JP3067053B2 - Condenser - Google Patents

Condenser

Info

Publication number
JP3067053B2
JP3067053B2 JP4062163A JP6216392A JP3067053B2 JP 3067053 B2 JP3067053 B2 JP 3067053B2 JP 4062163 A JP4062163 A JP 4062163A JP 6216392 A JP6216392 A JP 6216392A JP 3067053 B2 JP3067053 B2 JP 3067053B2
Authority
JP
Japan
Prior art keywords
condensate
heating
condenser
temperature
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4062163A
Other languages
Japanese (ja)
Other versions
JPH05264179A (en
Inventor
佳也 岩田
康晃 向井
吉男 住谷
羊春 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4062163A priority Critical patent/JP3067053B2/en
Publication of JPH05264179A publication Critical patent/JPH05264179A/en
Application granted granted Critical
Publication of JP3067053B2 publication Critical patent/JP3067053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蒸気タービン用の復水器
とその制御方法及びその装置に係り、特に、プラント起
動時に復水器内の復水中の溶存酸素を除去するに好適な
復水器とその制御方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for a steam turbine, a control method therefor, and an apparatus therefor, and more particularly to a condenser suitable for removing dissolved oxygen in condensate in a condenser at the time of starting a plant. The present invention relates to a vessel, its control method and its apparatus.

【0002】[0002]

【従来の技術】図7は従来技術に係る復水器の全体構成
図である。プラント起動時に、復水器管巣2に冷却水を
通じ、復水再循環系13の切替弁15を開くとともに、
復水系12の切替弁14を閉じる。そして、復水器1内
の復水を復水出口4から復水送水装置3によって引出
し、ボイラへ連なる復水系12から分岐した復水再循環
系13及び切替弁15、復水加熱器16を介しノズル1
9により復水器1内の管巣2下部よりホットウエル天井
板26上に復水を噴霧する。ホットウエルに落下した復
水は、仕切板27により通路化されたホットウエル中を
逐次流動し再循環させる。そして、空気抽出装置25が
作動すると、復水器1内の空気は管巣2内に設けた抽出
口23から系24により排除され、逐次減圧して真空状
態になる。
2. Description of the Related Art FIG. 7 is an overall configuration diagram of a condenser according to the prior art. At the start of the plant, the switching valve 15 of the condensate recirculation system 13 is opened by passing the cooling water through the condenser tube nest 2,
The switching valve 14 of the condensing system 12 is closed. Then, the condensate in the condenser 1 is drawn out from the condensate outlet 4 by the condensate water supply device 3, and the condensate recirculation system 13 branched from the condensate system 12 connected to the boiler, the switching valve 15, and the condensate heater 16. Nozzle 1
By 9, the condensate is sprayed onto the hot well ceiling plate 26 from below the tube nest 2 in the condenser 1. The condensed water that has fallen into the hot well flows sequentially through the hot well formed as a path by the partition plate 27 and is recirculated. Then, when the air extraction device 25 is operated, the air in the condenser 1 is removed from the extraction port 23 provided in the tube nest 2 by the system 24, and the air is sequentially depressurized to a vacuum state.

【0003】この減圧過程で、蒸気を噴射管20より復
水器内に導入して復水を加熱し、脱気を促進する。更
に、復水再循環系13途中に設置されている加熱器16
により復水を加熱し、さらに脱気時間を短縮する。以上
の脱気運転により、溶存酸素がボイラ給水規定値に達し
たら、制御弁22を閉じて噴射管20への蒸気供給を止
めるとともに、復水加熱器16での加熱を止め、復水再
循環系13の切替弁15を閉じ、復水系12の切替弁1
4を開けてボイラに通水する。
[0003] During the depressurization process, steam is introduced into the condenser through the injection pipe 20 to heat the condensate and promote degassing. Further, the heater 16 installed in the condensate recirculation system 13
Heats the condensate and further reduces the degassing time. When the dissolved oxygen reaches the boiler feedwater specified value by the above deaeration operation, the control valve 22 is closed to stop the supply of steam to the injection pipe 20, and the heating in the condensate heater 16 is stopped, and condensate recirculation is performed. The switching valve 15 of the system 13 is closed, and the switching valve 1 of the condensing system 12 is closed.
Open 4 and let water flow through the boiler.

【0004】制御装置30,31は、器内圧力や復水温
度等によって、噴射管20,加熱器16への供給蒸気量
を制御するものである。以上の如き手順によって、プラ
ント起動時に復水溶存酸素濃度が約7,000〜10,000ppbあ
った復水を、ボイラ給水規定値(約10ppb程度)まで迅速
に脱気することができる。尚、従来技術に関連するもの
として、特開昭60−248994号がある。
The control devices 30 and 31 control the amount of steam supplied to the injection pipe 20 and the heater 16 based on the internal pressure, the condensate temperature, and the like. By the above-described procedure, the condensed water having the reconstituted dissolved oxygen concentration of about 7,000 to 10,000 ppb at the time of starting the plant can be quickly degassed to the boiler feedwater specified value (about 10 ppb). Incidentally, Japanese Patent Application Laid-Open No. Sho 60-248994 relates to the related art.

