JPS63192904A - Main steam pressure control method for power generating plant - Google Patents

Main steam pressure control method for power generating plant

Info

Publication number
JPS63192904A
JPS63192904A JP2293787A JP2293787A JPS63192904A JP S63192904 A JPS63192904 A JP S63192904A JP 2293787 A JP2293787 A JP 2293787A JP 2293787 A JP2293787 A JP 2293787A JP S63192904 A JPS63192904 A JP S63192904A
Authority
JP
Japan
Prior art keywords
turbine
steam
valve
main steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2293787A
Other languages
Japanese (ja)
Inventor
Masanori Sakuragi
桜木 正範
Zenichi Ogiso
小木曽 善一
Tokuyuki Takeshima
徳幸 竹島
Minoru Wake
和気 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP2293787A priority Critical patent/JPS63192904A/en
Publication of JPS63192904A publication Critical patent/JPS63192904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable main steam pressure restrained, when a power/load unbalanced relay is operated and a governing valve is suddenly closed during the driving exceeding turbine bypass capacity, by introducing excessive steam to a flash tank and a turbine for driving a feed water pump. CONSTITUTION:In a high speed breeder power generating plant, after steam generated in a steam generator 1 passes a drain separator 2, it is introduced to a turbine 6 through a turbine governing valve 3 from a main steam piping 5 and drives a generator 7. To the main steam piping 5, a turbine bypass system including a turbine bypass valve 15, whose turbine bypass capacity is made less than 100% is divergingly connected. In this case when a power/load unbalanced relay is operated and the governing valve 3 is suddenly closed, opening degree of a drain valve 13 is controlled, and excessive steam is introduced from the drain separator 2 to a flash tank 14. Also, a high pressure side variable valve 19 is made open, and steam from the piping 5 is introduced to a turbine for driving feed water pump 10.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、火力発電プラント、原子力発電プラント等蒸
気により発電用タービンを回転させて発電を行なう発電
プラントの主蒸気圧力制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to main steam pressure control of power generation plants such as thermal power plants and nuclear power plants that generate power by rotating power generation turbines using steam. Regarding the method.

(従来の技術) 一般に、火力発電プラント、原子力発電プラント等蒸気
により発電用タービンを回転させて発電を行なう発電プ
ラントには、タービンバイパス系が配置されている。こ
のようなタービンバイパス系は、そのバイパス容量を1
00%とすることが望ましいが、建設コストの増大を招
くことがら、通常は、数10%程度とされている。
(Prior Art) Generally, a turbine bypass system is installed in a power generation plant, such as a thermal power plant or a nuclear power plant, which generates power by rotating a power generation turbine using steam. Such a turbine bypass system has a bypass capacity of 1
Although it is desirable to set it to 00%, it is usually set to about several 10% because it causes an increase in construction cost.

そして、例えば原子力発電プラント等では、上述のター
ビンバイパス系のタービンバイパス弁およびタービン加
減弁の弁開度をE HC(Electtr。
For example, in a nuclear power plant or the like, the valve opening degrees of the turbine bypass valve and the turbine control valve of the turbine bypass system are controlled by EHC (Electtr).

11ydraulic Controller )によ
り、コントロールし、主蒸気圧力およびタービンの速度
を、以下に示すようにして制御している。
The main steam pressure and the speed of the turbine are controlled as shown below.

このEHCは、タービン加減弁開度要求とその実開度(
およびタービンバイパス弁開度要求とその実開度)が一
致するようにハードを構成した場合、タービン加減弁開
度要求、その実開度、夕一ビン流入蒸気流量、タービン
出力との間にほぼ比例関係が成り立つという事実に基づ
き、第3図に示すように、主蒸気圧力から全流量要求信
号を算出する全流量要求信号見出部21、タービンの速
度から加減弁流量要求信号を算出する加減弁流量要求信
号算出部22、低値優先回路23.24.25、関数発
生器26.27等からなり、操作量としてタービン加減
弁の開度要求とタービンバイパス弁の開度要求を出力す
る演算回路によって構成されている。
This EHC consists of the turbine adjustment valve opening request and its actual opening (
If the hardware is configured so that the required turbine bypass valve opening and its actual opening match, there will be a nearly proportional relationship between the turbine regulator valve opening request, its actual opening, the steam flow rate flowing into the steam bin, and the turbine output. Based on the fact that the following holds true, as shown in FIG. 3, a total flow rate request signal finder 21 calculates a total flow rate request signal from the main steam pressure, and a control valve flow rate detector 21 calculates a control valve flow rate request signal from the turbine speed. It is composed of a request signal calculation unit 22, a low value priority circuit 23, 24, 25, a function generator 26, 27, etc., and outputs an opening request for the turbine control valve and an opening request for the turbine bypass valve as manipulated variables. It is configured.

、そして、プラントが通常運転中あるいはプラント制御
系による出力変更中等の電力系統からの周波数外乱がな
い状態での運転では、加減弁流量要求信号は、全流量要
求信号より大となり、タービン加減弁開度要求は、全流
量要求信号によって与えられ、圧力優先制御が行なわれ
る。
, when the plant is in normal operation or when there is no frequency disturbance from the power system such as output change by the plant control system, the regulator valve flow rate request signal is larger than the total flow rate request signal, and the turbine regulator valve is opened. The pressure demand is given by the full flow demand signal and pressure priority control is performed.

一方、これに対して負荷喪失等の電力系統周波数外乱が
加わり、タービンの回転数が上昇し、加減弁流量要求信
号が、全流量要求信号より小となる状態での制御では、
タービン加減弁の開度要求は、加減弁流量要求信号によ
って与えられ、タービン速度優先制御が行なわれる6 また、EHCは、緊急時のタービン過速防止のためにパ
ワー/ロードアンバランスリレー(PLUリレー)を備
えている。
On the other hand, in control when power system frequency disturbances such as load loss are added, the turbine rotation speed increases, and the regulator valve flow rate request signal becomes smaller than the total flow rate request signal,
The opening degree request of the turbine control valve is given by the control valve flow rate request signal, and turbine speed priority control is performed. ).

このPLUリレーは、プラントが任意の負荷で運転中に
、例えば定格負荷換算で40%以上等の大幅な負荷喪失
が生じ、発電機負荷とタービン出力との間に所定の値以
上の差、例えば(40%/10ミリ秒)以上の差が生じ
た場合に、タービン加減弁を数ミリ秒で全閉とし、ター
ビンへ流入する蒸気を急速遮断するものである。
This PLU relay is used when a large load loss occurs, for example, 40% or more in terms of rated load, while the plant is operating at a given load, and the difference between the generator load and the turbine output exceeds a predetermined value, e.g. (40%/10 milliseconds) or more, the turbine control valve is fully closed in a few milliseconds, and steam flowing into the turbine is rapidly shut off.

また、PLUリレー作動時には、同時にタービンバイパ
ス弁を数ミリ秒で急速に開とし、行き場を失った蒸気を
復水器ヘダンプするとともに、タービンの出力を制御す
る負荷設定(通常運転時には圧力制御を優先させるため
110z程度に設定されている)をOzに突変させ、P
LUリレーがリセットされるまで保持する。
In addition, when the PLU relay is activated, the turbine bypass valve is simultaneously opened rapidly in a few milliseconds, dumping the steam that has nowhere else to go to the condenser, and setting the load to control the turbine output (pressure control is given priority during normal operation). (set to about 110z) to Oz, and P
Hold until the LU relay is reset.

タービンへ流入する蒸気が遮断されると、タービンの出
力は急速に低下する。この時、EHCは、発電機負荷と
タービン出力との間の差が前述の所定の値(40%)以
下となるまでタービン出力が低下したことを検知すると
、PLUリレーをリセットするとともに、置所設定を旧
位に突変させ、復帰させる。負荷設定が復帰すると、負
荷を喪失した系統は、周波数が所定値より高い状態にあ
るので、タービン加減弁は、加減弁流量要求信号によっ
て再び開き始める。
When the steam flowing into the turbine is cut off, the output of the turbine decreases rapidly. At this time, if the EHC detects that the turbine output has decreased until the difference between the generator load and the turbine output is below the predetermined value (40%) mentioned above, it resets the PLU relay and Suddenly change the settings to the old one and restore it. When the load setting is restored, the turbine regulator valve begins to open again due to the regulator flow request signal since the system that lost the load is at a frequency higher than the predetermined value.

そして、プラント制御系の出力司令信号の要求に基づい
て、炉出力を減少させるとともに、給水流量等を減少さ
せて、蒸気発生器出口蒸気流量を減少させるセットパッ
ク運転を行なう。なお、セットパック運転による蒸気発
生器出口蒸気流量の減少速度は、例えば高速増殖炉プラ
ント等では、−5z/分程度とされている。
Then, based on a request for an output command signal from the plant control system, a set pack operation is performed in which the reactor output is decreased, the feed water flow rate, etc. are decreased, and the steam generator outlet steam flow rate is decreased. Note that the rate of decrease in the steam flow rate at the steam generator outlet due to set pack operation is approximately -5z/min in, for example, a fast breeder reactor plant.

セットパック運転が進むと、タービン加減弁の前圧(主
蒸気圧力)が低下する。このため、EHCの内部で計算
される全流量要求が低下して、ついには加減弁流量要求
を下まわる状態となる。タービンバイパス弁の開度要求
は、全流量と加減弁流量要求の差で与えられるので、こ
のとき、タービンバイパス弁は全閉とされ、セットパッ
ク運転は停止される。
As the set pack operation progresses, the pressure in front of the turbine control valve (main steam pressure) decreases. For this reason, the total flow rate requirement calculated within the EHC decreases, and eventually falls below the regulating valve flow rate requirement. Since the opening degree request of the turbine bypass valve is given by the difference between the full flow rate and the regulating valve flow rate request, at this time, the turbine bypass valve is fully closed and the set pack operation is stopped.

(発明が解決しようとする問題点) しかしながら、上述の従来の発電プラントの制御方法で
は、次のような問題がある。
(Problems to be Solved by the Invention) However, the conventional power plant control method described above has the following problems.

すなわち、縦軸を蒸気流量、横軸を時間とした第4図の
グラフに示すように、例えばタービンバイパス容量を5
(1%とされた原子力発電プラントにおいて、定格出力
運転中に50%の負荷喪失が生じたような場合、PLU
リレーが一旦作動すると、PLUリレーがリセットされ
た瞬間の加減弁開度要求が例えば全開要求であっても、
弁を駆動する油圧系統の作動速度には上限があり、実開
度は、速やかに全開とはならず、例えば1秒程度で開き
始め、10数秒程度で全開となる。このため、タービン
蒸気流量は、実線aで示すように一旦ゼロとなり、PL
Uリレーがリセットされると数秒から10数秒後に50
%となる。
That is, as shown in the graph of Figure 4, where the vertical axis is the steam flow rate and the horizontal axis is time, for example, if the turbine bypass capacity is 5.
(In a nuclear power plant that is assumed to be 1%, if a 50% load loss occurs during rated output operation, the PLU
Once the relay is activated, even if the adjustment valve opening request at the moment the PLU relay is reset is, for example, a fully open request,
There is an upper limit to the operating speed of the hydraulic system that drives the valve, and the actual opening degree does not fully open immediately; for example, it starts opening in about 1 second and becomes fully open in about 10-odd seconds. Therefore, the turbine steam flow rate temporarily becomes zero as shown by the solid line a, and PL
50 after a few seconds to 10 seconds after the U relay is reset.
%.

また、タービンバイパス蒸気流量は、点線すで示すよう
に、PLUリレーの作動後、直ちに50%となり、−5
%/分程度で行なわれるセットバック運転にともなって
徐々に減少する。
In addition, the turbine bypass steam flow rate becomes 50% immediately after the PLU relay is activated, as shown by the dotted line, and -5
It gradually decreases with setback operation performed at a rate of about %/min.

したがって、タービン蒸気流量とタービンバイパス蒸気
流量の和は、一点鎖11cで示すように、100%から
一旦50%となり、数秒から10数秒後にほぼ100%
となるが、蒸気発生器出口蒸気流量は、実線dで示すよ
うに、セットパック運転によるプロセス量の変化速度が
、分オーダと遅いためほとんど変化せず、斜線で示す領
域に相当する蒸気のミスマツチが生じる。
Therefore, the sum of the turbine steam flow rate and the turbine bypass steam flow rate changes from 100% to 50% once, and then reaches almost 100% after several seconds to ten-odd seconds, as shown by the chain 11c.
However, as shown by the solid line d, the steam flow rate at the steam generator outlet hardly changes because the rate of change in the process amount due to set pack operation is slow, on the order of minutes, and the steam mismatch corresponding to the shaded area occurs.

このため、斜線領域に相当する余剰な蒸気による圧力上
昇のために、逃し弁、安全弁が開となり、蒸気の大気放
出が行なわれる。このような蒸気の大気放出は、高度に
水質管理された水を損失することであり、好ましくない
Therefore, due to the pressure increase due to the excess steam corresponding to the shaded area, the relief valve and the safety valve are opened, and the steam is released into the atmosphere. The release of such vapor into the atmosphere is undesirable as it results in the loss of highly controlled water.

また、給水加熱器および脱気器の加熱蒸気として、通常
は、タービンから蒸気の一部を抽気して用いているため
、タービン蒸気流量がゼロとなっている間は、これらの
加熱蒸気が失われるため、給水の急激な温度低下や給水
ポンプのキャビテーションの発生等を招く恐れがあると
いう問題がある。
Additionally, as heating steam for the feedwater heater and deaerator is normally extracted from a portion of the steam from the turbine, this heating steam is lost while the turbine steam flow rate is zero. As a result, there is a problem that the temperature of the water supply may drop rapidly and cavitation may occur in the water supply pump.

さらに、給水ポンプ駆動用タービンも、通常は低圧側加
減弁を通じて、タービンから蒸気の一部を抽気して用い
ている。このため、タービン蒸気の喪失にともない、制
御系により高圧側加減弁を開とする信号が作られるが、
タービン蒸気の急速な減少のため、制御に遅れが生じ、
安定な回転数維持が困難になる可能性があるという問題
がある。
Furthermore, a turbine for driving a water supply pump also normally extracts a portion of steam from the turbine through a low-pressure side regulating valve. For this reason, as turbine steam is lost, the control system generates a signal to open the high-pressure regulator valve.
Due to the rapid decrease of turbine steam, there is a delay in control,
There is a problem in that it may become difficult to maintain a stable rotational speed.

本発明は、かかる従来の事情に対処してなされたもので
、タービンバイパス容量を越える運転中、にPLUリレ
ーが作動し、タービン加減弁が急速全閉とされた場合で
も、主蒸気圧力を逃し弁および安全弁の作動圧力以下に
抑制して、主蒸気の大気放出を防止することができ、か
つ給水加熱器および脱気器の加熱蒸気を確保して、給水
の急激な温度低下および給水ポンプのキャビテーション
の発生を防止することができ、さらに給水ポンプ駆動用
タービンの回転を安定に維持することのできる発電プラ
ントの主蒸気圧力制御方法を提供しようとするものであ
る。
The present invention has been made in response to such conventional circumstances, and even if the PLU relay is activated and the turbine control valve is quickly fully closed during operation exceeding the turbine bypass capacity, the main steam pressure can be released. It is possible to suppress the main steam to below the operating pressure of valves and safety valves to prevent main steam from being released into the atmosphere, and to secure heating steam for the feed water heater and deaerator to prevent a sudden temperature drop in the feed water and the operation of the feed water pump. The present invention aims to provide a main steam pressure control method for a power generation plant that can prevent the occurrence of cavitation and also maintain stable rotation of a turbine for driving a feedwater pump.

[発明の構成] (問題点を解決するための手段) すなわち本発明は、タービンバイパス容量が100%未
満とされた発電プラントの主蒸気圧力制御方法において
、タービンバイパス容量を越える運転中にパワー/ロー
ドアンバランスリレーが作動し、タービン加減弁が急速
全閉とされた場合は、起動バイパス系のドレンセパレー
タのドレン弁開度および給水ポンプ駆動用タービンの高
圧側加減弁開度を操作して、余剰蒸気をフラッシュタン
クおよび給水ポンプ駆動用タービンへ導入し、主蒸気圧
力を逃し弁および安全弁の作動圧力以下に抑制すること
を特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention provides a main steam pressure control method for a power plant in which the turbine bypass capacity is less than 100%, in which the power / When the load unbalance relay is activated and the turbine regulator valve is quickly fully closed, operate the drain valve opening of the drain separator of the startup bypass system and the high pressure side regulator valve of the water pump driving turbine. It is characterized by introducing excess steam into the flash tank and the turbine for driving the water supply pump, and suppressing the main steam pressure to below the operating pressure of the relief valve and safety valve.

(作 用) 本発明の発電プラントの主蒸気圧力制御方法では、ター
ビンバイパス容量を越える運転中にパワー/ロードアン
バランスリレーが作動し、タービン加減弁が急速全閉と
された場合は、起動バイパス系のドレンセパレータのド
レン弁開度および給水ポンプ駆動用タービンの高圧側加
減弁開度を操作して、余剰蒸気をフラッシュタンクおよ
び給水ポンプ駆動用タービンへ導入し、主蒸気圧力を、
逃し弁および安全弁の作動圧力以下に抑制する。
(Function) In the main steam pressure control method for a power plant of the present invention, if the power/load imbalance relay is activated during operation exceeding the turbine bypass capacity and the turbine control valve is quickly fully closed, the startup bypass By manipulating the opening of the drain valve of the drain separator of the system and the opening of the high-pressure side regulating valve of the turbine for driving the feedwater pump, excess steam is introduced into the flash tank and the turbine for driving the feedwater pump, and the main steam pressure is
Suppress pressure below the operating pressure of relief valves and safety valves.

したがって、新たな設備の追加を行なうことなく、既設
の設備を使用して、逃し弁および安全弁からの余剰蒸気
の大気放出を防止することができる。また、通常の発電
プラントでは、フラッシュタンクから、給水加熱器およ
び脱気器へ加熱蒸気を供給する配管が設置されており、
給水加熱器および脱気器の加熱蒸気も確保することがで
きる。
Therefore, it is possible to prevent surplus steam from being released into the atmosphere from the relief valve and the safety valve by using existing equipment without adding new equipment. In addition, in normal power plants, piping is installed to supply heated steam from the flash tank to the feed water heater and deaerator.
Heating steam for the feed water heater and deaerator can also be ensured.

さらに、給水ポンプ駆動用タービンの高圧側加減弁を強
制的に開とすることにより、駆動用蒸気の急激な減少を
防止して、駆動用タービンの回転を安定に維持すること
ができる。
Furthermore, by forcibly opening the high-pressure side control valve of the feedwater pump driving turbine, it is possible to prevent a sudden decrease in the driving steam and maintain stable rotation of the driving turbine.

(実施例) 以下本発明の発電プラントの主蒸気圧力制御方法を、図
面を参照して一実施例について説明する。
(Embodiment) Hereinafter, an embodiment of the main steam pressure control method for a power plant according to the present invention will be described with reference to the drawings.

第1図は、高速増殖炉発電プラントを示すもので、蒸気
発生器1内で、2次ナトリウム系と熱交換を行なって発
生した蒸気は、起動バイパス系のドレンセパレータ2を
通った後、タービン加減弁3等を介挿され、安全弁4a
、逃し弁4bを備えた主蒸気配管5を通ってタービン6
に導入され、発電機7を回転させて発電を行なう。
Figure 1 shows a fast breeder reactor power plant. Steam generated by heat exchange with the secondary sodium system in the steam generator 1 passes through the drain separator 2 of the start-up bypass system, and then flows into the turbine. A regulator valve 3 etc. is inserted, and a safety valve 4a
, a turbine 6 through a main steam pipe 5 equipped with a relief valve 4b.
The generator 7 is introduced to rotate the generator 7 and generate electricity.

タービン6を回転させた後の蒸気は、復水器8で水に戻
され、脱気器9で蒸気分を取り除かれた後、給水ポンプ
駆動用タービン10によって駆動される給水ポンプ11
、(起動時等はモータ駆動の給水ポンプ11a)によっ
て給水加熱器12に送られ、ここで加熱された後、蒸気
発生器1へ送られる。
The steam after rotating the turbine 6 is returned to water in the condenser 8, and the steam is removed in the deaerator 9, and then the water supply pump 11 is driven by the water supply pump driving turbine 10.
The water is sent to the feed water heater 12 by the motor-driven feed water pump 11a (at startup, etc.), heated there, and then sent to the steam generator 1.

なお、ドレンセパレータ2は、ドレン弁13を介してフ
ラッシュタンク14に接続されており、フラッシュタン
ク14に導入された蒸気は、復水器8、脱気器9、給水
加熱器12に送られ、水は復水器8に送られる。
The drain separator 2 is connected to a flash tank 14 via a drain valve 13, and the steam introduced into the flash tank 14 is sent to a condenser 8, a deaerator 9, a feed water heater 12, Water is sent to condenser 8.

また、主蒸気配管うには、タービン加減弁3上流側゛か
ら分岐して、復水器8に接続され、タービンバイパス弁
15を介挿されたタービンバイパス系が形成されており
、そのタービンバイパス容量は、例えば50Xとされて
いる。そして、脱気器9、給水ポンプ駆動用タービン1
0、給水加熱器12には、それぞれタービン6から主蒸
気の一部を抽気して供給する配g16.17.18が接
続されており、駆動用タービン10には、配管17の他
に主蒸気配管から蒸気の一部を導入する配管17aが接
続され、これらの配管17.17a4こは、それぞれ低
圧側加減弁19と、高圧側加減弁19aが介挿されてい
る。
In addition, a turbine bypass system is formed in the main steam pipe by branching from the upstream side of the turbine control valve 3, connected to the condenser 8, and having a turbine bypass valve 15 inserted therein. is, for example, 50X. Then, a deaerator 9, a turbine 1 for driving the water supply pump
0, the feedwater heater 12 is connected to a system g16, 17, 18 for extracting and supplying a part of the main steam from the turbine 6, and the drive turbine 10 is connected to the main steam in addition to the piping 17. A pipe 17a that introduces a portion of steam from the pipe is connected, and a low pressure side control valve 19 and a high pressure side control valve 19a are inserted into these pipes 17, 17a4, respectively.

上記構成の発電プラントにおいて通常運転中は、ドレン
セパレータ圧力制御系の圧力目標値が十分高い値にセッ
トされており、ドレンセパレータ2のドレン弁13は、
全閉とされている。tな、駆動用タービン10に蒸気を
導入する配管17.17aに介挿された低圧側加減弁1
9、高圧側加減弁19aのうち、高圧側加減弁19aは
全閉とされ、給水ポンプ駆動用タービン10には、低圧
側加減弁19の開度を操作することにより、タービン6
から抽気された蒸気が導入されている。
During normal operation in the power plant with the above configuration, the pressure target value of the drain separator pressure control system is set to a sufficiently high value, and the drain valve 13 of the drain separator 2 is
It is said to be completely closed. The low pressure side regulating valve 1 is inserted into the pipe 17.17a that introduces steam into the driving turbine 10.
9. Of the high-pressure side control valves 19a, the high-pressure side control valve 19a is fully closed, and the turbine 6 is connected to the water supply pump driving turbine 10 by manipulating the opening degree of the low-pressure side control valve 19.
Steam extracted from the pipe is introduced.

“この実施例方法では、例えば定格出力運転中に、50
%負荷喪失等が生じ、PLUリレーが作動しなような場
合は、その作動信号によってドレンセパレータ圧力制御
系の圧力目標値を変更し、ドレン弁13の開閉を行ない
、ドレンセパレータ2からフラッシュタンク14へ余剰
蒸気を導入する。また、同時に高圧側加減弁19aを強
制的に開として、給水ポンプ駆動用タービン10に主蒸
気配管5から蒸気を導入する。
“In this embodiment method, for example, during rated output operation, 50
If a % load loss occurs and the PLU relay does not operate, the operating signal changes the pressure target value of the drain separator pressure control system, opens and closes the drain valve 13, and drains the drain separator 2 from the flash tank 14. excess steam is introduced into the At the same time, the high pressure side control valve 19a is forcibly opened to introduce steam from the main steam pipe 5 to the feedwater pump driving turbine 10.

この圧力目標値は、縦軸を流量、横軸を時間とした第2
図のグラフに示すように、斜線領域に相当するミスマツ
チ流量に応じて、ドレンセパレータ2からフラッシュタ
ンク14への蒸気流量と、主蒸気配管5から給水ポンプ
駆動用タービン10への蒸気流量との和が、実線eで示
すような蒸気流量となるように、あらかじめ算出してお
き、それを時間の関数としてドレンセパレータ圧力制御
系に与える。
This pressure target value is based on the second equation, where the vertical axis is the flow rate and the horizontal axis is the time.
As shown in the graph of the figure, the sum of the steam flow rate from the drain separator 2 to the flash tank 14 and the steam flow rate from the main steam pipe 5 to the feed water pump driving turbine 10 is calculated according to the mismatch flow rate corresponding to the shaded area. is calculated in advance so that the steam flow rate is as shown by the solid line e, and is given to the drain separator pressure control system as a function of time.

なお、主蒸気圧力が上昇する原因は、主蒸気配管5内の
蒸気質重のバランスが崩れ、蒸気が蓄積されることによ
る。主蒸気配管5内においては、次に示す質量バランス
式、および圧力計算式か成立する。
Note that the main steam pressure increases because the balance of steam quality and weight within the main steam pipe 5 is disrupted and steam is accumulated. In the main steam pipe 5, the following mass balance equation and pressure calculation equation hold true.

ΣwSGi   ”TB+wBYP +wR+WS +
WPT)i=1 =dM/dt・・・・・・(1) dP/dt= (KP/M)dM/dt・・・・・・(
2) ただし、 W 、:蒸気発生器n基の主蒸気流星総和SG+ W  :タービン蒸気流量 B WBYP ’タービンバイパス蒸気流星WR:逃し弁蒸
気流量 WS:安全弁蒸気流星 W、1:給水ポンプ駆動タービン高圧側蒸気流量M:蒸
気質量 P:蒸気圧力 に:断熱指数(定数) したがって、(1)式を時間で積分することによって蒸
気の蓄積量の瞬時値を求めることができ、(2)式を時
間で積分することによって蒸気圧力の瞬時値を求めるこ
とができる。したがって、前述のドレンセパレータ圧力
制御系に与える圧力目標値は、これらの式から算出する
ことができる。
ΣwSGi ”TB+wBYP +wR+WS +
WPT) i = 1 = dM/dt (1) dP/dt = (KP/M) dM/dt (
2) However, W: Total sum of main steam meteors of n steam generators SG+ W: Turbine steam flow rate B WBYP 'Turbine bypass steam meteor WR: Relief valve steam flow rate WS: Safety valve steam meteor W, 1: Water supply pump drive turbine high pressure Side steam flow rate M: Steam mass P: Steam pressure: Adiabatic index (constant) Therefore, by integrating equation (1) over time, the instantaneous value of the amount of accumulated steam can be obtained, and by integrating equation (2) over time. The instantaneous value of steam pressure can be found by integrating with . Therefore, the pressure target value given to the drain separator pressure control system described above can be calculated from these equations.

すなわち、上記構成のこの実施例方法では、新たな設備
の追加を行なうことなく、既設の起動バイパス系を使用
して、安全弁4aおよび逃し弁4bからの余剰蒸気の大
気放出を防止することができる。また、フラッシュタン
ク14から、給水加熱器12および脱気器9へ加熱蒸気
を供給することにより、給水加熱器12および脱気器9
の加熱蒸気も確保することができる。さらに、高圧側加
減弁19aを強制的に開とすることにより、駆動用蒸気
の急激な減少を防止して、給水ポンプ駆動用タービン1
0の回転を安定に維持することができる。
That is, in this embodiment method having the above configuration, it is possible to prevent excess steam from being released into the atmosphere from the safety valve 4a and the relief valve 4b by using the existing startup bypass system without adding new equipment. . In addition, by supplying heated steam from the flash tank 14 to the feedwater heater 12 and the deaerator 9, the feedwater heater 12 and the deaerator 9
heating steam can also be secured. Furthermore, by forcibly opening the high-pressure side control valve 19a, a sudden decrease in drive steam is prevented, and the feed water pump drive turbine 1
0 rotation can be maintained stably.

また、蒸発器と過熱器との間にドレンセパレータを配置
された:!P、電プラント等では、例えばドレンセパレ
ータからフラッシュタンクのみに蒸気を導入する場合に
較べて、過熱器へ導入される蒸気の減少を小幅に抑制す
ることができ、過熱器出口蒸気温度の変化を小幅に抑制
することができる。
Also, a drain separator was placed between the evaporator and superheater:! In P, electric plants, etc., compared to, for example, introducing steam only from a drain separator to a flash tank, the decrease in steam introduced to the superheater can be suppressed to a small extent, and changes in the steam temperature at the exit of the superheater can be suppressed. It can be suppressed to a small extent.

[発明の効果] 上述のように、本発明の発電プラントの主蒸気圧力制御
方法では、タービンバイパス容量が100X未溝とされ
た発電プラントにおいて、タービンバイパス容量を越え
る運転中にPLOリレーが作動し、タービン加減弁が急
速全閉とされた場合でも、新たな設備の追加を行なうこ
となく、主蒸気圧力を逃し弁および安全弁の作動圧力以
下に抑制することができ、主蒸気の大気放出を防止する
ことができ、かつ、給水加熱器および脱気器の加熱蒸気
を確保することができ、給水の急激な温度低下および給
水ポンプのキャビテーションの発生を防止することがで
き、さらに、給水ポンプ駆動用タービンの回転を安定に
維持することができる。
[Effects of the Invention] As described above, in the main steam pressure control method for a power generation plant of the present invention, in a power generation plant in which the turbine bypass capacity is set to 100X, the PLO relay is activated during operation exceeding the turbine bypass capacity. Even if the turbine control valve is quickly fully closed, the main steam pressure can be suppressed to below the operating pressure of the relief valve and safety valve without adding new equipment, preventing main steam from being released into the atmosphere. In addition, heating steam for the feed water heater and deaerator can be secured, and rapid temperature drops in the feed water and cavitation of the feed water pump can be prevented. The rotation of the turbine can be maintained stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法を説明するための高速増
殖炉発電プラントの構成図、第2図は実施例方法におけ
る蒸気流量の時間変化を示すグラフ、第3図はEHCの
構成を示す構成図、第4図は従来方法における蒸気流量
の時間変化を示すグラフである。 1・・・・・・・・・蒸気発生器 2・・・・・・・・・ドレンセパレータ3・・・・・・
・・・タービン加減弁 4a・・・・・・安全弁 4b・・・・・・逃し弁 10・・・・・・給水ポンプ駆動用タービン13・・・
・・・ドレン弁 14・・・・・・フラッシュタンク 15・・・・・・タービンバイパス弁 19a・・・高圧側加減弁
Fig. 1 is a configuration diagram of a fast breeder reactor power plant for explaining an embodiment method of the present invention, Fig. 2 is a graph showing temporal changes in steam flow rate in the embodiment method, and Fig. 3 is a diagram showing the configuration of an EHC. The configuration diagram shown in FIG. 4 is a graph showing the change in steam flow rate over time in the conventional method. 1...Steam generator 2...Drain separator 3...
... Turbine control valve 4a ... Safety valve 4b ... Relief valve 10 ... Water pump drive turbine 13 ...
... Drain valve 14 ... Flash tank 15 ... Turbine bypass valve 19a ... High pressure side adjustment valve

Claims (1)

【特許請求の範囲】[Claims] (1)タービンバイパス容量が100%未満とされた発
電プラントの主蒸気圧力制御方法において、タービンバ
イパス容量を越える運転中にパワー/ロードアンバラン
スリレーが作動し、タービン加減弁が急速全閉とされた
場合は、起動バイパス系のドレンセパレータのドレン弁
開度および給水ポンプ駆動用タービンの高圧側加減弁開
度を操作して、余剰蒸気をフラッシュタンクおよび給水
ポンプ駆動用タービンへ導入し、主蒸気圧力を逃し弁お
よび安全弁の作動圧力以下に抑制することを特徴とする
発電プラントの主蒸気圧力制御方法。
(1) In the main steam pressure control method of a power plant where the turbine bypass capacity is less than 100%, the power/load imbalance relay is activated during operation exceeding the turbine bypass capacity, and the turbine control valve is quickly fully closed. If this occurs, operate the drain valve opening of the drain separator in the start-up bypass system and the high-pressure side regulating valve opening of the feed water pump driving turbine to introduce excess steam into the flash tank and the feed water pump driving turbine, and then release the main steam. A method for controlling main steam pressure in a power generation plant, characterized by suppressing pressure below the operating pressure of a relief valve and a safety valve.
JP2293787A 1987-02-03 1987-02-03 Main steam pressure control method for power generating plant Pending JPS63192904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293787A JPS63192904A (en) 1987-02-03 1987-02-03 Main steam pressure control method for power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293787A JPS63192904A (en) 1987-02-03 1987-02-03 Main steam pressure control method for power generating plant

Publications (1)

Publication Number Publication Date
JPS63192904A true JPS63192904A (en) 1988-08-10

Family

ID=12096546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293787A Pending JPS63192904A (en) 1987-02-03 1987-02-03 Main steam pressure control method for power generating plant

Country Status (1)

Country Link
JP (1) JPS63192904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157853A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for turbine in power generation facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157853A (en) * 2010-01-29 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for turbine in power generation facility

Similar Documents

Publication Publication Date Title
US4975238A (en) Control system for a nuclear steam power plant
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JPS5923004A (en) Method and device for controlling generator facility of steam turbine
JPS63192904A (en) Main steam pressure control method for power generating plant
JPS63192905A (en) Main steam pressure control method for power generating plant
JPS63192906A (en) Main steam pressure control method for power generating plant
JPS63192903A (en) Main steam pressure control method for power generating plant
JPS6156402B2 (en)
JPH0135244B2 (en)
JPH0539901A (en) Method and device for automatically controlling boiler
JPS61114197A (en) Method of stopping fast breeder reactor plant
JPS6158903A (en) Turbine controller for nuclear reactor
JPH07293809A (en) Method and device for controlling injection of water to desuperheater
Lao et al. Research on operation of low-pressure cylinder zero output heat supply retrofit unit
JPH0221296A (en) Controlling of fast breeder reactor system
JPS62297602A (en) Controller for pressure of main steam
JPS59110811A (en) Steam turbine plant
JPS62111105A (en) Mixture volume control device
JPS59221408A (en) Control method of cold power plant
JPH0135242B2 (en)
JPH0241720B2 (en)
JPS62195404A (en) Turbine control device
JPH04342806A (en) Steam turbine control device for combined power plant
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPS61114196A (en) Method of starting fast breeder reactor plant