JPH01203805A - Method and device for controlling condensate system - Google Patents

Method and device for controlling condensate system

Info

Publication number
JPH01203805A
JPH01203805A JP2566188A JP2566188A JPH01203805A JP H01203805 A JPH01203805 A JP H01203805A JP 2566188 A JP2566188 A JP 2566188A JP 2566188 A JP2566188 A JP 2566188A JP H01203805 A JPH01203805 A JP H01203805A
Authority
JP
Japan
Prior art keywords
condensate
valve
flow rate
pump
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2566188A
Other languages
Japanese (ja)
Other versions
JP2685472B2 (en
Inventor
Toyohiko Masuda
豊彦 増田
Yukimasa Yoshinari
吉成 行正
Yukihiro Asada
浅田 幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63025661A priority Critical patent/JP2685472B2/en
Publication of JPH01203805A publication Critical patent/JPH01203805A/en
Application granted granted Critical
Publication of JP2685472B2 publication Critical patent/JP2685472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent the occurrence of an excessive flow rate, to ensure the stable continuous feed of water, and to stabilize transmission of power, by a method wherein, when a turbine bypass valve is opened during output operation of a plant, a part of condensate flowing through a condensate purifying device is forced to bypass. CONSTITUTION:A bypass pipe 23 and a bypass valve 22 are situated to a condensate filtering device, a check valve 24 is located in the outlet pipe of a low pressure drain pump 16, and a second low pressure drain up pipe 26, connected to the upper stream of the check valve and a condensate pipe on the downstream side of a condensate desalting device 10, and a second drain valve 25, are provided. When a turbine bypass valve is opened during rated operation, the filter device bypass valve 22 and the second low pressure drain valve 25 are opened by interlock. Operation can be executed such that an amount of water process by a condensate filtering device 9 and a desalting device 10 does not exceed a normal rated operation flow rate. Since an excessive flow rate does not flow to the condensate desalting devices 9 and 10, the pressure loss of a condensate system is prevented from increasing, pressures at the inlets of a high pressure condensate pump 11 and a water feed pump 13 can be ensured, and a loss of feed water to a steam generator due to damage of a pump and a pump trip can be prevented from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電プラントの復水給水系統に係り、特に蒸気
発生器に安定した給水を供給するための復水制御方法及
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a condensate water supply system for a power plant, and more particularly to a condensate control method and apparatus for supplying stable water supply to a steam generator.

〔従来の技術〕[Conventional technology]

従来の蒸気発生器への給水系統については公知例(特開
昭61−105495号)があるが、従来の問題点につ
いて第5図により説明する。
Although there is a known example (Japanese Patent Laid-Open No. 105495/1983) regarding a conventional water supply system to a steam generator, the problems of the conventional system will be explained with reference to FIG.

蒸気発生器1にて発生した蒸気は、高圧タービン3に入
り仕事を行ない、湿分分離器4を介し低圧タービン5供
給されタービン回転させる。タービンから排気された蒸
気は復水器7で凝縮され復水となる。その復水は復水ポ
ンプ8.復水ろ過装!!9.復水脱塩装置10.高圧復
水ポンプ11゜低圧給水加熱器12.給水ポンプ13.
高圧給水加熱器14を通って蒸気発生器1に戻される。
Steam generated in the steam generator 1 enters a high-pressure turbine 3 to perform work, and is supplied to a low-pressure turbine 5 via a moisture separator 4 to rotate the turbine. Steam exhausted from the turbine is condensed in a condenser 7 and becomes condensate. The condensate is pumped by condensate pump 8. Condensate filtration system! ! 9. Condensate desalination equipment 10. High pressure condensate pump 11° low pressure feed water heater 12. Water pump 13.
It passes through the high pressure feedwater heater 14 and returns to the steam generator 1 .

−方、タービンの途中から抽気された蒸気は給水加熱器
12.14にて給水と熱交換してドレン(凝縮水)とな
る。高圧ドレンは高圧ドレンタンク18に集められ高圧
ドレンポンプ19により昇圧し、高圧ドレンタンク水位
調整弁20を介し給水ポンプ13の入口に直接回収され
る。また低圧ドレンは、低圧ドレンタンク15に集めら
れ低圧ドレンポンプ16により昇圧し、低圧ドレンタン
ク水位調整弁17を介し、復水脱塩装置10の上流側に
直接回収される。
On the other hand, the steam extracted from the middle of the turbine exchanges heat with the feed water in the feed water heaters 12 and 14 and becomes drain (condensed water). The high-pressure drain is collected in a high-pressure drain tank 18, increased in pressure by a high-pressure drain pump 19, and directly collected at the inlet of the water supply pump 13 via a high-pressure drain tank water level adjustment valve 20. The low-pressure drain is collected in a low-pressure drain tank 15, raised in pressure by a low-pressure drain pump 16, and directly collected upstream of the condensate desalination device 10 via a low-pressure drain tank water level adjustment valve 17.