【0005】[0005]

【発明が解決しようとする課題】複合発電プラント等で
毎日起動・停止を行う運転、即ち、DSS運転(Dairy
Start Stop運転)を実施するプラントに使用される復
水器では、プラント補機動力を低減するために真空破壊
すると、翌日の復水器内の復水中には酸素等のガスが溶
け込み、復水溶存酸素濃度は、夏期においておよそ7,00
0ppb前後、冬期においておよそ10,000ppb前後と高くな
る。このため、脱気器を設置していないプラントでは、
プラント起動時にボイラが腐食等してしまうことを防止
するため、ボイラ給水溶存酸素濃度、即ち、復水溶存酸
素濃度が規定値(10ppb程度)以下になるまで復水器を運
転して脱気する必要がある。また、DSS運転を実施す
るプラントにおいては、プラント起動時間の短縮は作業
員の労働時間短縮等、プラント運用上重要な課題となっ
ている。
An operation for starting and stopping every day in a combined cycle power plant or the like, that is, a DSS operation (Dairy operation)
In a condenser used in a plant that implements (Start Stop operation), if a vacuum break occurs to reduce the power of the plant auxiliary equipment, gas such as oxygen dissolves into the condensate in the condenser the next day, Dissolved oxygen concentration is approximately 7,00 in summer
It is as high as around 0 ppb and around 10,000 ppb in winter. Therefore, in a plant without a deaerator,
In order to prevent the boiler from being corroded when starting the plant, operate the condenser to degas until the concentration of dissolved oxygen in the boiler feed water, that is, the concentration of dissolved oxygen in the boiler, becomes less than the specified value (about 10 ppb). There is a need. Also, in a plant that performs DSS operation, shortening the plant startup time is an important issue in plant operation, such as shortening the working hours of workers.

【0006】そこで、従来より、復水器内の復水を加熱
することによって脱気時間を短縮し、プラント起動時間
の短縮を実施してきた。しかしながら、復水中の溶存酸
素を除去するのに要する脱気時間は、復水温度,冷却水
温度,気温等の環境条件により大きく左右され、従来の
技術では、環境条件による最適化を行わず、冬期の厳し
い条件下で運転を設定することが多いため、夏期では、
必要でない時でも加熱することになり、必要以上に補機
動力を使用するという問題がある。
Therefore, conventionally, the deaeration time has been shortened by heating the condensate in the condenser to shorten the plant start-up time. However, the deaeration time required to remove dissolved oxygen in condensed water greatly depends on environmental conditions such as condensate temperature, cooling water temperature, and air temperature. In the conventional technology, optimization based on environmental conditions is not performed. Since driving is often set under severe winter conditions,
Even when it is not necessary, heating is performed, and there is a problem that auxiliary power is used more than necessary.

【0007】本発明の目的は、環境条件による最適な加
熱設備を使用して補機動力を低減する復水器とその制御
方法及びその装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a condenser for reducing auxiliary power by using an optimal heating equipment according to environmental conditions, a control method therefor, and a device therefor.

【0008】[0008]

【課題を解決するための手段】上記目的は、予め環境条
件による脱気時間と加熱方式の関係を制御装置に組み込
んでおき、環境条件の初期値(起動時における検出値)
により、脱気時間の要求値、復水再循環量等脱気条件を
満足させる最低限の補機動力を使用する加熱方式をプラ
ント起動時に使い分けることで、達成できる。
SUMMARY OF THE INVENTION The object of the present invention is to incorporate the relationship between the degassing time and the heating method based on environmental conditions into a control device in advance, and to set the initial values of environmental conditions (detected values at startup).
This can be achieved by properly using a heating method using the minimum auxiliary power required to satisfy the deaeration conditions such as the required value of the deaeration time and the amount of condensate recirculation at the time of starting the plant.

【0009】また上記目的は、復水温度または環境温度
を検出する温度検出器と、プラント起動初期に起動時間
要求値に対応して定めた前記温度検出器で検出する温度
の設定温度で前記検出器の検出値を判定し前記復水加熱
設備を使った復水の加熱脱気と加熱をしない復水の脱気
方法とを選択して複数の脱気運転を制御する制御装置と
を備えることによって達成される
[0009] The above-mentioned object is to condense water or environmental temperature.
Temperature detector for detecting the start-up time
Temperature detected by the temperature detector determined according to the required value
Judge the detection value of the detector at the set temperature
Condensate heating degassing using equipment and condensate degassing without heating
A control device for selecting a method and controlling a plurality of deaeration operations; and
This is achieved by providing

【0010】また上記目的は、前記復水加熱設備を複数
備え、プラント起動初期に起動時間要求値に対応して定
めた前記温度検出器で検出する温度の複数レベルの設定
温度で前記検出器の検出値を判定し前記複数の加熱設備
のいずれか1つを選択使用した復水の加熱脱気と複数の
復水加熱設備を併用した復水の加熱脱気と加熱をしない
復水の脱気方法とを選択して復水の脱気運転を制御する
制御装置を備えることによって達成される
The above object is also achieved by providing a plurality of the condensate heating equipment.
At the initial stage of plant startup in accordance with the required startup time.
Setting of multiple levels of temperature detected by the temperature detector
Judging the detection value of the detector based on the temperature, and
Heat degassing of condensate using one of
No condensate heating degassing and heating with condensate heating equipment
Select the condensate degassing method and control the condensate degassing operation
This is achieved by providing a control device .

