒸気源として抽気配管24に接続された補助蒸気配管25から補助蒸気調節弁9を介して補助蒸気を供給し器内圧力の低下を防止していた。
【0007】
【発明が解決しようとする課題】
しかし、脱気器への蒸気源として用いる補助蒸気量には限度があり、急激な脱気器の器内圧力を防止する為の必要量が確保できず脱気器の器内圧力の低下を完全に防止することが出来ずフラッシュ現象が発生するおそれがあった。
【0008】
また、主給水ポンプ起動の際に、脱気器降水管及び給水ポンプ連絡管に滞留していた給水も同様にフラッシュし、管内にて気体と液体に分離し主給水ポンプ起動時に停止時間によっては、起動時の気体部への給水の突入によりハンマリングを起こす可能性があった。
【0009】
この様なフラッシュ現象が発生すると、脱気器貯水タンクの水位が不安定となり、水位低により主給水ポンプトリップまたは脱気器降水管及び給水ポンプ連絡管にてハンマリング等のトラブルを起こすおそれがあった。
【0010】
本発明は、これらの課題を解決するためになされたものであり脱気器、脱気器降水管、給水ポンプ連絡管にてフラッシュ現象が生じない様にしたフラッシュ防止装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1に係る本発明は、脱気器、脱気器降水管、給水ポンプ連絡管にて発生するフラッシュ現象を防止する為に、脱気器貯水タンクより脱気器降水管を経て主給水ポンプへ給水を供給する給水設備において、急激な負荷降下が発生した場合に脱気器降水管より分岐し復水器へ接続されている脱気器ブロー回収管に調節弁を設け、脱気器貯水タンク内の給水を急速に置換する制御を行うフラッシュ防止装置を提供する。
【0012】
【作用】
上記構成による請求項1記載の本発明のフラッシュ防止装置によれば、急激な負荷降下が発生した時に脱気器への復水の流入量を許容できる最大とし、脱気器貯水タンク内の給水を復水器へ排出することで脱気器貯水タンク内の給水を短時間にて置換し脱気器貯水タンク内給水の温度を下げることによりフラッシュ現象を防止することができる。
【0013】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
図1は本発明の第1実施例を示す脱気器フラッシュ防止装置の系統構成図である。なお、図1において、図7と同一部分には同一符号を付し、その部分の構成の説明は省略する。図1において、脱気器1及び脱気器貯水タンク2は、給水ブースタポンプ3の吸込圧力を確保する為に給水ブースタポンプ3より高い位置に設置されている。この構成は従来例と同一であるが、本発明では脱気器貯水タンク2から給水ブースタポンプ3に至る脱気器降水管15の途中からプラント停止中に脱気器貯水タンク2内給水を排出する為に設けられている脱気器ブロー回収配管21に配設された脱気器ブロー回収弁7をバイパスするバイパス配管22をこの脱気器ブロー回収配管21に設け、このバイパス配管22に脱気器ブロー調節弁6を設置している。そして、脱気器貯水タンク2には高圧ヒータドレン回収弁10を介して高圧ヒータドレン回収配管23が接続されている。さらに、脱気器1には抽気が導かれる抽気配管24が接続されており、この抽気配管24には補助蒸気調節弁9を介して補助蒸気配管25が接続されている。そして、この構成によって、本実施例は図2のように制御される。図2において負荷しゃ断時等の負荷降下が発生した場合、通常脱気器貯水タンク2内の給水を一定レベルに制御している(ブロックA)脱気器水位調節弁5aを強制的に全開とし(ブロックB)、脱気器ブロー調節弁6を全閉状態(ブロックC)から脱気器貯水タンク2内レベルを制御するモード(ブロックD)に移行される。
【0014】
すなわち、脱気器水位調節弁5aを強制開することで脱気器1及び脱気器貯水タンク2へ給水を流しえる最大の流量にて供給し、脱気器ブロー調節弁6にて脱気器貯水タンク2内の給水を排出することで脱気器貯水タンク2内の給水を短時間で置換させることができる。この様に脱気器貯水タンク2内の給水を置換することにより脱気器貯水タンク2内の給水の温度を下げ、脱気器貯水タンク2内の給水を脱気器1の器内圧力の飽和温度以下にすることでフラッシュ現象の防止を図ることができる。
【0015】
なお、図2に示されるように、負荷しゃ断等の信号が解除されれば、NOT回路E,Fによって通常モードとなり脱気器ブロー調節弁6が閉止され、脱気器水位調節弁5aが脱気器貯水タンク2の水位制御に変更される。
【0016】
次に本発明の第2実施例を図1及び図3を参照して説明する。
図1は本発明の第2実施例の系統構成図であり、この構成は第1の実施例と同一であるので構成の説明は省略する。本発明では、図3に示すようにボイラの上流側に配設されボイラに導入される給水を昇温させる高圧ヒータで凝縮された高温水である高圧ヒータドレン水を脱気器貯水タンク2へ回収している高圧ヒータドレン回収配管23に配設され通常時全開状態である(ブロックG)、高圧ヒータドレン回収弁10を、負荷しゃ断等の急激な負荷降下が発生した時に強制閉する(ブロックH)。すなわち、脱気器貯水タンク2への高温水の流入を防ぐことにより、脱気器貯水タンク2内の給水温度の低下を図り、脱気器1の器内圧力を飽和温度以下にすることでフラッシュ現象を防止することができる。