ここで蒸気発生器1への給水流量は、蒸気発生器1内の
給水水位が一定となる様に、主蒸気流量相当の給水を、
給水ポンプ13の回転数を調節することによって送水す
る。
Here, the water supply flow rate to the steam generator 1 is such that the water supply water level in the steam generator 1 is constant, and the water supply is equivalent to the main steam flow rate.
Water is supplied by adjusting the rotation speed of the water supply pump 13.

〔発明が解決しようとする課題j 上記従来技術の復水系統およびヒータドレン系統におい
て、発電機の送電系統の系統周波数が過渡的に上昇した
場合、タービンの過速を防止するためにタービン・入口
加減弁2が絞り込まれ、タービンへの蒸気流入量が低下
するため、その余剰の主蒸気はタービンバイパス管22
を通って直接復水器に流入する。この場合にタービンへ
の流入蒸気は約60%程度に低下するため、ヒータへの
油気量もほぼ比例して降下する。一方、蒸気発生器への
給水量は一定(100%流量)が要求されるため復水器
7からの送水量が通常運転中よりも増加することになる
[Problems to be Solved by the Invention j] In the condensate system and heater drain system of the prior art described above, when the system frequency of the power transmission system of the generator increases transiently, the turbine/inlet adjustment is adjusted to prevent the turbine from overspeeding. Since the valve 2 is throttled and the amount of steam flowing into the turbine is reduced, the excess main steam is transferred to the turbine bypass pipe 22.
directly into the condenser. In this case, since the amount of steam flowing into the turbine decreases to about 60%, the amount of oil flowing into the heater also decreases almost proportionally. On the other hand, since the amount of water supplied to the steam generator is required to be constant (100% flow rate), the amount of water fed from the condenser 7 will be greater than during normal operation.

しかし、ドレンポンプを設置した復水系統においては、
一般に復水浄化装!9,10、復水ポンプ8の処理能力
は通常運転流量(約55%)で設計されるため復水器7
からの流量が通常運転流量以上になると復水浄化装置9
,10の破損及び高圧復水ポンプ11や給水ポンプ13
の入口圧力が低下するため、給水ポンプが停止(トリッ
プ)し給水能力がなくなりプラントスクラムに至るとい
う問題があった。
However, in a condensate system equipped with a drain pump,
Generally condensate purification equipment! 9, 10, since the processing capacity of the condensate pump 8 is designed at the normal operating flow rate (approximately 55%), the condenser 7
When the flow rate from the condensate purification device 9 exceeds the normal operating flow rate,
, 10 and high pressure condensate pump 11 and water supply pump 13.
As the inlet pressure of the plant decreases, the water supply pump stops (trips), resulting in a loss of water supply capacity and a plant scram.

本発明の目的は、上記した送電系統の周波数上昇時にタ
ービンバイパス弁21が開した場合に、復水浄化装置9
,10を通る復水量をバイパスして流すことにより、過
大流量を防止し、安定した連続給水を確保し、安定した
送電を図ることにある。
An object of the present invention is to prevent the condensate purification device 9 from opening when the turbine bypass valve 21 opens when the frequency of the power transmission system increases as described above.
By bypassing the amount of condensate passing through , 10, the purpose is to prevent excessive flow, ensure stable continuous water supply, and achieve stable power transmission.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、近年の発電プラントの送電系統運用性向上の
ために、復水制御方法を詳細検討することによってなさ
れたものであり、系統周波数上昇時にタービンバイパス
弁が開しタービン出力に対応した復水流量以上の流量を
蒸気発生器に送水する必要がある場合に、復水浄化装置
等の処理復水量を低減し、復水浄化装置を通過する復水
の一部をバイパスすることにより達成される。
The present invention was developed through detailed study of condensate control methods in order to improve the operability of power transmission systems in power generation plants in recent years. When it is necessary to send water to the steam generator at a flow rate higher than the water flow rate, this can be achieved by reducing the amount of condensate treated by the condensate purification device and bypassing a portion of the condensate that passes through the condensate purification device. Ru.