【0011】また上記目的は、蒸気を復水器内で復水中
に噴射して加熱する設備と、ボイラ給水配管より分岐し
ている復水再循環系に配置された加熱器のいずれか一方
または両方を備えることによって達成される
[0011] The above object is to condense steam in a condenser.
From the boiler feed pipe
One of the heaters located in the condensate recirculation system
Or by having both .

【0012】[0012]

【作用】復水器で脱気を図る際は、まづ、冷却水送水装
置により管巣に冷却水を流し、復水系より分岐している
復水再循環系の切替弁を開くとともに、ボイラ復水系の
切替弁を閉じ、ボイラへ酸素濃度の高い復水が流入しな
いようにする。そして、復水送水装置により、復水をグ
ランド蒸気復水器に流し、タービンにグランドシールを
かけ、復水は復水再循環系を循環させ、復水器内でノズ
ルにより噴霧させ復水を微粒化させ、脱気時間短縮を図
る。タービンにグランドシールがかかれば、空気抽出装
置により、復水器内の空気を抽出するとともに、復水中
の酸素等の溶存ガスを抽出し、器内を減圧する。復水加
熱設備として、例えば復水器内に設置されている噴射管
は、蒸気を復水器内の復水中に直接導入することによっ
て、復水を加熱し撹拌することにより脱気を促進させ
る。また、復水再循環系に設置された加熱器は復水を加
熱することにより脱気を促進させる。
In time to achieve deaeration [action] condenser, Madzu flushed with cooling water in the tube nest by the cooling water supply device, it is opened the condensate recirculation system switching valve which are branched from the condensate system, boiler Close the condensing system switching valve to prevent condensate with high oxygen concentration from flowing into the boiler. Then, the condensate water is fed by the condensate water supply device to the ground steam condenser, a ground seal is applied to the turbine, and the condensate is circulated through the condensate recirculation system. It is atomized to shorten the degassing time. When the gland seal is applied to the turbine, the air in the condenser is extracted by the air extracting device, and at the same time, the dissolved gas such as oxygen in the condensate is extracted to reduce the pressure in the vessel. Condensate
As a thermal facility, for example , an injection pipe installed in a condenser promotes degassing by heating and stirring the condensate by directly introducing steam into the condensate in the condenser. A heater installed in the condensate recirculation system promotes deaeration by heating the condensate.

【0013】ここで、復水再循環系に設置された加熱器
は、蒸気による直接熱交換器でも間接熱交換器でも電気
式加熱機でも復水の温度を上げるものであればよい。そ
して、これら加熱器を使用しまたは使用しない脱気方法
を選択して脱気運転をする制御装置は、復水温度、また
復水再循環系に設置された加熱器の出口温度、冷却水
入口温度、気温等の環境条件温度を検出する検出器でプ
ラント起動初期にその“初期値”を示す信号を検出し、
それをプラント起動初期の起動時間要求値に対応して定
めた前記温度検出器で検出する温度の設定温度で判定
し、その判定結果により制御弁の切替により加熱設備を
使い、もしくは使わない方法を選択して復水の脱気運転
を行ない、切替弁の切替により復水を再循環させて脱気
運転を継続させるか、一部を再循環させるか、復水溶存
酸素濃度がボイラ給水規定値まで脱気したらボイラへ通
水する。この脱気運転によれば起動時間要求値以内で所
定のボイラ給水規定値まで容易に脱気でき、また温度検
出器の検出温度が高ければ加熱をしない脱気運転をする
から加熱設備の使用蒸気量が低減して補助動力が低減で
きる
The heater installed in the condensate recirculation system may be a direct heat exchanger using steam, an indirect heat exchanger, or an electric heater as long as it raises the condensate temperature. And degassing methods with or without these heaters
Select the control device for the degassing operation, condensate temperature and
Is a detector that detects environmental conditions such as the outlet temperature of the heater installed in the condensate recirculation system, the inlet temperature of the cooling water, and the air temperature.
At the beginning of runt detection, a signal indicating the "initial value" is detected,
It is set according to the required start-up time at the initial stage of plant startup.
Determined by the set temperature of the temperature detected by the temperature detector
Depending on the judgment result, the heating equipment is used by switching the control valve or the method not used is selected and the deaeration operation of condensate water is performed.
It is carried out for, degassed by recycling the condensate by the switching of the switching valve
Luke allowed to continue operating, or recirculating a portion, condensate dissolved
When the oxygen concentration deaerates to the boiler water supply specified value, water is supplied to the boiler . According to this deaeration operation, the start time
It can be easily degassed up to the specified boiler water supply value, and the temperature
If the detector temperature is high, perform deaeration without heating.
The amount of steam used in the heating equipment is reduced, and the auxiliary power is reduced.
I can .