【0017】
なお、図3に示すように負荷しゃ断信号が解除されれば、NOT回路Iによって通常モードとなり、高圧ヒータドレン回収弁10は全開制御される。
次に本発明の第3実施例を図4を参照して説明する。なお図4において、図7と同一部分には同一符号を付し、その部分の構成の説明は省略する。
【0018】
図4は本発明の第3実施例の系統構成図であり、図4において給水ブースタポンプ3と主給水ポンプ4との間の給水ポンプ連絡管11には給水ポンプ連絡管11、脱気器降水管15及び脱気器貯水タンク2内給水を排出する脱気器ブロー配管26が脱気器ブロー調節弁6aを介して接続されている。そしてこの脱気器ブロー配管26によって主給水ポンプ4および給水ブースタポンプ3停止時に給水を排出することにより給水ポンプ連絡管11及び脱気器降水管15内の給水を絶えず置換する。すなわち、脱気器貯水タンク2内給水を絶えず脱気器降水管15および給水ポンプ連絡管11に流し続けることにより滞留水のフラッシュを防止し、主給水ポンプ4および給水ブースタポンプ3起動時に脱気器降水管15及び給水ポンプ連絡管11でのハンマリングを防止することができる。
【0019】
次に本発明の第4実施例を図5及び図6を参照して説明する。なお、図5において、図7と同一部分には同一符号を付し、その部分の構成の説明は省略する。図5は本発明の第4実施例の系統構成図であり、図5において主給水ポンプ4の出口側供給配管18より脱気器貯水タンク2へ主給水ポンプ4の最低流量を確保できるよう給水を排出する給水ポンプ再循環配管19に給水ポンプ再循環弁12をバイパスする循環弁バイパス配管27を接続し、脱気器循環ポンプ出、入口弁16,14を介して脱気器循環ポンプ28を設置している。
【0020】
以上の構成における第4実施例の制御回路を図6を参照して説明する。
主給水ポンプ4と給水ブースタポンプ3が停止中に脱気器循環ポンプ出入口弁16,14を全開にし、脱気器循環ポンプ28を起動させる(ブロックJ)。また、主給水ポンプ4又は給水ブースタポンプ3が起動すると脱気器循環ポンプ出入口弁16,14を全閉し給水は給水ポンプ再循環弁12により制御される(ブロックK)。なお、図中LはAND回路、MはNOT回路を示している。
【0021】
よって、脱気器循環ポンプ28を主給水ポンプ停止中に運転することにより、脱気器貯水タンク2内の給水を脱気器降水管15及び給水ポンプ連絡管11に通水することにより、滞留水によるフラッシュを防止し、主給水ポンプ起動時のハンマリング現象を防止することができる。
【0022】
【発明の効果】
以上説明したように、請求項1に係る本発明によれば脱気器貯水タンク内の給水温度を脱気器器内圧力の飽和温度低下に保つことができ、負荷しゃ断等の急激な負荷降下時に脱気器貯水タンク内でのフラッシュ現象を防止できる。
【図面の簡単な説明】
【図1】本発明の第1および第2の実施例を示すフラッシュ防止装置の系統構成図。
【図2】本発明の第1実施例に適用する制御回路図。
【図3】本発明の第2実施例に適用する制御回路図。
【図4】本発明の第3実施例を示すフラッシュ防止装置の系統構成図。
【図5】本発明の第4実施例を示すフラッシュ防止装置の系統構成図。
【図6】本発明の第4実施例に適用する制御回路図。
【図7】フラッシュ防止装置の従来例を示す系統構成図。
【符号の説明】
1…脱気器
2…脱気器貯水タンク
3…給水ブースタポンプ
4…主給水ポンプ
5,5a…脱気器水位調節弁
6,6a…脱気器ブロー調節弁
7…脱気器ブロー回収弁
8…低圧ヒータ
9…補助蒸気調節弁
10…高圧ヒータドレン回収弁
11…給水ポンプ連絡管
12…給水ポンプ再循環弁
13,28…脱気器循環ポンプ
14…脱気器循環ポンプ出口弁
15…脱気器降水管
16…脱気器循環ポンプ入口弁
17…給水配管
18…供給配管
19…再循環配管
20…脱気器循環配管
21…脱気器ブロー回収配管
22…バイパス配管
23…高圧ヒータドレン回収配管
24…抽気配管
25…補助蒸気配管
26…脱気器ブロー配管
27…循環弁バイパス配管
[0001]
[Industrial application fields]
The present invention relates to a water supply facility such as a steam power plant, and more particularly to a flash prevention device for preventing a deaerator flash phenomenon that occurs in a sudden load drop process such as when a load of a plant is cut off.
[0002]
[Prior art]
In a steam power plant, a flash phenomenon may occur in the deaerator water storage tank due to a sudden load drop when the load of the plant is cut off.