〔作用〕[Effect]

発電プラントの通常運転中にタービンバイパス弁が開し
た場合には、復水器からの復水流量が通常運転中よりも
増加する。この状態が発生した場合に、復水系統の圧力
損失の最も大きい復水浄化装置を通過する復水の一部を
バイパスして流すことにより、復水浄化装置の過大流量
による損傷を防止することが出来、また下流側の高圧復
水ポンプ及び給水ポンプの入口圧力も低下することがな
いため、安定した給水を確保出来ることになる。
When the turbine bypass valve opens during normal operation of the power plant, the flow rate of condensate from the condenser increases compared to during normal operation. When this condition occurs, a part of the condensate that passes through the condensate purification device with the largest pressure loss in the condensate system is bypassed to prevent damage to the condensate purification device due to excessive flow. In addition, the inlet pressure of the high-pressure condensate pump and water supply pump on the downstream side does not decrease, so a stable water supply can be ensured.

その他の発明としては、タービンバイパイ弁が開した場
合に蒸気発生器の出力を低減してやることにより蒸気発
生器から要求される復水流量が復水浄化系の処理能力以
下になるため、安定した給水を確保出来る。
Another invention is that by reducing the output of the steam generator when the turbine by-pipe valve opens, the condensate flow rate required from the steam generator becomes less than the processing capacity of the condensate purification system, resulting in stable Water supply can be secured.

〔実施例〕〔Example〕

本発明は、給水加熱器ドレンを直接給水系に回収する装
置には、一般的に応用可能である。
The present invention is generally applicable to devices that recover feedwater heater drain directly into the water supply system.

第1図にその一実施例を示す。蒸気発生器1にて発生し
た蒸気は、タービン高圧加減2を介し高圧タービン5に
入り仕事を行ない、湿分分離器4を介し低圧タービン5
供給されタービン回転させる。タービンから排気された
蒸気は復水器7で凝縮され復水となる。その復水は復水
ポンプ8.復水ろ過装置9、復水脱塩装置10、高圧復
水ポンプ11、低圧給水加熱器12、給水ポンプ13、
高圧給水加熱器14を通って蒸気発生器1に戻される。
FIG. 1 shows an example of this. Steam generated in the steam generator 1 enters the high pressure turbine 5 via the turbine high pressure controller 2 to perform work, and passes through the moisture separator 4 to the low pressure turbine 5.
supplied to rotate the turbine. Steam exhausted from the turbine is condensed in a condenser 7 and becomes condensate. The condensate is pumped by condensate pump 8. Condensate filtration device 9, condensate desalination device 10, high pressure condensate pump 11, low pressure feed water heater 12, feed water pump 13,
It passes through the high pressure feedwater heater 14 and returns to the steam generator 1 .

一方、タービンの途中から抽気された蒸気は給水加熱器
12.14にて給水と熱交換してドレン(凝縮水)とな
る。高低ドレンは高圧ドレンタンク18に集められ高圧
ドレンポンプ19により昇圧し、高圧ドレンタンク水位
調整弁20を介し給水ポンプ13の入口に直接回収され
る。また低圧ドレンは、低圧ドレンタンク15に集めら
れ低位ドレンポンプ16により昇圧し、低圧ドレンタン
ク水位調整弁17を介し、復水脱塩装置10上流に直接
回収される。
On the other hand, the steam extracted from the middle of the turbine exchanges heat with the feed water in the feed water heater 12.14 and becomes drain (condensed water). High and low drains are collected in a high-pressure drain tank 18, raised in pressure by a high-pressure drain pump 19, and directly collected at the inlet of the water supply pump 13 via a high-pressure drain tank water level adjustment valve 20. Further, the low pressure drain is collected in the low pressure drain tank 15, the pressure is increased by the low drain pump 16, and the low pressure drain is directly recovered upstream of the condensate desalination device 10 via the low pressure drain tank water level adjustment valve 17.

また1通常運転中に送電系統の周波数が上昇した場合に
は、タービン加減弁2が絞り込まれ、余剰の主蒸気を直
接復水器に排出するために、タービンバイパス弁21が
設けられている。
Further, when the frequency of the power transmission system increases during normal operation, the turbine control valve 2 is throttled down and a turbine bypass valve 21 is provided to discharge excess main steam directly to the condenser.

第1図と従来の技術と異なる点は、復水ろ過装置にバイ
パス管23及びバイパス弁22を設け、また低圧ドレン
ポンプ16の出口管に逆止弁24を設け、その上流から
復水脱塩装置R10の下流復水管に接続する第2の低圧
ドレンアップ管26と第2のドレン弁25を設けたもの
である。
The difference between FIG. 1 and the conventional technology is that a bypass pipe 23 and a bypass valve 22 are provided in the condensate filtration device, and a check valve 24 is provided in the outlet pipe of the low-pressure drain pump 16, and the condensate is desalinated from the upstream side. A second low-pressure drain up pipe 26 and a second drain valve 25 connected to the downstream condensate pipe of the device R10 are provided.