【0014】また、復水加熱設備を複数備え、起動時間
要求値を満足させるように定めた設定温度を複数レベル
に設定し、それによってプラント起動初期検出温度を判
定し、判定結果によって使用する複数の復水加熱設備を
能力によって選択し、また併用し、また使用しないで
(加熱しない)脱気運転をする。この場合は起動時間要
求値をさらに下げて大幅な時間短縮が図れる
Also, a plurality of condensate heating facilities are provided,
Set temperature set to satisfy required value at multiple levels
To determine the initial detected temperature at plant startup.
Multiple condensate heating facilities to use
Select, use or not use depending on ability
Perform deaeration operation (without heating). In this case, startup time is required
By further lowering the calculated value, the time can be significantly reduced .

【0015】[0015]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1及び図2において、プラント起動時に、復
水器管巣2に冷却水を通じ、復水再循環系13の切替弁
15を開くとともに、復水系12の切替弁14を閉じ
る。そして、復水器1内の復水を復水出口4から復水送
水装置3によって引出し、ボイラへ連なる復水系12か
ら分岐した復水再循環系13及び切替弁15を介しノズ
ル19により復水器1内の管巣2下部よりホットウエル
天井板26上に復水を噴霧する。ホットウエルに落下し
た復水は、仕切板27により通路化されたホットウエル
中を逐次流動し再循環させる。そして、空気抽出装置2
5が作動すると、復水器1内の空気は管巣2内に設けた
抽出口23から系24により排除され、逐次減圧して真
空状態にする。この減圧過程で、復水を加熱すること
は、脱気時間短縮に効果的である。蒸気を噴射管20よ
り導入して復水器内の復水を直接加熱し脱気を促進する
設備を有する復水器において、環境条件により当該設備
を使用し加熱する方法と加熱しない方法がある。
An embodiment of the present invention will be described below with reference to the drawings. 1 and 2, when the plant is started, the switching valve 15 of the condensing recirculation system 13 is opened and the switching valve 14 of the condensing system 12 is closed by passing the cooling water through the condenser tube nest 2. The condensate in the condenser 1 is drawn out from the condensate outlet 4 by the condensate water supply device 3 and condensed by the nozzle 19 via the condensate recirculation system 13 branched from the condensate system 12 connected to the boiler and the switching valve 15. The condensate is sprayed onto the hot well ceiling plate 26 from the lower part of the tube nest 2 in the vessel 1. The condensed water that has fallen into the hot well flows sequentially through the hot well formed as a path by the partition plate 27 and is recirculated. And the air extraction device 2
When the air conditioner 5 is operated, the air in the condenser 1 is removed from the extraction port 23 provided in the tube nest 2 by the system 24, and the pressure is sequentially reduced to a vacuum state. Heating the condensate during this depressurization process is effective for shortening the degassing time. In a condenser having equipment for directly heating the condensate in the condenser by introducing steam from the injection pipe 20 and promoting deaeration, there are a method of heating using the equipment and a method of not heating depending on environmental conditions. .

【0016】ここで、図2の線Aに示す如き制御方法を
使用した時の説明をする。起動時間要求値が図2のT1
で、検出信号としてプラント起動“初期”復水温度と復
水溶存酸素濃度を採用した場合、プラント起動“初期”
復水温度がt1以下の時、温度計8の検出信号が信号線
34を通り制御装置29に入力され、制御装置29より
制御信号を発信し信号線41を介して制御弁22を
「開」とする。これにより、蒸気が噴射管20より導入
され、復水が加熱されて脱気が促進される。また、プラ
ント起動“初期”復水温度がt1以上の時は、温度計8
の検出信号が信号線34を通って制御装置29に入力さ
れ、制御装置29より制御信号が発信され、これが信号
線41を介して制御弁22を「閉」とする。これによ
り、加熱なしで脱気が行われる。更に、溶存酸素濃度計
7の検出信号が信号線33を通って制御装置29に入力
され、復水溶存酸素濃度がボイラ給水規定値(約10ppb程
度)以下になった時、制御装置29より制御信号が発信
され、信号線41,38,39を介して制御弁22を
「閉」とし、切替弁15を「閉」、切替弁14を「開」
として復水再循環を止め、ボイラへ給水を開始する。以
上の如き制御方法を採用すると、起動時間要求値T1を
満足させることができ、かつ使用蒸気量の低減による補
機動力の低減が達成できる。
Here, a description will be given of a case where a control method as shown by a line A in FIG. 2 is used. The start time required value is T1 in FIG.
When the condensed water temperature and the concentration of dissolved oxygen in the water are used as the detection signals,
When the condensate temperature is equal to or lower than t1, a detection signal of the thermometer 8 is input to the control device 29 through the signal line 34, and a control signal is transmitted from the control device 29 to open the control valve 22 via the signal line 41. And Thereby, steam is introduced from the injection pipe 20, the condensate is heated, and deaeration is promoted. When the condensed water temperature at the “initial” start of the plant is equal to or higher than t1, the thermometer 8
Is input to the control device 29 through the signal line 34, and a control signal is transmitted from the control device 29, and this closes the control valve 22 via the signal line 41. Thereby, deaeration is performed without heating. Further, the detection signal of the dissolved oxygen concentration meter 7 is input to the control device 29 through the signal line 33, and when the concentration of the reconstituted dissolved oxygen falls below the boiler feedwater specified value (about 10 ppb), the control device 29 controls the concentration. A signal is transmitted, and the control valve 22 is closed through the signal lines 41, 38, and 39, the switching valve 15 is closed, and the switching valve 14 is opened.
Stop the condensate recirculation and start supplying water to the boiler. When the control method as described above is adopted, the start time required value T1 can be satisfied, and the auxiliary power can be reduced by reducing the amount of used steam.