In addition, a flash phenomenon may occur in the deaerator downcomer pipe and the feed water pump connecting pipe when the feed water pump is started up when the unit is started up.
[0003]
This flash phenomenon will be described below with reference to FIG. 7 showing a part of a conventional water supply system.
As shown in FIG. 7, in the conventional water supply equipment, the deaerator 1 and the deaerator water storage tank 2 are installed at a position higher than the water supply booster pump 3 in order to secure the suction pressure of the water supply booster pump 3. . The feed water is led from the condenser (not shown) through the deaerator water level control valve 5 and the low pressure heater 8 to the deaerator 1 from the feed water pipe 17. It is led to the deaerator water storage tank 2. Normally, the water supplied from the condenser is at a temperature substantially equal to the saturation temperature of the internal pressure of the deaerator 1 during plant load operation. This water supply is stored in the deaerator water storage tank 2, and the water supply amount in the deaerator water storage tank 2 is kept constant by the deaerator water level control valve 5. And the water supply in this deaerator water storage tank 2 is pressure | voltage-risen via the water supply booster pump 3, the water supply pump communication pipe 11, and the main water supply pump 4 from the deaerator precipitating pipe 15, and a boiler (not shown) from the supply piping 18 It is configured to be supplied with water. A recirculation pipe 19 is connected to the supply pipe 18 on the downstream side of the main water supply pump 4, and the recirculation pipe 19 is connected to the upper portion of the deaerator water storage tank 2 via the water supply pump recirculation valve 12. ing.
[0004]
Further, a deaerator circulation pipe 20 and a deaerator blow recovery pipe 21 are connected to the deaerator precipitating pipe 15, and the deaerator circulation pipe 20 is connected to the water supply pipe 17 via the deaerator circulation pump 13. The deaerator blow recovery pipe 21 is connected to the downstream side of the low pressure heater 8 and is connected to the condenser via the deaerator blow recovery valve 7.
[0005]
In the above configuration, when a sudden load drop occurs, such as when the load is cut off, the turbine bleeder, which is a heating steam source to the deaerator 1, is cut off, and the internal pressure of the deaerator 1 rapidly decreases. However, the water supply temperature of the deaerator water storage tank 2 becomes higher than the saturation temperature of the internal pressure of the deaerator 1, and a flash phenomenon occurs. Similarly, in the process of shutting down the plant, the decrease in the turbine pressure to the deaerator 1 causes the pressure drop speed to be faster than the feed water temperature drop speed in the deaerator water tank 2. The feed water temperature becomes higher than the saturation temperature of the internal pressure of the deaerator 1 and a flash phenomenon occurs.
[0006]
Conventionally, in order to prevent such a flash phenomenon, as described in Japanese Utility Model Laid-Open No. 53-101101, when the internal pressure of the deaerator 1 is reduced, extraction is performed as a steam source to the deaerator 1. Auxiliary steam was supplied from the auxiliary steam pipe 25 connected to the pipe 24 via the auxiliary steam control valve 9 to prevent a decrease in the internal pressure.
[0007]
[Problems to be solved by the invention]
However, there is a limit to the amount of auxiliary steam that can be used as a steam source for the deaerator, and it is not possible to secure the necessary amount to prevent sudden internal pressure of the deaerator. There was a possibility that the flash phenomenon could not be completely prevented.
[0008]
In addition, when the main feed pump is started, the feed water staying in the deaerator downcomer pipe and feed pump connection pipe is also flushed, and separated into gas and liquid in the pipe, depending on the stop time when the main feed pump is started. There was a possibility that hammering might occur due to the water supply entering the gas section at the time of startup.
[0009]
When such a flush phenomenon occurs, the water level in the deaerator water storage tank becomes unstable, and there is a risk of causing problems such as hammering in the main feed pump trip or deaerator downcomer pipe and feed pump connection pipe due to low water level. there were.
[0010]
The present invention has been made to solve these problems, and it is an object of the present invention to provide a flash prevention device that prevents a flash phenomenon from occurring in a deaerator, a deaerator downpipe, and a feed water pump connecting pipe. .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is directed to deaeration from a deaerator water storage tank in order to prevent a flash phenomenon that occurs in a deaerator, a deaerator downcomer pipe, and a feed pump communication pipe. In a water supply facility that supplies water to the main water supply pump via a condenser precipitator, adjust to a deaerator blow recovery pipe that branches from the deaerator precipitator and is connected to a condenser when a sudden load drop occurs Provided is a flash prevention device which is provided with a valve and performs control to rapidly replace water supplied in a deaerator water storage tank.
[0012]
[Action]
According to the flash prevention device of the present invention as set forth in claim 1, the maximum amount of condensate flow into the deaerator is allowed when a sudden load drop occurs, and the water supply in the deaerator water storage tank is increased. By discharging the water into the condenser, the water supply in the deaerator water storage tank can be replaced in a short time, and the temperature of the water supplied in the deaerator water storage tank can be lowered to prevent the flash phenomenon.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system configuration diagram of a deaerator flush prevention device showing a first embodiment of the present invention. In FIG. 1, the same parts as those in FIG. 7 are denoted by the same reference numerals, and description of the configuration of those parts is omitted. In FIG. 1, the deaerator 1 and the deaerator water storage tank 2 are installed at a position higher than the feed water booster pump 3 in order to secure the suction pressure of the feed water booster pump 3. This configuration is the same as the conventional example, but in the present invention, the feed water in the deaerator water tank 2 is discharged from the middle of the deaerator downcomer pipe 15 extending from the deaerator water tank 2 to the feed booster pump 3 while the plant is stopped. For this purpose, a bypass pipe 22 that bypasses the deaerator blow recovery valve 7 provided in the deaerator blow recovery pipe 21 provided for this purpose is provided in the deaerator blow recovery pipe 21, and the bypass pipe 22 is degassed. An air blow control valve 6 is installed. A high-pressure heater drain recovery pipe 23 is connected to the deaerator water storage tank 2 via a high-pressure heater drain recovery valve 10. Further, a bleed pipe 24 through which bleed air is guided is connected to the deaerator 1, and an auxiliary steam pipe 25 is connected to the bleed pipe 24 via the auxiliary steam control valve 9. With this configuration, this embodiment is controlled as shown in FIG. In FIG. 2, when a load drop occurs, such as when the load is cut off, the water supply in the deaerator water storage tank 2 is normally controlled to a certain level (Block A). The deaerator water level control valve 5a is forcibly fully opened. (Block B), the deaerator blow control valve 6 is shifted from the fully closed state (Block C) to a mode (Block D) for controlling the level in the deaerator water storage tank 2.