ここで、定格運転中にタービンバイパス弁が開した場合
は、第2図に示すインターロックによりろ過装置バイパ
ス弁22及び第2の低圧ドレン弁25を開する。本発明
を採用した場合の系統内の流量変化を第1図中のワク内
に((通常時)→(タービンバイパス弁開時))の如く
給水流量に対する比率で示す。本図からも明らかな様に
、復水ろ過装置9および脱塩装置10の処理水量は通常
の定格運転流量を上廻ることなく運転出来る。
Here, if the turbine bypass valve opens during rated operation, the filtration device bypass valve 22 and the second low pressure drain valve 25 are opened by the interlock shown in FIG. Changes in the flow rate in the system when the present invention is adopted are shown in the boxes in FIG. 1 as a ratio to the water supply flow rate, as shown in the box ((normal time) → (when the turbine bypass valve is open)). As is clear from this figure, the condensate filtration device 9 and the desalination device 10 can be operated without the amount of treated water exceeding the normal rated operating flow rate.

また、復水浄化装置9,10、に過大流量を流さないた
め復水系統の圧力損失も大きくならず、高圧復水ポンプ
11及び給水ポンプ13の入口圧力も確保出来、ポンプ
損傷やポンプトリップによる蒸気発生器への給水喪失も
防止することが出来る。
In addition, since an excessive flow rate does not flow into the condensate purification devices 9 and 10, the pressure loss in the condensate system does not become large, and the inlet pressure of the high-pressure condensate pump 11 and the water supply pump 13 can be ensured, preventing damage to the pumps or pump trips. Loss of water supply to the steam generator can also be prevented.

第3図に本発明の他の実施例を示す。復水系統において
復水流量計30、低圧復水ポンプ8の出口から高圧ドレ
ンタンク18に復水を送水する高圧トレンタンクへの復
水入口弁32.および低圧ドレンタンク15に復水を送
水する低圧ドレンタンクへの復水入口弁31とその接続
配管34を設け、復水流量計30の流量が復水ろ過装置
9の処理能力(例えば55%給水量)以上になった場合
は、第4図のインターロック図に示す如く、高圧および
低圧ドレンタンクへの復水入口弁31゜32を開する。
FIG. 3 shows another embodiment of the invention. In the condensate system, a condensate flow meter 30, a condensate inlet valve 32 to the high pressure drain tank that sends condensate from the outlet of the low pressure condensate pump 8 to the high pressure drain tank 18. A condensate inlet valve 31 and its connection piping 34 are provided to the low-pressure drain tank 15 to send condensate to the low-pressure drain tank 15. If the amount exceeds 100%, the condensate inlet valves 31 and 32 to the high-pressure and low-pressure drain tanks are opened, as shown in the interlock diagram in FIG.

この様にすれば、ヒータ14゜12からのドレン量が低
下する分を復水浄化装置9.10を通さずにドレンポン
プ16.19にて送水することになり、復水浄化装置9
,10に過大な流量が流れないことになる。
In this way, the amount of water that decreases in the amount of drain from the heaters 14 and 12 will be sent through the drain pump 16.19 without passing through the condensate purification device 9.10.
, 10, an excessive flow rate will not flow.

第6図の実施例は、蒸気発生器1からの主蒸気を高圧ヒ
ータ14.低圧ヒータ12に導びく主蒸気導入管37.
38および止め弁35.36を設けたもので、第7図の
インターロック図に示す様に、タービンバイパス弁21
の開信号にて主蒸気からの止め弁35.36を開するも
のである。本実施例によれば、タービン3,5からヒー
タ14゜12に流れる油気量の減少分をタービンバイパ
ス弁21から復水器7へ流入する余剰の主蒸気で補充し
てやることになり、ドレン量が通常運転と同等となり、
一方タービンバイパス量を減少するため復水量も通常運
転と同等となり、復水浄化装置9.10に過大な流量が
流れることはない。 第8図の実施例は、復水流量計4
1.復水浄化装置入口流量計40.バイパス流量計42
.および復水浄化装置をバイパスするバイパス弁43を
設け、復水浄化装置への通水流量が能力以上にならない
様にバイパス弁43を開度制御するものである。
In the embodiment shown in FIG. 6, main steam from the steam generator 1 is sent to the high pressure heater 14. Main steam introduction pipe 37 leading to the low pressure heater 12.
38 and stop valves 35 and 36, as shown in the interlock diagram in Fig. 7, the turbine bypass valve 21
The stop valves 35 and 36 from the main steam are opened at the open signal. According to this embodiment, the decrease in the amount of oil flowing from the turbines 3 and 5 to the heaters 14 and 12 is replenished with surplus main steam flowing from the turbine bypass valve 21 to the condenser 7, so that the amount of drain is reduced. is equivalent to normal operation,
On the other hand, since the turbine bypass amount is reduced, the amount of condensate is also the same as in normal operation, and an excessive flow rate does not flow into the condensate purification device 9.10. The embodiment of FIG. 8 is a condensate flow meter 4.
1. Condensate purification device inlet flow meter 40. Bypass flow meter 42
.. A bypass valve 43 is provided to bypass the condensate purification device, and the opening of the bypass valve 43 is controlled so that the flow rate of water to the condensate purification device does not exceed its capacity.