【0017】また、当該制御方法で、プラント起動“初
期”復水温度がt1以下の時、制御弁22で噴射管20
に導入する蒸気量を調整することにより、図2に線Bで
示す如き制御方法を適用でき、さらに、使用蒸気量の低
減を図ることも可能である。図3及び図4は、本発明の
他の実施例を示す。この実施例の復水器は、復水再循環
系13途中に設置されている復水加熱器16により復水
を加熱する設備を有する。斯る復水器では、環境条件の
初期値により、当該加熱器を使用して加熱する方法と加
熱しない方法を選択して、脱気運転を制御する。ここ
で、図4に線Aで示す如き制御方法を使用した時の説明
をする。起動時間要求値が図4のT2のであり、検出信
号とてしプラント起動“初期”復水温度と復水溶存酸素
濃度を採用した場合には、プラント起動初期復水温度が
t2以下の時、温度計8の検出信号が信号線34を通っ
て制御装置29に入力され、制御装置29より制御信号
が発信されて信号線40を介し制御弁18を「開」とす
る。これにより、蒸気と直接熱交換させる復水加熱器1
6により復水を加熱し、脱気を促進する。また、プラン
ト起動“初期”復水温度がt2以上の時、温度計8の検
出信号が信号線34を通って制御装置29に入力され、
制御装置29より制御信号を発信して信号線40を介し
制御弁22を「閉」とし、加熱なしで脱気する。更に、
溶存酸素濃度計7の検出信号が信号線33を通って制御
装置29に入力され、復水溶存酸素濃度がボイラ給水規
定値(約10ppb程度)以下になった時、制御装置2
9より制御信号を発信し、信号線40,38,39を介
して、制御弁18を「閉」とし切替弁15を「閉」、切
替弁14を「開」として復水再循環を止め、ボイラへ給
水を開始する。以上の如き制御方法を採用すると、起動
時間要求値T2を満足させることができ、かつ使用蒸気
量の低減による補機動力の低減が達成できる。
Further, according to the control method, when the condensed water temperature at the “initial” start of the plant is equal to or lower than t1, the control valve 22 controls the injection pipe 20.
By adjusting the amount of steam to be introduced into the fuel cell, a control method as shown by a line B in FIG. 2 can be applied, and the amount of used steam can be reduced. 3 and 4 show another embodiment of the present invention. The condenser of this embodiment has a facility for heating the condensate by a condensate heater 16 installed in the condensate recirculation system 13. In such a condenser, a method of heating using the heater and a method of not heating are selected based on the initial value of the environmental condition, and the deaeration operation is controlled. Here, a description will be given of a case where a control method as shown by a line A in FIG. 4 is used. If the required start-up time is T2 in FIG. 4 and the plant start-up “initial” condensate temperature and the condensate dissolved oxygen concentration are adopted as the detection signals, when the plant start-up initial condensate temperature is t2 or less, The detection signal of the thermometer 8 is input to the control device 29 through the signal line 34, and the control signal is transmitted from the control device 29 to open the control valve 18 via the signal line 40. As a result, the condensate heater 1 directly exchanges heat with steam.
The condensate is heated by 6 to promote degassing. Further, when the condensed water temperature at the “initial” start of the plant is equal to or higher than t2, the detection signal of the thermometer 8 is input to the control device 29 through the signal line 34,
A control signal is transmitted from the control device 29 to close the control valve 22 via the signal line 40, and degassing is performed without heating. Furthermore,
When the detection signal of the dissolved oxygen concentration meter 7 is input to the control device 29 through the signal line 33 and the concentration of the reconstituted dissolved oxygen falls below the boiler feedwater specified value (about 10 ppb), the control device 2
9, a control signal is transmitted, and the control valve 18 is closed, the switching valve 15 is closed, and the switching valve 14 is opened via the signal lines 40, 38, 39 to stop the condensate recirculation. Start supplying water to the boiler. When the control method as described above is adopted, the required start time T2 can be satisfied, and the power of the auxiliary equipment can be reduced by reducing the amount of used steam.

【0018】また、当該制御方法で、プラント起動“初
期”復水温度がt2以上の時、制御弁18で復水加熱器
16に導入する蒸気量を調整することにより図4に線B
で示す如き制御方法を適用でき、さらに、使用蒸気量の
低減を図ることも可能である。
Further, when the condensed water temperature at the “initial” start-up of the plant is equal to or higher than t2 by the control method, the amount of steam introduced into the condensate heater 16 is adjusted by the control valve 18 so that the line B shown in FIG.
Can be applied, and the amount of steam used can be reduced.