[0014]
That is, the deaerator water level control valve 5a is forcibly opened to supply the deaerator 1 and the deaerator water storage tank 2 at the maximum flow rate that allows water to flow. The water supply in the deaerator water storage tank 2 can be replaced in a short time by discharging the water supply in the water storage tank 2. Thus, by replacing the water supply in the deaerator water storage tank 2, the temperature of the water supply in the deaerator water storage tank 2 is lowered, and the water supply in the deaerator water storage tank 2 is reduced to the internal pressure of the deaerator 1. By making the temperature lower than the saturation temperature, the flash phenomenon can be prevented.
[0015]
As shown in FIG. 2, when the signal such as the load cutoff is released, the normal mode is set by the NOT circuits E and F, the deaerator blow control valve 6 is closed, and the deaerator water level control valve 5a is released. It is changed to the water level control of the gas storage tank 2.
[0016]
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a system configuration diagram of the second embodiment of the present invention. Since this configuration is the same as that of the first embodiment, description of the configuration is omitted. In the present invention, as shown in FIG. 3, the high-pressure heater drain water, which is high-temperature water condensed by a high-pressure heater that is arranged upstream of the boiler and raises the temperature of the feed water introduced into the boiler, is recovered in the deaerator water storage tank 2. The high-pressure heater drain collection pipe 23 is normally fully opened (block G), and the high-pressure heater drain collection valve 10 is forcibly closed when a sudden load drop such as load interruption occurs (block H). That is, by preventing the inflow of high-temperature water into the deaerator water storage tank 2, the water supply temperature in the deaerator water storage tank 2 is lowered, and the internal pressure of the deaerator 1 is reduced below the saturation temperature. The flash phenomenon can be prevented.
[0017]
If the load cutoff signal is canceled as shown in FIG. 3, the NOT circuit I enters the normal mode, and the high-pressure heater drain recovery valve 10 is fully opened.
Next, a third embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same parts as those in FIG. 7 are denoted by the same reference numerals, and description of the structure of those parts is omitted.
[0018]
FIG. 4 is a system configuration diagram of the third embodiment of the present invention. In FIG. 4, a feed water pump communication pipe 11 between the feed water booster pump 3 and the main feed water pump 4 includes a feed water pump communication pipe 11 and a deaerator precipitation. The deaerator blow piping 26 which discharges the water supply in the pipe | tube 15 and the deaerator water storage tank 2 is connected via the deaerator blow control valve 6a. The deaerator blow pipe 26 continuously replaces the feed water in the feed water pump communication pipe 11 and the deaerator precipitator pipe 15 by discharging the feed water when the main feed water pump 4 and the feed water booster pump 3 are stopped. That is, the water in the deaerator water storage tank 2 is continuously supplied to the deaerator downcomer pipe 15 and the feed pump communication pipe 11 to prevent the stagnant water from being flushed. Hammering in the downcomer pipe 15 and the feed water pump communication pipe 11 can be prevented.
[0019]
Next, a fourth embodiment of the present invention will be described with reference to FIGS. In FIG. 5, the same parts as those in FIG. 7 are denoted by the same reference numerals, and description of the configuration of those parts is omitted. FIG. 5 is a system configuration diagram of the fourth embodiment of the present invention. In FIG. 5, water is supplied so that the minimum flow rate of the main feed pump 4 can be secured from the outlet side supply pipe 18 of the main feed pump 4 to the deaerator water storage tank 2. A circulation valve bypass pipe 27 that bypasses the feed water pump recirculation valve 12 is connected to the feed water pump recirculation pipe 19 that discharges water, and a deaerator circulation pump 28 is connected to the deaerator circulation pump through the inlet valves 16 and 14. It is installed.
[0020]
The control circuit of the fourth embodiment having the above arrangement will be described with reference to FIG.
While the main feed pump 4 and the feed booster pump 3 are stopped, the deaerator circulation pump inlet / outlet valves 16 and 14 are fully opened, and the deaerator circulation pump 28 is activated (block J). When the main feed pump 4 or the feed booster pump 3 is activated, the deaerator circulation pump inlet / outlet valves 16 and 14 are fully closed, and the feed water is controlled by the feed water pump recirculation valve 12 (block K). In the figure, L indicates an AND circuit, and M indicates a NOT circuit.
[0021]
Therefore, by operating the deaerator circulation pump 28 while the main feed water pump is stopped, the feed water in the deaerator water storage tank 2 is passed through the deaerator downcomer pipe 15 and the feed water pump communication pipe 11 to stay. This prevents water flushing and prevents the hammering phenomenon when the main feed pump is activated.
[0022]
【The invention's effect】
As described above, according to the first aspect of the present invention, the feed water temperature in the deaerator water storage tank can be maintained at the saturation temperature drop of the deaerator pressure, and a sudden load drop such as load cutoff Sometimes flushing in the deaerator water tank can be prevented.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a flash prevention apparatus showing first and second embodiments of the present invention.
FIG. 2 is a control circuit diagram applied to the first embodiment of the present invention.
FIG. 3 is a control circuit diagram applied to a second embodiment of the present invention.
FIG. 4 is a system configuration diagram of a flash prevention apparatus showing a third embodiment of the present invention.
FIG. 5 is a system configuration diagram of a flash prevention apparatus showing a fourth embodiment of the present invention.
FIG. 6 is a control circuit diagram applied to a fourth embodiment of the present invention.
FIG. 7 is a system configuration diagram showing a conventional example of a flash prevention device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Deaerator 2 ... Deaerator water storage tank 3 ... Feed water booster pump 4 ... Main feed water pump 5, 5a ... Deaerator water level control valve 6, 6a ... Deaerator blow control valve 7 ... Deaerator blow recovery valve DESCRIPTION OF SYMBOLS 8 ... Low pressure heater 9 ... Auxiliary steam control valve 10 ... High pressure heater drain recovery valve 11 ... Feed water pump communication pipe 12 ... Feed water pump recirculation valve 13, 28 ... Deaerator circulation pump 14 ... Deaerator circulation pump outlet valve 15 ... Desorption Degasifier pipe 16 ... Deaerator circulation pump inlet valve 17 ... Water supply pipe 18 ... Supply pipe 19 ... Recirculation pipe 20 ... Deaerator circulation pipe 21 ... Deaerator blow recovery pipe 22 ... Bypass pipe 23 ... High-pressure heater drain recovery Pipe 24 ... Extraction pipe 25 ... Auxiliary steam pipe 26 ... Deaerator blow pipe 27 ... Circulation valve bypass pipe

Claims (1)

復水器から給水配管を介して給水を導きこの給水を脱気する脱気器と、この脱気器にて脱気された給水を貯溜する脱気器貯水タンクと、この脱気器貯水タンクの下部に接続され給水をボイラへ導く脱気器降水管と、この脱気器降水管から分岐して配設され前記脱気器貯水タンクの水を系統停止時に脱気器ブロー回収弁を介して前記復水器へ導く脱気器ブロー回収配管と、前記脱気器ブロー回収弁をバイパスして前記脱気器ブロー回収配管に接続されたバイパス配管に配設され負荷しゃ断発生時に前記脱気器貯水タンクの水位に応じて開閉制御される脱気器ブロー調節弁と、前記給水配管に接続され通常運転時に前記脱気器貯水タンクの水位に応じて開閉制御され負荷しゃ断発生時に全開制御される脱気器水位調節弁とから成ることを特徴とするフラッシュ防止装置。A deaerator that guides the water supply from the condenser through the water supply pipe and degass the water supply, a deaerator water storage tank that stores the water degassed by the deaerator, and the deaerator water storage tank The deaerator downcomer pipe connected to the lower part of the degasser and leads the water supply to the boiler, and the water in the deaerator water storage tank branched from the deaerator downcomer pipe is passed through the deaerator blow recovery valve when the system is stopped. the degassing said and recovery Datsukiki blow recovery pipe leading to the water vessel, wherein disposed in the connected bypass pipe a deaerator blow recovery valve bypassing the deaerator blow recovery pipe under load cutoff occurs Te A deaerator blow control valve that is controlled to open and close according to the water level of the storage tank, and is controlled to open and close according to the water level of the deaerator storage tank that is connected to the water supply pipe and is normally operated, and is fully opened when load interruption occurs. A deaerator water level control valve Flash prevention device.
JP31298894A 1994-12-16 1994-12-16 Flash prevention device Expired - Fee Related JP3664759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31298894A JP3664759B2 (en) 1994-12-16 1994-12-16 Flash prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31298894A JP3664759B2 (en) 1994-12-16 1994-12-16 Flash prevention device

Publications (2)

Publication Number Publication Date
JPH08170805A JPH08170805A (en) 1996-07-02
JP3664759B2 true JP3664759B2 (en) 2005-06-29

Family

ID=18035891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31298894A Expired - Fee Related JP3664759B2 (en) 1994-12-16 1994-12-16 Flash prevention device

Country Status (1)

Country Link
JP (1) JP3664759B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633493B2 (en) * 2005-02-14 2011-02-16 株式会社日立製作所 Method for preventing water hammer of deaerator and boiler water supply device
JP4949712B2 (en) * 2006-03-28 2012-06-13 三菱重工業株式会社 Power plant water supply equipment
JP7093319B2 (en) * 2019-02-21 2022-06-29 三菱重工業株式会社 Operation method of condensate water supply system of thermal power plant and condensate water supply system of thermal power plant

Also Published As

Publication number Publication date
JPH08170805A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
JP4191894B2 (en) Method of operating gas / steam combined turbine facility and gas / steam combined turbine facility for implementing the method
JPS6136121B2 (en)
JP3664759B2 (en) Flash prevention device
JPH044481B2 (en)
JP2614350B2 (en) Feed water heater drain pump up system
JP2006220393A (en) Water hammering prevention method for deaerator, and boiler feed water device
JP3619551B2 (en) Water supply equipment in a steam turbine plant
JP3597683B2 (en) Nuclear power plant
JP5330730B2 (en) Plant piping equipment
JP3819161B2 (en) Feed water heater drain discharge device
JP2519282B2 (en) Deaerator water level control system
JPH04334506A (en) Drain piping of auxiliary steam device of steam turbin equipment
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JP3317536B2 (en) Saturated drain discharge piping system
JPH0282003A (en) Vent system of supply water heater of power plant by steam turbine
JP2597594B2 (en) Feed water heater drain injection device
JPH09195713A (en) Moisture content separation heater
JPS60219404A (en) Stabilizing device of deaerator output
JP2003021305A (en) Boiler feed water supply system
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JP3067053B2 (en) Condenser
JP2637194B2 (en) Combined plant startup bypass system and its operation method
JPH06207704A (en) Water hammering prevention device for water supply device
JP2909301B2 (en) How to pump up the feedwater heater drain
JP2909300B2 (en) Heater drain equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050610

LAPS Cancellation because of no payment of annual fees