また復水ポンプ8の容量が不足する場合には、待機中の
復水ポンプを起動させることにより送水量を確保するも
のである。
Further, when the capacity of the condensate pump 8 is insufficient, the water supply amount is ensured by starting the condensate pump on standby.

第9図の実施例は、タービンバイパス弁開時に蒸気発生
器1の発生蒸気量を低減するため、蒸気発生器1の出力
を降下させる方式である。この場合は、周波数が通常条
件に戻った場合にも電気出力は回復しないことになるが
、周波数上昇が長蒔間続く場合には、熱効率及び安定給
水の観点から有利である。
The embodiment shown in FIG. 9 is a system in which the output of the steam generator 1 is lowered in order to reduce the amount of steam generated by the steam generator 1 when the turbine bypass valve is opened. In this case, the electrical output will not recover even when the frequency returns to normal conditions, but if the frequency continues to rise for a long time, it is advantageous from the viewpoint of thermal efficiency and stable water supply.

上記した実施例は、発明の一実施例であるが。The embodiment described above is one embodiment of the invention.

それぞれの要素発明を組合せることにより信頼性の高い
最適な復水系統が得られる。
By combining each elemental invention, a highly reliable and optimal condensate system can be obtained.

また、送電系統の周波数上昇により以上の実施例の如く
復水系統の運転条件が通常運転と異なった状態となるが
、周波数が正常に戻りタービンバイパス弁が閉しても連
続運転上は特に支しつかえない。このため1周波数が安
定した時点で開動作した復水浄化装置のバイパス弁等を
閉動作させる。
Furthermore, due to an increase in the frequency of the power transmission system, the operating conditions of the condensate system will be different from normal operation as in the above example, but even if the frequency returns to normal and the turbine bypass valve closes, it will not be particularly helpful for continuous operation. I can't discipline it. For this reason, when one frequency becomes stable, the bypass valve of the condensate purification device, which was opened, is closed.

〔発明の効果〕〔Effect of the invention〕

本発明は、原子力および水力発電プラントのヒータドレ
ンを直接復水系に回収するドレンアップシステムを採用
した復水系統に適用することが可能であり下記の効果が
ある。
INDUSTRIAL APPLICATION This invention can be applied to the condensate system which employs the drain up system which collect|recovers the heater drain directly to a condensate system of a nuclear power plant and a hydroelectric power plant, and has the following effect.

1、送電系統の周波数が上昇した場合に、復水浄化装置
および復水ポンプ、給水ポンプの損傷を回避することが
出来、蒸気発生器に安定した給水が可能である。
1. When the frequency of the power transmission system increases, damage to the condensate purification device, condensate pump, and water supply pump can be avoided, and stable water supply to the steam generator is possible.

2、本発明によれば、過渡的に周波数が上昇した場合に
おいても、蒸気発生器の出力を低下させる必要はなく、
周波数が正常になった場合は再び元の電気出力を確保出
来るため、運用性が大幅に改善される。
2. According to the present invention, even when the frequency increases transiently, there is no need to reduce the output of the steam generator,
When the frequency returns to normal, the original electrical output can be ensured again, greatly improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の説明図、第3図、第4図は本
発明の他の実施例の説明図、第5図は従来の復水給水系
及びヒータドレン系の説明図、第6図から第9図までは
本発明の他の実施例の説明図を示す。 1・・・蒸気発生器、2・・・タービン加減弁、3・・
・高圧タービン、4・・・湿分分離器、5・・・低圧タ
ービン、6・・・発電機、7・・・復水器、8・・・低
圧復水ポンプ、9・・・復水ろ過装置、10・・・復水
脱塩装置、11・・・高圧復水ポンプ、12・・・低圧
給水加熱器、13・・・給水ポンプ、14・・・高圧給
水加熱器、15・・・低圧ドレンタンク、16・・・低
圧ドレンポンプ、17・・・低圧ドレンタンク水位調節
弁、18・・・高圧ドレンタンク、19・・・高圧ドレ
ンポンプ、20・・・高圧ドレンタンク水位調節弁、2
1・・・低圧ドレンポンプ出口管、22・・・復水ろ過
装置バイパス弁、23・・・復水ろ過装置バイパス管、
24・・・低圧ドレンポンプ出口逆止弁、25・・・低
圧ドレンポンプ出口バイパス弁、26・・・低圧ドレン
ポンプ出口バイパス管、27・・・バイパス弁制御装置
、3o・・・流量検出器、31・・・低圧ドレンタンク
復水入口弁、31・・・高圧ドレンタンク復水入口弁、
33・・・復水入口弁制御装置、35.36・・・主蒸
気導入弁、37.38・・・主蒸気導入管、41,42
.42・・・流量検出器、43・・・復水浄化装置バイ
パス弁、44・・・Aイノ(ス第2図 凶 第4図 第7図 第9図
FIGS. 1 and 2 are explanatory diagrams of the present invention, FIGS. 3 and 4 are explanatory diagrams of other embodiments of the present invention, and FIG. 5 is an explanatory diagram of a conventional condensate water supply system and heater drain system. 6 to 9 show explanatory diagrams of other embodiments of the present invention. 1...Steam generator, 2...Turbine control valve, 3...
・High pressure turbine, 4... Moisture separator, 5... Low pressure turbine, 6... Generator, 7... Condenser, 8... Low pressure condensate pump, 9... Condensate Filtration device, 10... Condensate desalination device, 11... High pressure condensate pump, 12... Low pressure feed water heater, 13... Water feed pump, 14... High pressure feed water heater, 15...・Low pressure drain tank, 16...Low pressure drain pump, 17...Low pressure drain tank water level control valve, 18...High pressure drain tank, 19...High pressure drain pump, 20...High pressure drain tank water level control valve ,2
1... Low pressure drain pump outlet pipe, 22... Condensate filtration device bypass valve, 23... Condensate filtration device bypass pipe,
24...Low pressure drain pump outlet check valve, 25...Low pressure drain pump outlet bypass valve, 26...Low pressure drain pump outlet bypass pipe, 27...Bypass valve control device, 3o...Flow rate detector , 31...Low pressure drain tank condensate inlet valve, 31...High pressure drain tank condensate inlet valve,
33... Condensate inlet valve control device, 35.36... Main steam introduction valve, 37.38... Main steam introduction pipe, 41, 42
.. 42...Flow rate detector, 43...Condensate purification device bypass valve, 44...A inno(s) Fig. 2 Fig. 4 Fig. 7 Fig. 9

Claims (1)

【特許請求の範囲】 1、発電プラントの蒸気発生器からの蒸気を主タービン
に送る主蒸気管と主蒸気管から分岐して復水器へ至るタ
ービンバイパス配管及びバイパス弁と、復水器から蒸気
発生器へ復水を送水する2台以上の復水ポンプと、復水
ポンプの下流に設置する復水浄化装置と、給水を加熱す
る給水加熱器と、給水加熱器のドレンを復水系統に直接
回収するドレンポンプと、それらを接続する配管で構成
される復水系及びヒータドレン系統において、プラント
出力運転中にタービンバイパス弁が開した場合、前記復
水浄化装置を通過する復水の一部をバイパスすることを
特徴とする復水流量制御方法。 2、発電プラントの蒸気発生器からの蒸気を主タービン
に送る主蒸気管と主蒸気管から分岐して復水器へ至るタ
ービンバイパス配管及びバイパス弁と、復水器から蒸気
発生器へ復水を送水する2台以上の復水ポンプと、復水
ポンプの下流に設置する復水ろ過装置と復水脱塩装置と
、給水を加熱する給水加熱器と、給水加熱器のドレンを
復水脱塩装置の上流側復水系に直接回収するドレンポン
プと、それらを接続する配管で構成される復水給水系及
びヒータドレン系統において、復水ろ過装置をバイパス
する復水バイパス管及び弁を設け、また、前記ドレンポ
ンプ出口配管に逆止弁を設け、その上流から分岐して復
水脱塩装置の下流側に接続する配管及び弁を設け、ター
ビンバイパス弁の開信号によって、当該復水ろ過装置バ
イパス弁及び追設したドレンポンプ出口側バイパス弁を
開することを特徴とする復水流量制御装置。 3、特許請求の範囲第2項記載の復水給水系及びヒータ
ドレン系統において、復水ろ過装置をバイパスする復水
バイパス管及び弁とドレンポンプ出口配管から分岐して
復水脱塩装置の下流側に接続するバイパス管及び弁を設
け、また復水ポンプの出口側に流量計を設け、復水流量
が規定値以上となった場合に、前記、復水ろ過装置バイ
パス弁及びドレンポンプ出口側バイパス弁を開すること
を特徴とする復水流量制御装置。 4、特許請求の範囲第2項記載の復水給水系及びヒータ
ドレン系統において、復水ポンプの出口管から前記ドレ
ンポンプ入口側に復水を送水する復水流入管及び弁を設
け、タービンバイパス弁開信号により、前記復水流入弁
を開することを特徴とする復水流量制御装置。 5、特許請求の範囲第2項記載の復水流量制御装置にお
いて、復水ろ過装置の入口管に流量計を設け、該当流量
計の信号によって、復水ろ過装置バイパス管に設けたバ
イパス弁開度を制御し、復水ろ過装置に流れる流量を規
定値以上流れない様にしたことを特徴とする復水流量制
御装置。 6、特許請求の範囲第2項記載の復水流量制御装置にお
いて、タービンバイパス弁開信号または復水流量が規定
値以上となった場合待機中の復水ポンプを起動させるこ
とを特徴とする復水流量制御装置。 7、特許請求の範囲第2項記載の復水給水系及びヒータ
ドレン系統において、蒸気発生器からの主蒸気を前記給
水加熱器に直接導入する主蒸気導入管及び止め弁を設け
、タービンバイパス弁開信号により、当該主蒸気導入管
の止め弁を開することを特徴とする復水流量及び主蒸気
制御装置。 8、発電プラントの蒸気発生器から主タービンをバイパ
スして復水器へ至るタービンバイパス配管及びバイパス
弁と、復水器から蒸気発生器へ給水を送水する2台以上
の給水ポンプと、給水を加熱する給水加熱器と、給水加
熱器のドレンを復水脱塩装置の上流側復水系に直接回収
するドレンポンプと、それらを接続する配管で構成され
る復水給水系及びヒータドレン系統において、タービン
バイパス弁の開信号よって、前記給水ポンプのうち1台
を停止させるか、または、給水ポンプの送水流量を低減
することを特徴とする給水制御装置。 9、特許請求の範囲第8項記載の復水給水系及びヒータ
ドレン系統において、タービンバイパス弁が開し、主タ
ービン出力が低下した場合は、主タービン出力に応じて
蒸気発生器の発生蒸気流量を低減させたことを特徴とす
る蒸気発生器制御装置
[Claims] 1. A main steam pipe that sends steam from a steam generator of a power plant to a main turbine, a turbine bypass pipe and bypass valve that branches from the main steam pipe and leads to a condenser, and Two or more condensate pumps that send condensate to the steam generator, a condensate purification device installed downstream of the condensate pump, a feedwater heater that heats the feedwater, and a condensate system that connects the drain of the feedwater heater to the condensate system. In a condensate system and a heater drain system, which are composed of a drain pump that directly recovers water from the water and piping that connects them, if the turbine bypass valve opens during plant output operation, part of the condensate that passes through the condensate purification device A condensate flow rate control method characterized by bypassing. 2. Main steam pipe that sends steam from the steam generator of the power plant to the main turbine; turbine bypass piping and bypass valve that branches from the main steam pipe to the condenser; and condensation from the condenser to the steam generator. Two or more condensate pumps that deliver water, a condensate filtration device and a condensate desalination device installed downstream of the condensate pump, a feedwater heater that heats the feedwater, and a condensate demineralizer that heats the feedwater heater drain. In the condensate water supply system and heater drain system, which are composed of a drain pump that directly collects condensate into the upstream condensate system of the salt equipment, and piping that connects them, a condensate bypass pipe and valve that bypasses the condensate filtration device are installed, and , a check valve is provided on the drain pump outlet piping, and piping and valves are provided that branch from the upstream side and connect to the downstream side of the condensate desalination device, and the condensate filtration device bypass is activated by the opening signal of the turbine bypass valve. A condensate flow rate control device characterized by opening a valve and an additional drain pump outlet side bypass valve. 3. In the condensate water supply system and heater drain system according to claim 2, the condensate bypass pipe and valve that bypass the condensate filtration device and the condensate bypass pipe branched from the drain pump outlet pipe and downstream of the condensate desalination device A bypass pipe and a valve are provided to connect to the condensate filter, and a flow meter is provided on the outlet side of the condensate pump, so that when the condensate flow rate exceeds a specified value, A condensate flow rate control device characterized by opening a valve. 4. In the condensate water supply system and the heater drain system according to claim 2, a condensate inlet pipe and a valve are provided to send condensate from the outlet pipe of the condensate pump to the inlet side of the drain pump, and the turbine bypass valve is opened. A condensate flow rate control device, characterized in that the condensate inlet valve is opened in response to a signal. 5. In the condensate flow rate control device according to claim 2, a flow meter is provided in the inlet pipe of the condensate filtration device, and a bypass valve provided in the condensate filtration device bypass pipe is opened by a signal from the flow meter. A condensate flow rate control device that controls the flow rate of condensate and prevents the flow rate flowing into a condensate filtration device from exceeding a specified value. 6. The condensate flow rate control device according to claim 2, wherein the condensate pump on standby is activated when the turbine bypass valve opening signal or the condensate flow rate exceeds a specified value. Water flow control device. 7. In the condensate water supply system and heater drain system according to claim 2, a main steam introduction pipe and a stop valve are provided to directly introduce main steam from the steam generator to the feed water heater, and a turbine bypass valve is opened. A condensate flow rate and main steam control device characterized by opening a stop valve of the main steam introduction pipe in response to a signal. 8. Turbine bypass piping and bypass valve that bypass the main turbine of the power plant to the condenser, two or more feed water pumps that send water from the condenser to the steam generator, and In the condensate water supply system and heater drain system, which are composed of a feedwater heater to heat the feedwater heater, a drain pump that directly collects the drain from the feedwater heater to the upstream condensate system of the condensate desalination equipment, and piping that connects them, the turbine A water supply control device characterized in that one of the water supply pumps is stopped or the water supply flow rate of the water supply pump is reduced in response to an opening signal of a bypass valve. 9. In the condensate water supply system and heater drain system according to claim 8, when the turbine bypass valve opens and the main turbine output decreases, the flow rate of steam generated by the steam generator is adjusted according to the main turbine output. Steam generator control device characterized by reduced
JP63025661A 1988-02-08 1988-02-08 Condensate system control method and device Expired - Fee Related JP2685472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025661A JP2685472B2 (en) 1988-02-08 1988-02-08 Condensate system control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025661A JP2685472B2 (en) 1988-02-08 1988-02-08 Condensate system control method and device

Publications (2)

Publication Number Publication Date
JPH01203805A true JPH01203805A (en) 1989-08-16
JP2685472B2 JP2685472B2 (en) 1997-12-03

Family

ID=12171988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025661A Expired - Fee Related JP2685472B2 (en) 1988-02-08 1988-02-08 Condensate system control method and device

Country Status (1)

Country Link
JP (1) JP2685472B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117804A (en) * 1973-03-15 1974-11-11
JPS60143110U (en) * 1984-03-05 1985-09-21 株式会社東芝 Steam turbine condensate system equipment
JPS61262509A (en) * 1985-05-17 1986-11-20 株式会社日立製作所 Flow controller for drain filter of feedwater heater
JPS62119302A (en) * 1985-11-19 1987-05-30 株式会社東芝 Turbine plant with feedwater-heater drain injector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117804A (en) * 1973-03-15 1974-11-11
JPS60143110U (en) * 1984-03-05 1985-09-21 株式会社東芝 Steam turbine condensate system equipment
JPS61262509A (en) * 1985-05-17 1986-11-20 株式会社日立製作所 Flow controller for drain filter of feedwater heater
JPS62119302A (en) * 1985-11-19 1987-05-30 株式会社東芝 Turbine plant with feedwater-heater drain injector

Also Published As

Publication number Publication date
JP2685472B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JP4395254B2 (en) Combined cycle gas turbine
WO1983001812A1 (en) Sliding pressure flash tank
JP3774487B2 (en) Combined cycle power plant
JP2685472B2 (en) Condensate system control method and device
JPH044481B2 (en)
JP3664759B2 (en) Flash prevention device
JP3547458B2 (en) High pressure drain pump shaft sealing equipment
JPH0751887B2 (en) Turbin overspeed suppression system
CN102942228A (en) Polishing system and control method for secondary circuit condensate of inland nuclear power station
JPS6338804A (en) Condensate device
JPS5993906A (en) Steam turbine plant
JPS63294408A (en) Feedwater controller for steam generator
JP2817741B2 (en) Water flow safety device for condensate treatment equipment
JP2927860B2 (en) Feed water heater for reactor
JPS6235033B2 (en)
JPH0356723Y2 (en)
JPH0387502A (en) Device for controlling feedwater for waste heat recovery boiler
JPS63201303A (en) Protection device for mixed pressure extraction turbine
JPS63192905A (en) Main steam pressure control method for power generating plant
JPH0633958B2 (en) Condensate system
JPH0242395A (en) Nuclear reactor feed water flow rate controller
JPS62206308A (en) Condensing plant for steam turbine plant
JPH03115703A (en) Cooling device of deaerator down take pipe
JPH0330762B2 (en)
JPS63294407A (en) Method and device for controlling feedwater of steam generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees