JPS63192905A - Main steam pressure control method for power generating plant - Google Patents
Main steam pressure control method for power generating plantInfo
- Publication number
- JPS63192905A JPS63192905A JP2293887A JP2293887A JPS63192905A JP S63192905 A JPS63192905 A JP S63192905A JP 2293887 A JP2293887 A JP 2293887A JP 2293887 A JP2293887 A JP 2293887A JP S63192905 A JPS63192905 A JP S63192905A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- turbine
- valve
- main steam
- turbine bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000010248 power generation Methods 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、火力発電プラント、原子力発電プランド等蒸
気により発電用タービンを回転させて発電を行なう発電
プラントの主蒸気圧力制御方法に関する。[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention relates to main steam pressure control of a power generation plant, such as a thermal power plant or a nuclear power generation plant, which rotates a power generation turbine using steam to generate power. Regarding the method.
(従来の技術)
一般に、火力発電プラント、原子力発電プラント等蒸気
により発電用タービンを回転させて発電を行なう発電プ
ラントには、タービンバイパス系が配置されている。こ
のようなタービンバイパス系は、そのバイパス容量を1
0ozとすることが望ましいが、建設コストの増大を招
くことから、通常は、数10%程度とされている。(Prior Art) Generally, a turbine bypass system is installed in a power generation plant, such as a thermal power plant or a nuclear power plant, which generates power by rotating a power generation turbine using steam. Such a turbine bypass system has a bypass capacity of 1
Although it is desirable to set it to 0 oz, since it causes an increase in construction cost, it is usually set to about several 10%.
そして、例えば原子力発電プラント等では、上述のター
ビンバイパス系のタービンバイパス弁およびタービン加
減弁の弁開度をE HC(Electtr。For example, in a nuclear power plant or the like, the valve opening degrees of the turbine bypass valve and the turbine control valve of the turbine bypass system are controlled by EHC (Electtr).
Hydraulic Controller )により
、コントロールし、主蒸気圧力およびタービンの速度を
、以下に示すようにして制御している。The main steam pressure and turbine speed are controlled by a hydraulic controller (Hydraulic Controller), and the main steam pressure and turbine speed are controlled as shown below.
このEHCは、タービン加減弁開度要求とその実開度(
およびタービンバイパス弁開度要求とその実開度)が一
致するようにハードを構成した堝合、タービン加減弁開
度要求、その実開度、タービン流入蒸気流量、タービン
出力との間にほぼ比例関係が成り立つという事実に基づ
き、第3図に示すように、主蒸気圧力から全流量要求信
号を算出する全流量要求信号算出部31、タービンの速
度から加減弁流量要求信号を算出する加減弁流量要求信
号算出部32、低値優先回路33.34.35、関数発
生器36.37等からなり、操作量としてタービン加減
弁の開度要求とタービンバイパス弁の開度要求を出力す
る演算回路によって構成されている。This EHC consists of the turbine adjustment valve opening request and its actual opening (
The hardware is configured so that the required turbine bypass valve opening and its actual opening) match, and there is a nearly proportional relationship between the turbine regulator valve opening requirement, its actual opening, the turbine inflow steam flow rate, and the turbine output. Based on this fact, as shown in FIG. 3, a full flow rate request signal calculation unit 31 calculates a total flow rate request signal from the main steam pressure, and a control valve flow rate request signal calculates a control valve flow rate request signal from the turbine speed. It consists of a calculating section 32, low value priority circuits 33, 34, 35, function generators 36, 37, etc., and is constituted by an arithmetic circuit that outputs the opening degree request of the turbine control valve and the opening degree request of the turbine bypass valve as manipulated variables. ing.
そして、プラントが通常運転中あるいはプラント制御系
による出力変更中等の電力系統からの周波数外乱がない
状態での運転では、加減弁流量要求信号は、全流量要求
信号より大となり、タービン加減弁開度要求は、全流量
要求信号によって与えられ、圧力優先制御が行なわれる
。Then, when the plant is in normal operation or when there is no frequency disturbance from the electric power system such as output change by the plant control system, the regulator valve flow rate request signal is larger than the total flow rate request signal, and the turbine regulator valve opening is The demand is given by a full flow demand signal and pressure priority control is provided.
一方、これに対して負荷喪失等の電力系統周波数外乱が
加わり、タービンの回転数が上昇し、加減弁流量要求信
号が、全流量要求信号より小となる状態での制御では、
タービン加減弁の開度要求は、加減弁流量要求信号によ
って与えられ、タービン速度優先制御が行なわれる。On the other hand, in control when power system frequency disturbances such as load loss are added, the turbine rotation speed increases, and the regulator valve flow rate request signal becomes smaller than the total flow rate request signal,
The opening degree request of the turbine control valve is given by the control valve flow rate request signal, and turbine speed priority control is performed.
また、EHCは、緊急時のタービン過速防止のためにパ
ワー/ロードアンバランスリレー(PLUリレー)を備
えている。The EHC also includes a power/load unbalance relay (PLU relay) to prevent turbine overspeed in an emergency.
このPLUリレーは、プラントが任意の負荷で運転中に
、例えば定格負荷換算で40%以上等の大幅な負荷喪失
が生じ、発電機負荷とタービン出力との間に所定の値以
上の差、例えば(40χ/10ミリ秒)以上の差が生じ
た場合に、タービン加減弁を数ミリ秒で全閉とし、ター
ビンへ流入する蒸気を急速遮断するものである。This PLU relay is used when a large load loss occurs, for example, 40% or more in terms of rated load, while the plant is operating at a given load, and the difference between the generator load and the turbine output exceeds a predetermined value, e.g. When a difference of (40χ/10 milliseconds) or more occurs, the turbine control valve is fully closed in several milliseconds, and steam flowing into the turbine is rapidly shut off.
また、PLUリレー作動時には、同時にタービンバイパ
ス弁を数ミリ秒で急速に開とし、行き場を失った蒸気を
復水器ヘダンプするとともに、タービンの出力を制御す
る負荷設定(通常運転時には圧力制御を優先させるため
110z程度に設定されている)をOxに突変させ、P
LUリレーがリセットされるまで保持する。In addition, when the PLU relay is activated, the turbine bypass valve is simultaneously opened rapidly in a few milliseconds, dumping the steam that has nowhere else to go to the condenser, and setting the load to control the turbine output (pressure control is given priority during normal operation). (set to about 110z) to Ox, and P
Hold until the LU relay is reset.
タービンへ流入する蒸気が遮断されると、タービンの出
力は急速に低下する。この時、EHCは、発電機負荷と
タービン出力との間の差が前述の所定の値〈40%)以
下となる。までタービン出力が低下したことを検知する
と、PLUリレーをリセットするとともに、負荷設定を
闇値に突変させ、復帰させる。負荷設定が復帰すると、
負荷を喪失した系統は、周波数が所定値より高い状態に
あるので、タービン加減弁は、加減弁流量要求信号によ
って再び開き始める。When the steam flowing into the turbine is cut off, the output of the turbine decreases rapidly. At this time, in the EHC, the difference between the generator load and the turbine output is equal to or less than the above-mentioned predetermined value (40%). When it is detected that the turbine output has decreased to a certain level, the PLU relay is reset, the load setting is suddenly changed to the dark value, and the load is restored. When the load setting is restored,
Since the unloaded system is at a frequency higher than a predetermined value, the turbine regulator valve begins to open again due to the regulator flow request signal.
そして、プラント制御系の出力司令信号の要求に基づい
て、炉出力を減少させるとともに、給水流量等を減少さ
せて、蒸気発生器出口蒸気流量を減少させるセットパッ
ク運転を行なう、なお、セットパック運転による蒸気発
生器出口蒸気流量の減少速度は、例えば高速増殖炉プラ
ント等では、−5z1分程度とされている。Then, based on the request of the output command signal of the plant control system, a set pack operation is performed in which the reactor output is reduced, the feed water flow rate, etc. is reduced, and the steam generator outlet steam flow rate is reduced. The rate of decrease in the steam flow rate at the exit of the steam generator due to this is, for example, about -5z1 minute in a fast breeder reactor plant.
セットパック運転が進むと、タービン加減弁の前圧(主
蒸気圧力)が低下する。このため、EHCの内部で計算
される全流量要求が低下して、ついには加減弁流量要求
を下まわる状態となる。タービンバイパス弁の開度要求
は、全流量と加減弁流量要求の差で与えられるので、こ
のとき、タービンバイパス弁は全閉とされ、セットパッ
ク運転は停止される。As the set pack operation progresses, the pressure in front of the turbine control valve (main steam pressure) decreases. For this reason, the total flow rate requirement calculated within the EHC decreases, and eventually falls below the regulating valve flow rate requirement. Since the opening degree request of the turbine bypass valve is given by the difference between the full flow rate and the regulating valve flow rate request, at this time, the turbine bypass valve is fully closed and the set pack operation is stopped.
(発明が解決しようとする問題点)
しかしながら、上述の従来の発電プラントの制御方法で
は、次のような問題がある。(Problems to be Solved by the Invention) However, the conventional power plant control method described above has the following problems.
すなわち、縦軸を蒸気流量、横軸を時間とした第4図の
グラフに示すように、例えばタービンバイパス容量を5
0%とされた原子力発電プラントにおいて、定格出力運
転中に50%の負荷喪失が生じたような場合、PLUリ
レーが一旦作動すると、PLUリレーがリセットされた
瞬間の加減弁開度要求が例えば全開要求であっても、弁
を駆動する油圧系統の作動速度には上限があり、実開度
は、速やかに全開とはならず、例えば1秒程度で開き始
め、10数秒程度で全開となる。このため、タービン蒸
気流量は、実線aで示すように一旦ゼロとなり、PLU
リレーがリセットされると数秒から10数秒後に50%
となる。That is, as shown in the graph of Figure 4, where the vertical axis is the steam flow rate and the horizontal axis is time, for example, if the turbine bypass capacity is 5.
In a nuclear power plant that is set to 0%, if a 50% load loss occurs during rated output operation, once the PLU relay is activated, the adjustment valve opening request at the moment the PLU relay is reset is, for example, fully open. Even when requested, there is an upper limit to the operating speed of the hydraulic system that drives the valve, and the actual opening degree does not fully open immediately, for example, it starts opening in about 1 second and becomes fully open in about 10-odd seconds. Therefore, the turbine steam flow rate temporarily becomes zero as shown by the solid line a, and the PLU
50% after a few seconds to 10 seconds when the relay is reset
becomes.
また、タービンバイパス蒸気流量は、点線すで示すよう
に、PLUリレーの作動後、直ちに50Xとなり、−5
%/分程度で行なわれるセットパック運転にともなって
徐々に減少する。In addition, the turbine bypass steam flow rate becomes 50X immediately after the PLU relay is activated, as shown by the dotted line, and -5
It gradually decreases with set pack operation performed at about %/min.
したがって、タービン蒸気流量とタービンバイパス蒸気
流量の和は、一点鎖線Cで示すように、100xから一
旦50%となり、数秒から10数秒後にほぼ100%と
なるが、蒸気発生器出口蒸気流量は、実線dで示すよう
に、セットパック運転によるプロセス量の変化速度が、
分オーダと遅いためほとんど変化せず、斜線で示す領域
に相当する蒸気のミスマツチが生じる。Therefore, the sum of the turbine steam flow rate and the turbine bypass steam flow rate, as shown by the dashed line C, once becomes 50% from 100x, and becomes almost 100% after several seconds to 10-odd seconds, but the steam generator outlet steam flow rate is the same as the solid line As shown in d, the rate of change in process amount due to set pack operation is
Since it is slow, on the order of minutes, there is almost no change, and a steam mismatch corresponding to the shaded area occurs.
このため、斜線領域に相当する余剰な蒸気による圧力上
昇のために、逃し弁、安全弁が開となり、蒸気の大気放
出が行なわれる。このような蒸気の大気放出は、高度に
水質管理された水を損失することであり、好ましくない
。Therefore, due to the pressure increase due to the excess steam corresponding to the shaded area, the relief valve and the safety valve are opened, and the steam is released into the atmosphere. The release of such vapor into the atmosphere is undesirable as it results in the loss of highly controlled water.
また、給水加熱器および脱気器の加熱蒸気として、通常
は、タービンから蒸気の一部を抽気して用いているため
、タービン蒸気流量がゼロとなっている間は、これらの
、加熱蒸気が失われるため、給水の急激な温度低下や給
水ポンプのキャビテーションの発生等を招く恐れがある
という問題がある。In addition, since a part of the steam is usually extracted from the turbine and used as heating steam for the feedwater heater and deaerator, while the turbine steam flow rate is zero, these heating steams are There is a problem that this loss may cause a sudden drop in the temperature of the water supply and cavitation of the water supply pump.
本発明は、かかる従来の事情に対処してなされたもので
、タービンバイパス容量を越える運転中にPLUリレー
が作動し、タービン加減弁が急速全閉とされた場合でも
、主蒸気圧力を逃し弁および安全弁の作動圧力以下に抑
制して、主蒸気の大気放出を防止することができ、かつ
給水加熱器および脱気器の加熱蒸気を確保して、給水の
急激な温度低下および給水ポンプのキャビテーションの
発生を防止することのできる発電プラントの主蒸気圧力
制御方法を提供しようとするものである。The present invention has been made in response to such conventional circumstances, and even when the PLU relay is activated during operation exceeding the turbine bypass capacity and the turbine control valve is quickly fully closed, the main steam pressure is released through the relief valve. It is possible to prevent main steam from being released into the atmosphere by suppressing the pressure to below the operating pressure of the safety valve, and to secure heating steam for the feed water heater and deaerator, thereby preventing a sudden temperature drop in the feed water and cavitation of the feed water pump. The present invention aims to provide a main steam pressure control method for a power plant that can prevent the occurrence of
[発明の構成]
(問題点を解決するための手段)
すなわち本発明は、タービンバイパス容量が100%未
満とされた発電プラントの主蒸気圧力制御方法において
、加減弁を介挿され主蒸気配管と補助蒸気ヘッダとを接
続する配管を配設し、タービンバイパス容量を越える運
転中にパワー/ロードアンバランスリレーが作動し、タ
ービン加減弁が急速全閉とされた場合は、起動バイパス
系のドレンセパレータのドレン弁開度および前記加減弁
開度を操作して、余剰蒸気をフラッシュタンクおよび補
助蒸気ヘッダへ導入し、主蒸気圧力を逃し弁および安全
弁の作動圧力以下に抑制することを特徴とする。[Structure of the Invention] (Means for Solving the Problems) That is, the present invention provides a main steam pressure control method for a power plant in which the turbine bypass capacity is less than 100%, in which a regulating valve is inserted between the main steam piping and the main steam pressure. Install piping to connect to the auxiliary steam header, and if the power/load imbalance relay is activated during operation exceeding the turbine bypass capacity and the turbine control valve is quickly fully closed, the drain separator of the startup bypass system will be installed. The drain valve opening degree and the adjustment valve opening degree are manipulated to introduce excess steam into the flash tank and the auxiliary steam header, thereby suppressing the main steam pressure to below the operating pressure of the relief valve and the safety valve.
(作 用)
本発明の発電プラントの主蒸気圧力制御方法では、加減
弁を介挿され主蒸気配管と補助蒸気ヘッダとを接続する
配管を配置し、タービンバイパス容量を越える運転中に
パワー/ロードアンバランスリレーが作動し、タービン
加減弁が急速全閉とされた場合は、起動バイパス系のド
レンセパレータのドレン弁開度および主蒸気配管と補助
蒸気ヘッダとを接続する配管に介挿された加減弁開度を
操作して、余剰蒸気をフラッシュタンクおよび補助蒸気
ヘッダへ導入し、主蒸気圧力を逃し弁および安全弁の作
動圧力以下に抑制する。(Function) In the main steam pressure control method for a power generation plant of the present invention, a pipe is inserted with a regulating valve and connects the main steam pipe and the auxiliary steam header, and the power/load is controlled during operation exceeding the turbine bypass capacity. When the unbalance relay is activated and the turbine control valve is quickly fully closed, the drain valve opening of the drain separator in the startup bypass system and the control valve inserted in the pipe connecting the main steam pipe and the auxiliary steam header are By manipulating the valve opening degree, surplus steam is introduced into the flash tank and auxiliary steam header, and the main steam pressure is suppressed below the operating pressure of the relief valve and safety valve.
したがって、逃し弁および安全弁からの余剰蒸気の大気
放出を防止することができる。また、補助蒸気ヘッダか
ら、給水加熱器および脱気器へ加熱蒸気を供給すること
ができ、給水加熱器および脱気器の加熱蒸気も確保する
ことができる。Therefore, excess steam can be prevented from being released into the atmosphere from the relief valve and the safety valve. Further, heated steam can be supplied from the auxiliary steam header to the feedwater heater and the deaerator, and heated steam for the feedwater heater and the deaerator can also be secured.
(実施例)
以下本発明の発電プラントの主蒸気圧力制御方法を、図
面を参照して一実施例について説明する。(Embodiment) Hereinafter, an embodiment of the main steam pressure control method for a power plant according to the present invention will be described with reference to the drawings.
第1図は、高速増殖炉発電プラントを示すもので、蒸気
発生器1内で、2次ナトリウム系と熱交換を行なって発
生した蒸気は、起動バイパス系の、ドレンセパレータ2
を通った後、タービン加減弁3等を介挿され、安全弁4
a、逃し弁4bを備えた主蒸気配管5を通ってタービン
6に導入され、発電機7を回転させて発電を行なう。Figure 1 shows a fast breeder reactor power plant. Steam generated by heat exchange with the secondary sodium system in the steam generator 1 is transferred to the drain separator 2 of the startup bypass system.
After passing through the turbine, a turbine control valve 3 etc. is inserted, and a safety valve 4 is inserted.
a, the steam is introduced into a turbine 6 through a main steam pipe 5 equipped with a relief valve 4b, and a generator 7 is rotated to generate electricity.
タービン6を回転させた後の蒸気は、復水器8で水に戻
され、脱気器9で蒸気分を取り除かれた後、給水ポンプ
駆動用タービン10によって駆動される給水ポンプ11
、(起動時等はモータ駆動の給水ポンプ11a)によっ
て給水加熱器12に送られ、ここで加熱された後、蒸気
発生器1へ送られる。The steam after rotating the turbine 6 is returned to water in the condenser 8, and the steam is removed in the deaerator 9, and then the water supply pump 11 is driven by the water supply pump driving turbine 10.
The water is sent to the feed water heater 12 by the motor-driven feed water pump 11a (at startup, etc.), heated there, and then sent to the steam generator 1.
なお、ドレンセパレータ2は、ドレン弁13を介してフ
ラッシュタンク14に接続されており、フラッシュタン
ク14に導入された蒸気は、復水器8に送られか、また
は補助蒸気へラダ15を介して脱気器9、給水加熱器1
2に送られ、水は復水器8に送られる。The drain separator 2 is connected to a flash tank 14 via a drain valve 13, and the steam introduced into the flash tank 14 is sent to the condenser 8 or sent to auxiliary steam via a ladder 15. Deaerator 9, feed water heater 1
2 and the water is sent to condenser 8.
また、主蒸気配管5には、タービン加減弁3上流側から
分岐して、復水器8に接続され、タービンバイパス弁1
6を介挿されたタービンバイパス系が形成されており、
そのタービンバイパス容量は、例えば50%とされてい
る。そして、脱気器9、給水ポンプ駆動用タービン10
、給水加熱器12には、それぞれタービン6から主蒸気
の一部を抽気して供給する配管17.18.19が接続
されており、駆動用タービン10には、配管18の他に
主蒸気配管から蒸気の一部を導入する配管18aが接続
され、これらの配管18.18aには、それぞれ低圧側
加減弁20と、高圧側加減弁20孔が介挿されている。In addition, the main steam pipe 5 is branched from the upstream side of the turbine control valve 3 and connected to the condenser 8, and is connected to the turbine bypass valve 1.
6 is inserted, a turbine bypass system is formed,
The turbine bypass capacity is, for example, 50%. A deaerator 9 and a turbine 10 for driving the water supply pump
, and the feedwater heater 12 are connected to piping 17, 18, and 19 for extracting and supplying a portion of main steam from the turbine 6, respectively, and the driving turbine 10 is connected to main steam piping in addition to the piping 18. A pipe 18a is connected to introduce a portion of steam from the pipe 18.18a, and a low-pressure side control valve 20 and a high-pressure side control valve 20 hole are inserted into each of these pipes 18.18a.
そして、この実施例方法では、主蒸気配管5と補助蒸気
へラダ15とを接続し、加減弁21を介挿された配管2
2を配設する。In this embodiment method, the main steam pipe 5 and the ladder 15 are connected to the auxiliary steam, and the pipe 2 into which the control valve 21 is inserted
2 will be placed.
上記構成の発電プラントにおいて通常運転中は、ドレン
セパレータ圧力制御系の圧力目標値が十分高い値にセッ
トされており、ドレンセパレータ2のドレン弁13は、
全閉とされている。During normal operation in the power plant with the above configuration, the pressure target value of the drain separator pressure control system is set to a sufficiently high value, and the drain valve 13 of the drain separator 2 is
It is said to be completely closed.
この実施例方法では、例えば定格出力運転中に、50%
負荷喪失等が生じ、PLUリレーが作動したような場合
は、その作動信号によってドレンセパレータ圧力制御系
の圧力目標値を変更し、ドレン弁13の開閉を行ない、
ドレンセパレータ2からフラッシュタンク14へ余剰蒸
気を導入する。また、同時に加減弁21を急開として、
配%F 22により補助蒸気へラダ15に主蒸気配管5
から蒸気を導入する。In this embodiment method, for example, during rated output operation, 50%
If a load loss occurs and the PLU relay is activated, the pressure target value of the drain separator pressure control system is changed according to the activation signal, and the drain valve 13 is opened and closed.
Excess steam is introduced from the drain separator 2 to the flash tank 14. At the same time, the control valve 21 is suddenly opened,
Main steam piping 5 to ladder 15 to auxiliary steam by distribution percentage F 22
Steam is introduced from
この圧力目標値は、縦軸を流量、横軸を時間とした第2
図のグラフに示すように、斜線領域に相当するミスマツ
チ流量に応じて、ドレンセパレータ2からフラッシュタ
ンク14への蒸気流量と、主蒸気配管5から補助蒸気へ
ラダ15への蒸気流量との和が、実線eで示すような蒸
気流量となるように、あらかじめ算出しておき、それを
時間の関数としてドレンセパレータ圧力制御系に与える
。This pressure target value is based on the second equation, where the vertical axis is the flow rate and the horizontal axis is the time.
As shown in the graph, the sum of the steam flow rate from the drain separator 2 to the flash tank 14 and the steam flow rate from the main steam piping 5 to the auxiliary steam to the ladder 15 is determined according to the mismatch flow rate corresponding to the shaded area. , the steam flow rate as shown by the solid line e is calculated in advance, and is given to the drain separator pressure control system as a function of time.
なお、主蒸気圧力が上昇する原因は、主蒸気配管5内の
蒸気質量のバランスが崩れ、蒸気が蓄積されることによ
る。主蒸気配管5内においては、次に示す質量バランス
式、および圧力計算式が成立する。Note that the main steam pressure increases because the balance of steam mass in the main steam pipe 5 is disrupted and steam is accumulated. Inside the main steam pipe 5, the following mass balance equation and pressure calculation equation hold true.
1;1
=dM/dt・・・・・・(1)
clP/dt= (KP/M)dM/dt・・・・・・
(2)
ただし、
W 、:蒸気発生器n基の主蒸気流量総和SG+
W :タービン蒸気流量
B
W :タービンバイパス蒸気流量
YP
WR:逃し弁蒸気流屋
WS:安全弁蒸気流量
W、□:給水ポンプ駆動タービン高圧側蒸気流量M:蒸
気質量
P:蒸気圧力
に:断熱指数(定数)
(1)式を時間で積分することによって蒸気の蓄積量の
瞬時値を求めることができ、(2)式を時間で積分する
ことによって蒸気圧力の瞬時値を求めることができる。1;1 =dM/dt...(1) clP/dt= (KP/M)dM/dt...
(2) However, W: Total main steam flow rate of n steam generators SG+ W: Turbine steam flow rate B W: Turbine bypass steam flow rate YP WR: Relief valve steam flow house WS: Safety valve steam flow rate W, □: Water supply pump Drive turbine high pressure side steam flow rate M: Steam mass P: Steam pressure: Adiabatic index (constant) By integrating equation (1) over time, the instantaneous value of the amount of accumulated steam can be obtained, and equation (2) can be The instantaneous value of steam pressure can be determined by integrating over time.
したがって、前述のドレンセパレータ圧力制御系に与え
る圧力目標値は、これらの式から算出することができる
。Therefore, the pressure target value given to the drain separator pressure control system described above can be calculated from these equations.
すなわち、上記構成のこの実施例方法では、安全弁4a
および逃し弁4bからの余剰蒸気の大気放出を防止する
ことができる。また、補助蒸気へラダ15から給水加熱
器12および脱気器9へ加熱蒸気を供給することにより
、給水加熱器12および脱気器9の加熱蒸気も確保する
ことができる。That is, in this embodiment method having the above configuration, the safety valve 4a
Also, excess steam can be prevented from being released into the atmosphere from the relief valve 4b. Moreover, by supplying heated steam to the feed water heater 12 and the deaerator 9 from the ladder 15 to the auxiliary steam, the heated steam for the feed water heater 12 and the deaerator 9 can also be secured.
また、蒸発器と過熱器との間にドレンセパレータを配置
された発電プラント等では、例えばドレンセパレータか
らフラッシュタンクのみに蒸気を導入する場合に較べて
、過熱器へ導入される蒸気の減少を小幅に抑制すること
ができ、過熱器出口蒸気温度の変化を小幅に抑制するこ
とができる。In addition, in power generation plants etc. where a drain separator is placed between the evaporator and the superheater, the amount of steam introduced into the superheater can be reduced by a smaller amount than when steam is introduced only from the drain separator to the flash tank. It is possible to suppress the change in the superheater outlet steam temperature to a small extent.
し発明の効果]
上述のように、本発明の発電プラントの主蒸気圧力#I
御左方法は、タービンバイパス容量が100X未満とさ
れた発電プラントにおいて、タービンバイパス容量を越
える運転中にPLUリレーが作動し、タービン加減弁が
急速全閉とされた場合でも、主蒸気圧力を逃し弁および
安全弁の作動圧力以下に抑制することができ、主蒸気の
大気放出を防止でき、かつ、給水加熱器および脱気器の
加熱蒸気を確保することができ、給水の急激な温度低下
および給水ポンプのキャビテーションの発生を防止でき
る。[Effects of the Invention] As described above, the main steam pressure #I of the power plant of the present invention
In a power generation plant with a turbine bypass capacity of less than 100X, this method allows the main steam pressure to be released even if the PLU relay is activated and the turbine control valve is quickly fully closed during operation exceeding the turbine bypass capacity. The operating pressure of the valve and safety valve can be suppressed to below the operating pressure, preventing main steam from being released into the atmosphere, and ensuring heating steam for the feedwater heater and deaerator, preventing sudden temperature drops in the feedwater and preventing the main steam from being released into the atmosphere. Pump cavitation can be prevented.
第1図は本発明の一実施例方法を説明するための高速増
殖炉発電プラントの構成図、第2図は実施例方法におけ
る蒸気流量の時間変化を示すグラフ、第3図はEHCの
構成を示す構成図、第4図は従来方法における蒸気流量
の時間変化を示すグラフである。
1・・・・・・・・・蒸気発生器
2・・・・・・・・・ドレンセパレータ3・・・・・・
・・・タービン加減弁
4a・・・・・・安全弁
4b・・・・・・逃し弁
13・・・・・・ドレン弁
14・・・・・・フラッシュタンク
15・・・・・・補助蒸気ヘッダ
16・・・・・・タービンバイパス弁
21・・・・・・加減弁
22・・・・・・配管Fig. 1 is a configuration diagram of a fast breeder reactor power plant for explaining an embodiment method of the present invention, Fig. 2 is a graph showing temporal changes in steam flow rate in the embodiment method, and Fig. 3 is a diagram showing the configuration of an EHC. The configuration diagram shown in FIG. 4 is a graph showing the change in steam flow rate over time in the conventional method. 1...Steam generator 2...Drain separator 3...
... Turbine control valve 4a ... Safety valve 4b ... Relief valve 13 ... Drain valve 14 ... Flash tank 15 ... Auxiliary steam Header 16...Turbine bypass valve 21...Adjustment valve 22...Piping
Claims (1)
電プラントの主蒸気圧力制御方法において、加減弁を介
挿され主蒸気配管と補助蒸気ヘッダとを接続する配管を
配設し、タービンバイパス容量を越える運転中にパワー
/ロードアンバランスリレーが作動し、タービン加減弁
が急速全閉とされた場合は、起動バイパス系のドレンセ
パレータのドレン弁開度および前記加減弁開度を操作し
て、余剰蒸気をフラッシュタンクおよび補助蒸気ヘッダ
へ導入し、主蒸気圧力を逃し弁および安全弁の作動圧力
以下に抑制することを特徴とする発電プラントの主蒸気
圧力制御方法。(1) In a main steam pressure control method for a power plant where the turbine bypass capacity is less than 100%, a pipe is installed that connects the main steam pipe and the auxiliary steam header with a regulating valve inserted, and the turbine bypass capacity is increased. If the power/load unbalance relay is activated and the turbine regulator valve is quickly fully closed during operation in excess of A method for controlling main steam pressure in a power generation plant, comprising introducing steam into a flash tank and an auxiliary steam header to suppress the main steam pressure to below the operating pressure of a relief valve and a safety valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2293887A JPS63192905A (en) | 1987-02-03 | 1987-02-03 | Main steam pressure control method for power generating plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2293887A JPS63192905A (en) | 1987-02-03 | 1987-02-03 | Main steam pressure control method for power generating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63192905A true JPS63192905A (en) | 1988-08-10 |
Family
ID=12096572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2293887A Pending JPS63192905A (en) | 1987-02-03 | 1987-02-03 | Main steam pressure control method for power generating plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63192905A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104842A (en) * | 2006-10-26 | 2008-05-08 | Sung Yong Chang | Artificial nail |
JP2011157853A (en) * | 2010-01-29 | 2011-08-18 | Chugoku Electric Power Co Inc:The | Heat recovery device and heat recovery method for turbine in power generation facility |
CN111022137A (en) * | 2019-11-27 | 2020-04-17 | 西安交通大学 | Waste heat recovery system and method based on organic Rankine cycle and organic flash cycle |
-
1987
- 1987-02-03 JP JP2293887A patent/JPS63192905A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104842A (en) * | 2006-10-26 | 2008-05-08 | Sung Yong Chang | Artificial nail |
JP2011157853A (en) * | 2010-01-29 | 2011-08-18 | Chugoku Electric Power Co Inc:The | Heat recovery device and heat recovery method for turbine in power generation facility |
CN111022137A (en) * | 2019-11-27 | 2020-04-17 | 西安交通大学 | Waste heat recovery system and method based on organic Rankine cycle and organic flash cycle |
CN111022137B (en) * | 2019-11-27 | 2021-03-02 | 西安交通大学 | Waste heat recovery system and method based on organic Rankine cycle and organic flash cycle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4975238A (en) | Control system for a nuclear steam power plant | |
JPS5923004A (en) | Method and device for controlling generator facility of steam turbine | |
JPH06201891A (en) | Device and method of controlling nuclear reactor | |
JPS63192905A (en) | Main steam pressure control method for power generating plant | |
JPS63192906A (en) | Main steam pressure control method for power generating plant | |
JPS63192903A (en) | Main steam pressure control method for power generating plant | |
JPS63192904A (en) | Main steam pressure control method for power generating plant | |
JPS6239653B2 (en) | ||
JPS6239655B2 (en) | ||
KR102173808B1 (en) | Method for preventing reactor trip during vacuum loss of condenser | |
JPH0539901A (en) | Method and device for automatically controlling boiler | |
JPH0221296A (en) | Controlling of fast breeder reactor system | |
JPS6130002Y2 (en) | ||
JPS62111105A (en) | Mixture volume control device | |
JPS6156402B2 (en) | ||
JPH0135244B2 (en) | ||
JPS62297602A (en) | Controller for pressure of main steam | |
JPS622129B2 (en) | ||
JP2001004790A (en) | Water level controller of steam generating plant | |
JPS6158903A (en) | Turbine controller for nuclear reactor | |
JPH03290007A (en) | Combined cycle control unit | |
JPH04342806A (en) | Steam turbine control device for combined power plant | |
JPS61114197A (en) | Method of stopping fast breeder reactor plant | |
JPH0241720B2 (en) | ||
JPH0759883B2 (en) | Low pressure turbine bypass valve controller |