【0019】図5及び図6は、本発明の別の他の実施例
を示し、蒸気を噴射管20より導入して復水を加熱し脱
気を促進する設備と、復水再循環系13途中に設置され
ている復水加熱器16により復水を加熱する設備の両方
を有する復水器において、環境条件の初期値により、両
方を使用し加熱する方法や、どちらか一方を使用し加熱
する方法や、加熱しない方法のいずれかを選択する制御
ができる。起動時間要求値が図6のT3であり、検出信
号としてプラント起動“初期”復水温度と復水溶存酸素
濃度を選んだ場合、プラント起動“初期”復水温度がt
3以下の時、温度計8の検出信号が信号線34を通って
制御装置29に入力され、制御装置29より制御信号を
発信して信号線40,41を通り、制御弁18,22を
「開」とし、蒸気を噴射管20より復水器中の復水に直
接導入して加熱し、且つ復水加熱器16によって復水を
加熱し、脱気を促進する。
FIGS. 5 and 6 show another embodiment of the present invention, in which steam is introduced from an injection pipe 20 to heat condensate to promote deaeration, and a condensate recirculation system 13. In the condenser having both of the equipment for heating the condensate by the condensate heater 16 installed in the middle, depending on the initial value of the environmental conditions, a method of heating using both, or a method of heating using either one And a method of selecting either a heating method or a heating method. When the start-up time request value is T3 in FIG. 6 and the plant start-up “initial” condensate temperature and the condensed water dissolved oxygen concentration are selected as detection signals, the plant start-up “initial” condensate temperature is t
In the case of 3 or less, the detection signal of the thermometer 8 is inputted to the control device 29 through the signal line 34, the control signal is transmitted from the control device 29, the signal passes through the signal lines 40 and 41, and the control valves 18 and 22 are set to ""Open", steam is directly introduced from the injection pipe 20 to the condensate in the condenser and heated, and the condensate is heated by the condensate heater 16 to promote deaeration.

【0020】また、プラント起動“初期”復水温度がt
3以上t4以下の時、温度計8の検出信号が信号線34
を通って制御装置29に入力され、制御装置29より制
御信号を発信し、信号線40,41を通り制御弁18を
「閉」、制御弁22を「開」とし、蒸気を噴射管20よ
り復水器中の復水に直接導入して加熱して脱気を促進す
る。また、プラント起動“初期”復水温度がt4以上t
5以下の時、温度計8の検出信号が信号線34を通って
制御装置29に入力され、制御装置29より制御信号を
発信し、信号線40,41を通り制御弁18を「開」、
制御弁22を「閉」とし、復水加熱器16によって復水
を加熱し脱気を促進する。また、プラント起動“初期”
復水温度がt5以上の時、温度計8の検出信号が信号線
34を通って制御装置29に入力され、制御装置29よ
り制御信号を発信し信号線40,41を介して制御弁
,22を「閉」とし、加熱しないで脱気する。更に、
溶存酸素濃度計7の検出信号が信号線33を通って制御
装置29に入力され、復水溶存酸素濃度がボイラ給水規
定値(約10ppb程度)以下になった時、制御装置2
9より制御信号を発信し、信号線40,41,38,3
9を介し、制御弁18,22「閉」とし切替弁15を
「閉」、切替弁14を「開」として復水再循環を止め、
ボイラへ給水を開始する。
Further, the condensate temperature at the “initial” start of the plant is t
When the value is 3 or more and t4 or less, the detection signal of the thermometer 8 is
The control signal is transmitted from the control device 29 to the control valve 29 through the signal lines 40 and 41, the control valve 18 is closed, the control valve 22 is opened, and the steam is supplied from the injection pipe 20. It is directly introduced into the condensate in the condenser and heated to promote deaeration. In addition, the “initial” condensate temperature at plant startup is t4 or more and t
At 5 or less, the detection signal of the thermometer 8 is input to the control device 29 through the signal line 34, the control signal is transmitted from the control device 29, and the control valve 18 is "opened" through the signal lines 40 and 41,
The control valve 22 is closed, and the condensate is heated by the condensate heater 16 to promote deaeration. Also, the plant startup “initial”
When the condensate temperature is equal to or higher than t5, a detection signal of the thermometer 8 is input to the control device 29 through the signal line 34, and a control signal is transmitted from the control device 29 to control the control valve 1 through the signal lines 40 and 41.
8. Close 22, and degas without heating. Furthermore,
When the detection signal of the dissolved oxygen concentration meter 7 is input to the control device 29 through the signal line 33 and the concentration of the reconstituted dissolved oxygen falls below the boiler feedwater specified value (about 10 ppb), the control device 2
9, a control signal is transmitted, and signal lines 40, 41, 38, 3
9, the control valves 18 and 22 are closed and the switching valve 15 is closed and the switching valve 14 is opened to stop condensate recirculation.
Start supplying water to the boiler.

【0021】以上の如き制御方法を採用すると、蒸気を
噴射管20より導入して復水を加熱し脱気を促進する設
備と復水加熱器16の両方によって復水を加熱する方式
での使用蒸気量を100%とすると、蒸気を噴射管20
より導入して復水を加熱し脱気を促進する設備のみによ
り復水を加熱する方式での使用蒸気量はおよそ70%、
復水加熱器16のみにより復水を加熱する方式での使用
蒸気量はおよそ30%、両方の加熱方式を使用しない時
の使用蒸気量は0%の如く加熱設備の使い分けによっ
て、起動時間要求値T3を満足させることができ、かつ
使用蒸気量の低減による補機動力の低減が達成できる。
When the above-described control method is employed, the condensate is heated by both the condensate heater 16 and the equipment for heating the condensate by introducing steam from the injection pipe 20 to promote the deaeration. Assuming that the steam amount is 100%, the steam is injected into the injection pipe 20.
The amount of steam used in the system in which the condensate is heated only by the equipment that heats the condensate and heats the condensate to promote degassing is approximately 70%,
The amount of steam used in the method of heating the condensate by only the condensing heater 16 is about 30%, and the amount of steam used when both heating methods are not used is 0%. T3 can be satisfied, and a reduction in auxiliary power due to a reduction in the amount of used steam can be achieved.

【0022】また、当該制御方法で、プラント起動“初
期”復水温度がt5以下の時、制御弁18,22により
噴射管20に導入する蒸気量及び復水加熱器16に供給
する蒸気量を調整することによりさらに、使用蒸気量の
低減を図ることも可能である。
Further, according to the control method, when the condensed water temperature at the “initial” start of the plant is equal to or lower than t5, the amount of steam introduced into the injection pipe 20 and the amount of steam supplied to the condensate heater 16 are controlled by the control valves 18 and 22. Adjustment can further reduce the amount of used steam.

【0023】尚、検出信号をプラント起動“初期”冷却
水温度10からの信号としても、同様の制御方式が適用
できる。また、復水加熱器16は前述の如く蒸気による
直接熱交換器でも間接熱交換器でも電気式加熱器でも復
水の温度を上げることができるものであればよい。尚、
上述した実施例では、温度検出器の検出温度として復水
温度の例について述べたが、他の環境条件温度、例え
ば、器内温度,気温,冷却水温度等の初期値を検出して
制御することでもよいことはいうまでもない。
Note that the same control method can be applied when the detection signal is a signal from the cooling water temperature “initial” 10 at the start of the plant. As described above, the condensing heater 16 may be a direct heat exchanger using steam, an indirect heat exchanger, or an electric heater as long as it can raise the condensing temperature. still,
In the above-described embodiment, the example of the condensate temperature is described as the temperature detected by the temperature detector. However, other environmental condition temperatures , for example, the initial values such as the inside temperature, the air temperature, and the cooling water temperature are detected and controlled. It goes without saying that things can be done.

【0024】[0024]

【発明の効果】本発明によれば、環境条件の初期値によ
り最適な加熱設備を使った加熱脱気または加熱しない脱
気方法を選択することができ、補機動力を低減すること
ができる。
According to the present invention, heating degassing or deheating without heating using an optimum heating equipment according to the initial value of environmental conditions.
The power method can be selected, and the auxiliary power can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る復水器の全体構成図で
ある。
FIG. 1 is an overall configuration diagram of a condenser according to an embodiment of the present invention.

【図2】図1に示す復水器での制御方法を説明する図で
ある。
FIG. 2 is a diagram illustrating a control method in the condenser shown in FIG.

【図3】本発明の他の実施例に係る復水器の全体構成図
である。
FIG. 3 is an overall configuration diagram of a condenser according to another embodiment of the present invention.

【図4】図3に示す復水器での制御方法を説明する図で
ある。
FIG. 4 is a diagram illustrating a control method in the condenser shown in FIG.

【図5】本発明の更に別の実施例に係る復水器の全体構
成図である。
FIG. 5 is an overall configuration diagram of a condenser according to still another embodiment of the present invention.

【図6】図5に示す復水器での制御方法を説明する図で
ある。
FIG. 6 is a diagram illustrating a control method in the condenser shown in FIG.

【図7】従来の復水器の全体構成図である。FIG. 7 is an overall configuration diagram of a conventional condenser.

【符号の説明】[Explanation of symbols]

1…復水器、2…管巣、3…復水送水装置、4…復水出
口、5…グランド蒸気復水器、6…流量計、7…溶存酸
素濃度計、8,9,10…温度計、11…圧力計、1
4、15…切替弁、16…復水加熱器、18、22…制
御弁、19…ノズル、20…噴射管、23…空気抽出
口、25…空気抽出装置、26…ホットウエル天井板、
27…仕切板、28…冷却水送水装置、29,30,3
1…制御装置、32,33,34,35,36,37,
38,39,40,41,42,43…信号線。
DESCRIPTION OF SYMBOLS 1 ... Condenser, 2 ... Tube nest, 3 ... Condenser water supply device, 4 ... Condenser outlet, 5 ... Grand steam condenser, 6 ... Flow meter, 7 ... Dissolved oxygen concentration meter, 8, 9, 10 ... Thermometer, 11 ... pressure gauge, 1
4, 15: switching valve, 16: condensate heater, 18, 22: control valve, 19: nozzle, 20: injection pipe, 23: air extraction port, 25: air extraction device, 26: hot well ceiling plate,
27: partition plate, 28: cooling water supply device, 29, 30, 3
1 ... control device, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43 ... signal lines.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀部 羊春 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (56)参考文献 特開 昭59−3106(JP,A) 特開 昭60−169084(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28B 11/00 F28B 9/10 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hitoshi Horibe 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Plant (56) References JP-A-59-3106 (JP, A) JP-A-60-169084 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F28B 11/00 F28B 9/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 復水加熱設備を具備し、プラント起動時
に復水中の溶存酸素等を除去する脱気運転を行なう復水
器において、復水温度または環境温度を検出する温度検
出器と、プラント起動初期に起動時間要求値に対応して
定めた前記温度検出器で検出する温度の設定温度で前記
温度検出器の検出値を判定し前記復水加熱設備を使った
復水の加熱脱気と加熱をしない復水の脱気方法とを選択
して復水の脱気運転を制御する制御装置を備えたことを
特徴とする復水器。
1. A condenser having a condensate heating facility and performing a deaeration operation for removing dissolved oxygen and the like in condensate water at the time of starting a plant, comprising: a temperature detector for detecting a condensate temperature or an environmental temperature; Heat deaeration of condensed water using the condensate heating equipment by judging the detected value of the temperature detector at a set temperature of the temperature detected by the temperature detector determined corresponding to the start time request value at the initial start-up. A condenser comprising a control device for controlling a deaeration operation of the condensate by selecting a deaeration method of the condensate without heating.
【請求項2】 請求項1記載の復水器において、前記復
水加熱設備を複数備え、プラント起動初期に起動時間要
求値に対応して定めた前記温度検出器で検出する温度の
複数レベルの設定温度で前記温度検出器の検出値を判定
し前記複数の復水加熱設備のいずれか1つを選択使用し
た復水の加熱脱気と複数の復水加熱設備を併用した復水
の加熱脱気と加熱をしない復水の脱気方法とを選択して
復水の脱気運転を制御する制御装置を備えたことを特徴
とする復水器。
2. The condenser according to claim 1, further comprising a plurality of the condensate heating facilities, wherein a plurality of levels of temperatures detected by the temperature detector determined in correspondence with a start-up time request value at an initial stage of plant start-up. At a set temperature, the detection value of the temperature detector is determined, and one of the plurality of condensate heating devices is selectively used for heating and deaeration of condensate water, and heating and degassing of condensate water using a plurality of condensate heating devices in combination. A condenser comprising a control device for controlling a deaeration operation of the condensate by selecting an air and a deaeration method of the condensate without heating.
【請求項3】 請求項1または2記載の復水器におい
て、前記復水加熱設備は、蒸気を復水器内で復水中に噴
射して加熱する設備と、ボイラ給水配管より分岐してい
る復水再循環系に配置された加熱器のいずれか一方また
は両方を備えたことを特徴とする復水器。
3. The condenser according to claim 1, wherein the condensate heating facility is branched from a facility for injecting steam into the condensate in the condenser and heating the condensate, and a boiler feed pipe. A condenser comprising one or both of heaters arranged in a condenser recirculation system.
JP4062163A 1992-03-18 1992-03-18 Condenser Expired - Fee Related JP3067053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062163A JP3067053B2 (en) 1992-03-18 1992-03-18 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4062163A JP3067053B2 (en) 1992-03-18 1992-03-18 Condenser

Publications (2)

Publication Number Publication Date
JPH05264179A JPH05264179A (en) 1993-10-12
JP3067053B2 true JP3067053B2 (en) 2000-07-17

Family

ID=13192178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062163A Expired - Fee Related JP3067053B2 (en) 1992-03-18 1992-03-18 Condenser

Country Status (1)

Country Link
JP (1) JP3067053B2 (en)

Also Published As

Publication number Publication date
JPH05264179A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
EP0398070B1 (en) A combined cycle power plant
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP3067053B2 (en) Condenser
JP3664759B2 (en) Flash prevention device
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP2003020905A (en) Operating system and operating method for reheating electric power plant
JPH0440525B2 (en)
JPH09236207A (en) Boiler
JP4039508B2 (en) Method for reducing temperature difference between different fluid walls during boiler startup
JP2614350B2 (en) Feed water heater drain pump up system
JPS6136122B2 (en)
JP2909301B2 (en) How to pump up the feedwater heater drain
JP5330730B2 (en) Plant piping equipment
JP2650477B2 (en) Water hammer prevention method for deaerator water supply piping and piping equipment therefor
JPS6124679B2 (en)
JP2597594B2 (en) Feed water heater drain injection device
SU1129390A1 (en) Method of replenishing condensate in multicylinder extraction steam turbine plant
JPS604439B2 (en) How to operate a nuclear reactor plant
JPH0377402B2 (en)
JPS59138995A (en) Condensed water system
JP2001296389A (en) Nuclear power facility
JPH0949606A (en) Variable pressure once-through boiler
JPH0223929Y2 (en)
JP2009127952A (en) Drain control device of low pressure water supply heater and steam turbine plant
JPS62106208A (en) Method and device for discharging drain from moisture separating heater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees