JPH0428964B2 - - Google Patents
Info
- Publication number
- JPH0428964B2 JPH0428964B2 JP58152506A JP15250683A JPH0428964B2 JP H0428964 B2 JPH0428964 B2 JP H0428964B2 JP 58152506 A JP58152506 A JP 58152506A JP 15250683 A JP15250683 A JP 15250683A JP H0428964 B2 JPH0428964 B2 JP H0428964B2
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- filter
- blow
- water
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 80
- 238000010248 power generation Methods 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000010612 desalination reaction Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Water Treatment By Sorption (AREA)
- Filters And Equalizers (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は発電用の蒸気原動機プラントにおいて
給・復水系統の水中に懸濁した固形物を除去する
ためのフイルタ装置の系統に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a system of filter devices for removing solid matter suspended in water of a feed/condensate system in a steam motor plant for power generation.
〔発明の背景〕
一般に、発電プラントの起動当初においては、
給・復水の水質劣化が大とされており、酸化鉄等
の懸濁固形物の含有量が増加している。[Background of the invention] Generally, at the beginning of a power generation plant,
It is said that the quality of feed and condensate water has deteriorated significantly, and the content of suspended solids such as iron oxide has increased.
通常、発電プラントに設置される復水脱塩装置
の樹脂層においても前記、懸濁固形物の除去を行
なう事は出来るが、起動当初等の非常に懸濁固形
物が多い場合はイオン交換樹脂の鉄汚染および劣
化を防止するため各種系統(復水ポンプ出口、脱
気器、高圧給水加熱器出口、低圧給水加熱器ドレ
ン、高圧給水加熱器ドレン)より、それぞれ系外
へブローし給・復水の水質が一般的にM・Fe≦
500ppb、油脂≦1ppmになつた事を確認して、各
系統より復水器へ回収し通常系統へのクリーンア
ツプ運転(復水脱塩装置への通水)に移行してい
る。 Normally, the above-mentioned suspended solids can be removed from the resin layer of the condensate desalination equipment installed in power plants, but if there are a lot of suspended solids, such as at the beginning of startup, ion exchange resin In order to prevent iron contamination and deterioration, the supply and return air are blown out of the system from various systems (condensate pump outlet, deaerator, high-pressure feedwater heater outlet, low-pressure feedwater heater drain, and high-pressure feedwater heater drain). Water quality is generally M・Fe≦
After confirming that the oil and fat were 500ppb and 1ppm or less, the water was collected from each system to the condenser, and clean-up operation to the normal system (water flow to the condensate desalination equipment) was started.
第1図に従来技術の基本系統構成図を示す。 FIG. 1 shows a basic system configuration diagram of the prior art.
発電プラントの起動に際しては、各種系統のク
リーンアツプを実施する。まず、復水器1の懸濁
固定物除去のため、復水器ドレン弁より系外へ復
水器保有水をブローし、水質濁度を約3ppm以下
とし、次に、復水ポンプ2出口の復水ブロー系統
18より復水を系外へブローし、復水の水質が
M・Fe≦2000ppb、油脂1ppmになつた事を確認
して、復水ブースタポンプ5出口からの復水クリ
ーンアツプ循環に移行し、復水器への回収及びフ
イルタ、復水脱塩装置への通水となり水質Fe≦
100ppbとする。次に復水は、脱気器9まで送水
され、低圧クリーンアツプ系統の低圧クリーン
アツプブロー系統19より系外へブローされ、水
質がM・Fe≦2000ppb、油脂≦1ppmになつた後
に、復水器1へ回収され、通常系統への低圧クリ
ーンアツプ循環運転となり、水質Fe≦100ppbと
する。 When starting up a power plant, clean-up of various systems will be carried out. First, in order to remove suspended solids in condenser 1, the water held in the condenser is blown out of the system from the condenser drain valve to reduce the water turbidity to approximately 3 ppm or less, and then the condensate pump 2 outlet Blow the condensate out of the system from the condensate blow system 18, confirm that the water quality of the condensate is M・Fe≦2000ppb, and 1ppm of oil and fat, and clean up the condensate from the condensate booster pump 5 outlet. The water moves to circulation, is collected to the condenser, and is passed to the filter and condensate desalination equipment, and the water quality Fe≦
Set to 100ppb. Next, the condensate is sent to the deaerator 9 and blown out of the system from the low-pressure clean-up blow system 19 of the low-pressure clean-up system, and after the water quality becomes M・Fe≦2000 ppb and oil≦1 ppm, the condensate The water is collected into vessel 1, and then sent to the normal system for low-pressure clean-up circulation operation, and the water quality is set to Fe≦100ppb.
以上の如く、復水系統のクリーンアツプ終了後
給水系統のクリーンアツプに移行する。 As described above, after the cleanup of the condensate system is completed, the cleanup of the water supply system begins.
給水は脱気器9からボイラ給水ポンプブースタ
ポンプを介して第3高圧給水加熱器14の出口ま
で送水され、高圧クリーンアツプ系統の高圧ク
リーンアツプブロー系統20より系外へブローさ
れ、水質がM・Fe≦2000ppb、油脂≦1ppmにな
つた後に復水器1へ回収され、高圧クリーンアツ
プ循環運転となり、水質Fe≦100ppbとする。 The feed water is sent from the deaerator 9 to the outlet of the third high-pressure feed water heater 14 via the boiler feed water pump booster pump, and is blown out of the system by the high-pressure clean-up blow system 20 of the high-pressure clean-up system to improve the water quality. After Fe≦2000ppb and fats and oils≦1ppm, the water is recovered to condenser 1, and high-pressure clean-up circulation operation is performed to make the water quality Fe≦100ppb.
以上、給・復水系統のクリーンアツプ終了後、
発電プラントの起動となる。 After completing the cleanup of the supply and condensate system,
The power generation plant will start up.
発電プラントの起動に伴ない、タービンより低
圧側の給水加熱器から順に抽気が開始され給水加
熱器はインサービスされるが、この時に生ずる給
水加熱器ドレンは、当初、系外へブローされる。
低圧給水加熱器側は、低圧給水加熱器シリカブロ
ー系統21よりブロー、高圧給水加熱器側は、高
圧給水加熱器シリカブロー系統(復水器側及び脱
気器側)23,22よりブローされ、ドレン水質
確認後、低圧給水加熱器は復水系に、高圧給水加
熱器は復水器1及び、脱気器9にそれぞれ回収さ
れる。 As the power generation plant starts up, air extraction starts from the feedwater heaters on the low pressure side of the turbine and the feedwater heaters are brought into service, but the feedwater heater drain that occurs at this time is initially blown out of the system.
The low-pressure feedwater heater side is blown by the low-pressure feedwater heater silica blow system 21, and the high-pressure feedwater heater side is blown by the high-pressure feedwater heater silica blow system (condenser side and deaerator side) 23, 22. After confirming the drain water quality, the low-pressure feedwater heater is recovered to the condensate system, and the high-pressure feedwater heater is recovered to the condenser 1 and deaerator 9, respectively.
前述の如く、給・復水系及び、給水加熱器ドレ
ン系においてはクリーンアツプに際し、それぞれ
多量(低圧、高圧クリーンアツプでは25%MCR
水量で約2〜3時間)に系外ブローする事になり
省用水、省排水の観点から好ましくない。 As mentioned above, the supply/condensate system and the feedwater heater drain system require a large amount of MCR (25% MCR for low pressure and high pressure cleanup).
This is not desirable from the viewpoint of saving water and waste water, since it takes about 2 to 3 hours to blow out the system.
(但し、フイルタ非設置の場合系外ブローは5
〜6時間に対しては大幅に改善されている。)
以上に述べた従来技術のごとくフイルタ3を復
水系統の復水脱塩装置4の上流側に設置すること
により、復水ポンプ2の全揚程にフイルタの圧力
損失(通常20m程度)を負担させることになり、
復水ポンプ全揚程増加によるモータ容量増加や設
備費の増加を招き、更には全揚程増加に伴つて各
機器、系統(配管、弁類)等に要求される耐圧性
が増加し、復水系統全体の設備費増加に影響する
ことになり、実質的にフイルタを使用するのが起
動時だけである事(通常の負荷運転中はフイルタ
をバイパス運転している)を考慮すると、復水系
を過剰設備にしているとも考えられる。 (However, if no filter is installed, the blow outside the system will be 5
This is a significant improvement over ~6 hours. ) By installing the filter 3 upstream of the condensate desalination device 4 in the condensate system as in the conventional technology described above, the pressure loss of the filter (usually about 20 m) is borne by the entire head of the condensate pump 2. I ended up having to
An increase in the total head of the condensate pump will lead to an increase in motor capacity and an increase in equipment costs.Furthermore, with an increase in the total head, the pressure resistance required of each device and system (piping, valves), etc. will increase, and the condensate system will This will affect the overall equipment cost increase, and considering that the filter is actually used only at startup (the filter is bypassed during normal load operation), it is necessary to overuse the condensate system. It is also possible that they are used as equipment.
又、起動前に運転を必要とする補機(循環水ポ
ンプ、海水ブースタポンプ、軸冷水ポンプ、フイ
ルタポンプ等)の軸動力をプラントの起動損失と
考えると、クリーンアツプ時間の短縮は、従来に
も増して今後の懸案事項とされる。 In addition, if we consider the shaft power of auxiliary equipment (circulating water pump, seawater booster pump, shaft chilled water pump, filter pump, etc.) that requires operation before startup as a startup loss for the plant, shortening the cleanup time will be faster than before. This is considered to be an issue of concern in the future.
本発明は、以上に述べた従来の発電プラントに
おける給・復水系におけるフイルタ系統の技術的
不具合を解消すべく為されたもので、その目的と
するところは次のごとくである。
The present invention has been made to solve the above-mentioned technical problems of the filter system in the feed/condensate system in the conventional power generation plant, and its purpose is as follows.
a 発電プラントの省用水、省廃水を図り、
b 給・復水系における動力消費を軽減するとと
もに同系の設備費低減を図り、
c 発電プラントのクリーンアツプ時間を短縮
し、起動損失(プラント起動前から運転を必要
とする補機動力)の低減を図り、
d 併せてフイルタに関するトラブルの発生を防
止して発電プラント全体の信頼性向上に貢献す
る。a) To save water and waste water in the power plant, b) To reduce power consumption in the supply and condensate systems and reduce equipment costs for the same system, c) To shorten the clean-up time of the power plant, and to reduce startup losses (from before the plant starts up) This will reduce the power required for auxiliary machinery (which requires operation), and will also help improve the reliability of the entire power plant by preventing troubles related to the filter.
上記の目的を達成するため、本発明は、発電用
の蒸気原動機プラントの給・復水系において、該
給・復水系の主要系統外に、各種のブロー水を集
合せしめ、フイルタを介して復水器に回収するよ
うに構成したことを特徴とする。
In order to achieve the above object, the present invention collects various kinds of blow water outside the main system of the feed/condensate system in the feed/condensate system of a steam power plant for power generation, and condenses the water through a filter. It is characterized by being configured to be collected in a container.
第2図に本発明実施例の基本系統構成図を示
す。従来技術との基本的相違点は、フイルタ3を
主復水系統以外で単独に構成した事である。従来
技術では系外ブローとして排水した、復水ポンプ
出口ブロー○イ、低圧クリーンアツプブロー○ロ、高
圧クリーンアツプブロー○ハ、低圧給水加熱器ドレ
ンブロー○ニ、高圧給水加熱器ドレンブロー○ホ,○ヘ
を、フイルタ3の上流に接続し大幅に、フイルタ
3へ通水し、復水器1へ回収するものである。こ
の時のフイルタ3出口水(復水器1回収水)の水
質はM・Fe≦500ppb程度、油脂≦1ppmとなる。
FIG. 2 shows a basic system configuration diagram of an embodiment of the present invention. The basic difference from the prior art is that the filter 3 is configured independently outside the main condensate system. In the conventional technology, the condensate pump outlet blow ○I, low pressure clean up blow ○○, high pressure clean up blow ○ha, low pressure feed water heater drain blow ○ni, high pressure feed water heater drain blow ○○, which was drained as an external blow in the conventional technology, ○ is connected upstream of the filter 3 to allow a large amount of water to pass through the filter 3 and recover it to the condenser 1. At this time, the water quality of the filter 3 outlet water (condenser 1 recovered water) is approximately M.Fe≦500ppb, and fats and oils≦1ppm.
尚、各系統のクリーンアツプ要領及び、手順は
従来技術と同等にて実施するものであるが、本発
明の場合、クリーンアツプブロー(フイルタ通
水)から、クリーンアツプ循環(フイルタは通水
せず)への切替え時期は、フイルタ3の入口側及
び出口側の水質が同等(M・Fe≦500ppb、油脂
≦1ppm)となつた時点とし、クリーンアツプ循
環終了の判定は、従来技術と同様水質がFe≦
100ppbである。 Note that the clean-up instructions and procedures for each system are carried out in the same manner as in the conventional technology, but in the case of the present invention, the process changes from clean-up blow (water passes through the filter) to clean-up circulation (no water passes through the filter). ) is determined when the water quality on the inlet and outlet sides of the filter 3 becomes the same (M・Fe≦500ppb, oil≦1ppm), and the end of clean-up circulation is determined when the water quality is the same as in the conventional technology. Fe≦
It is 100ppb.
第3図に本発明実施例の具体的系統構成図1を
示す。 FIG. 3 shows a concrete system configuration diagram 1 of an embodiment of the present invention.
本実施例では、各ブロー系統(復水ポンプ出口
ブロー○イ、低圧クリーンアツプブロー○ロ、高圧ク
リーンアツプブロー○ハ、高・低圧給水加熱器ドレ
ンブロー○ニ,○ホ,○ヘ)をブロー管ヘツダー24に
接続し、フイルタ3を介して復水器1に回収する
もので有る。 In this example, each blow system (condensate pump outlet blow ○ I, low pressure clean up blow ○ RO, high pressure clean up blow ○ HA, high/low pressure feed water heater drain blow ○ NI, ○ HO, ○) will be blown. It is connected to the pipe header 24 and collected into the condenser 1 via the filter 3.
各クリーンアツプ当初の非常に懸濁固形物が多
い場合は系外ブロー系統25より多少の系外ブロ
ーも可能である。 If there is a large amount of suspended solids at the beginning of each cleanup, some extra-system blowing from the extra-system blow system 25 is also possible.
尚、本実施例の場合、復水系回収に必要な圧力
(配管弁・フイルタ、復水器導入部等の圧力損失)
は各クリーンアツプブロー水の保有圧力で対処す
るものとした。 In the case of this example, the pressure required for condensate system recovery (pressure loss at piping valves, filters, condenser introduction parts, etc.)
It was decided that this would be dealt with by the pressure retained in each clean up blow water.
又、クリーンアツプ要領、手順、判定は、前実
施例と同等である。 In addition, the cleanup procedure, procedure, and judgment are the same as in the previous example.
第4図に本発明実施例の具体的系統構成図2を
示す。 FIG. 4 shows a concrete system configuration diagram 2 of the embodiment of the present invention.
本実施例では、各ブロー系統(○イ,○ロ,○ハ,
○ニ,○ホ,○ヘ)をブロータンク27に回収し、フイ
ルタポンプ28により、フイルタ3を介して復水
器1に回収するものである。 In this example, each blow system (○I, ○B, ○Ha,
○D, ○H, ○F) are collected in a blow tank 27, and are collected in a condenser 1 via a filter 3 by a filter pump 28.
本実施例の場合も、各クリーンアツプ当初の非
常に懸濁固形物が多い場合は、ブロータンク系外
ブロー系統29より多少の系外ブローが可能であ
る。 In the case of this embodiment as well, if there are a large number of suspended solids at the beginning of each cleanup, some amount of external blowing can be carried out using the blow system 29 outside the blow tank system.
尚、本実施例は、各クリーンアツプブロー水の
保有圧力が復水器回収に必要な圧力(配管、弁、
フイルタ、復水器導入部等の圧力損失)以下の場
合を考慮しフイルタポンプ28を設置したもの
で、クリーンアツプ要領、手順、判定は、前実施
例と同等である。 In addition, in this example, the holding pressure of each clean up blow water is the pressure required for condenser recovery (pipes, valves,
A filter pump 28 was installed in consideration of the following cases (pressure loss in filter, condenser introduction part, etc.), and the cleanup procedure, procedure, and judgment are the same as in the previous embodiment.
又、本実施例の場合、ブロー水をブロータンク
27へブローし、ブロータンク27はブロータン
クベント管30により復水器1に接継されるた
め、復水器1の器内圧力の飽和温度までブロー水
の温度低下が期待でき、高温水のブローにも、適
用可能となる。 In addition, in the case of this embodiment, the blow water is blown into the blow tank 27, and the blow tank 27 is connected to the condenser 1 by the blow tank vent pipe 30, so that the saturation temperature of the internal pressure of the condenser 1 It can be expected that the temperature of the blowing water will be lowered to 100%, and it can also be applied to blowing high-temperature water.
以上の実施例通り、クリーンアツプ時の初期ブ
ロー水量を回収する事が可能となり、発電プラン
トの省用水、省排水に大きく寄与することがで
き、さらにはクリーンアツプ時間の短縮に伴な
い、発電プラントの起動損失を低減する事もでき
る。第5図に復水ポンプQ−H特性の一例を示
す。本特性は500MW級の発電設備を例にとつた
もので有り、カーブが従来技術、カーブが本
発明実施例のQ−H特性を示す。ポンプ仕様点
(従来技術点、本発明実施例点)において、
本発明により、ポンプ全揚程は20m(フイルタ圧
力損失分)の低減となり、この全揚程の低減を軸
動力差とすると約50kW(従来技術点と本発明
実施例点の差)となる。以上の如く、復水ポン
プ全揚程低減及び、ポンプ軸動力低減により、復
水ポンプの設備費及び通常運転時の運転経費(電
力料)を低減する事が可能となる。 As shown in the above examples, it is possible to recover the initial amount of water blown during clean-up, which greatly contributes to saving water and waste water in power plants.Furthermore, as the clean-up time is shortened, It is also possible to reduce the starting loss. FIG. 5 shows an example of the condensate pump QH characteristics. This characteristic is taken as an example of a 500 MW class power generation facility, and the curve shows the QH characteristic of the prior art and the curve shows the QH characteristic of the embodiment of the present invention. At the pump specification point (prior art point, present invention example point),
According to the present invention, the total pump head is reduced by 20 m (filter pressure loss), and if this reduction in total head is taken as a shaft power difference, it is approximately 50 kW (difference between the prior art point and the example point of the present invention). As described above, by reducing the total head of the condensate pump and reducing the pump shaft power, it is possible to reduce the equipment cost of the condensate pump and the operating cost (power cost) during normal operation.
又、一般的に復水系(機器、配管、弁等)の耐
圧(設計圧力)は復水ポンプ締切圧力の110%と
されており、
従来技術では
締切圧力(点)15.5at×1.1
=17.05→18atg
本発明実施例では
締切圧力(点)12.6at×1.1
=13.86→14atg
となり、機器・配管等のフランジ部、及び弁のレ
イテイングは従来技術JIS20K相当、本発明実施
例JIS10K相当となり、復水系統設備の大幅な原
価低減が可能となる。 In addition, the withstand pressure (design pressure) of the condensate system (equipment, piping, valves, etc.) is generally considered to be 110% of the condensate pump cut-off pressure, and in conventional technology, the cut-off pressure (point) 15.5at x 1.1 = 17.05→ 18 atg In the embodiment of the present invention, the shutoff pressure (point) 12.6 at x 1.1 = 13.86 → 14 atg, and the rating of flanges of equipment and piping, etc., and valves are equivalent to JIS 20K for the conventional technology, and equivalent to JIS 10K for the embodiment of the invention, and the condensate system It becomes possible to significantly reduce the cost of equipment.
第6図に従来技術における復水ポンプQ−H特
性及び、システム抵抗の一例を示す。 FIG. 6 shows an example of condensate pump QH characteristics and system resistance in the prior art.
第7図に本発明実施例における復水ポンプQ−
H特性及び、システム抵抗の一例を示す。 Fig. 7 shows a condensate pump Q- in an embodiment of the present invention.
An example of H characteristics and system resistance is shown.
一般に復水ポンプのシステム抵抗は、復水脱塩
装置及びフイルタの圧力損失を考慮に入れて計画
される。しかし実運用上、前記圧力損失が計画値
まで増加することは稀であり、その圧力損失の低
下分を含め、復水系統の所要システム抵抗を復水
ポンプ全揚程がオーバーする分、弁で絞る事にな
る。 Generally, the system resistance of the condensate pump is planned taking into account the pressure loss of the condensate desalination device and filter. However, in actual operation, it is rare for the pressure loss to increase to the planned value, and the required system resistance of the condensate system, including the decrease in pressure loss, must be throttled by a valve by the amount that the total head of the condensate pump exceeds. It's going to happen.
今、復水脱塩装置(デミネ)及びフイルタの圧
力損失が計画値に対し50%だとすると、従来技術
では弁の絞り35m、本発明実施例では25m(但
し、ポンプ仕様点において)となり、従来技術に
対し弁の絞りは小さくなり弁の信頼性も大幅に向
上する。尚、発電プラントが部分負荷(低負荷)
で運転される場合、ポンプ吐出量は少なくなり前
述の弁絞りは仕様点に対しさらに大きくなる。 Now, assuming that the pressure loss of the condensate desalination equipment (Demine) and the filter is 50% of the planned value, the valve throttle is 35 m in the conventional technology and 25 m in the embodiment of the present invention (however, at the pump specification point), and the conventional technology On the other hand, the valve throttle becomes smaller and the reliability of the valve is greatly improved. In addition, the power generation plant is at partial load (low load)
When the pump is operated at 100 kW, the pump discharge amount decreases and the above-mentioned valve throttling becomes larger than the specification point.
更に、本実施例においてはフイルタを主系統以
外で単独に構成しているため、フイルタ自体のト
ラブルがプラント全体に与える影響は小さくな
り、発電プラント全体の信頼性向上にも寄与する
事ができる。 Furthermore, in this embodiment, since the filter is configured independently outside the main system, troubles in the filter itself have less influence on the entire plant, and can contribute to improving the reliability of the entire power plant.
以上に説明した実施例においては、上述の作用
により省エネルギー、効率向上、省用水を達成す
ることができた。具体的には次のごとくである。 In the embodiments described above, energy saving, efficiency improvement, and water saving could be achieved due to the above-mentioned effects. Specifically, it is as follows.
(イ) 復水ポンプ全揚程の低減(フイルタ差圧分の
20m)ができる。(a) Reduction of the total head of the condensate pump (by the filter differential pressure)
20m).
これを、500MW級発電設備とし、年間300日
運転するとすれば、電力料に換算し約1000万
円/年(相当建設費換算では約6700万円とな
る)の低減となる。 If this is a 500 MW class power generation facility that operates 300 days a year, the electricity cost will be reduced by approximately 10 million yen per year (approximately 67 million yen in equivalent construction costs).
(ロ) 当初よりブロー水の回収を行なうため、クリ
ーンアツプ時間が2時間程度短縮可能となり、
起動時間も短縮されるものと予想され、その時
の起動損失は、500MW級発電設備で年間50回
起動するとすれば電力料に換算し、約360万
円/年(相当建設費換算では約2400万円)の低
減となる。(b) Since the blow water is collected from the beginning, the cleanup time can be reduced by about 2 hours.
It is expected that the start-up time will also be shortened, and the start-up loss at that time will be approximately 3.6 million yen/year (converted to equivalent construction costs of approximately 24 million yen/year) if a 500 MW class power generation facility is started up 50 times a year. yen).
(ハ) 上記と同様当初よりブロー水を回収するため
排水量、用水量が低減される。(c) As above, since blow water is recovered from the beginning, the amount of drainage and water consumption will be reduced.
この時の省用水は500MW級発電設備で年間50
回起動するとすれば約2200万円/年の効果とな
る。 The water saving at this time is 50 MW per year for a 500 MW class power generation facility.
If it were to be activated once, the effect would be approximately 22 million yen/year.
更に前記の実施例においては前述の作用によつ
て信頼性の向上および運転性の改善が達成され
た。具体的には次のごとくである。 Further, in the above-mentioned embodiment, improved reliability and improved drivability were achieved due to the above-mentioned effects. Specifically, it is as follows.
(イ) 電磁フイルタの場合、電源喪失時等のトラブ
ル時に、フイルタ内にホールドした物質のサイ
クル内への流入が防止される。(b) In the case of electromagnetic filters, substances held in the filter are prevented from flowing into the cycle in the event of a power outage or other trouble.
(ロ) 起動過程における、主系統の機器のインサー
ビス/サービスアウトの操作が無く、運用性が
増す。(b) During the start-up process, there is no need to perform in-service/out-of-service operations on main system equipment, improving operability.
(ハ) ブロー水を主系統外で処理するため、復水器
を汚すことがなく、当初からブロー水の回収が
できる。(c) Since the blow water is treated outside the main system, the condenser is not contaminated and the blow water can be recovered from the beginning.
(ニ) 復水ポンプ全揚程は、復水脱塩装置、フイル
タの最大差圧をベースに決定され、通常運転時
は差圧が小さいため、復水器調節弁の差圧が過
大となり、低負荷時の制御性が悪くなる傾向に
あつたが、フイルタを主系統外に設置すること
により、制御性が改善される。(調節弁員数も
削減される。)
(ホ) 復水器への不純物の持込みがなくなる為、起
動当初における、復水ポンプ吸込ストレーナ詰
り等の問題がなく、監視、点検、ポンプ切替
え、ストレーナ清掃等の操作が削減され、運用
性が改善される。(d) The total head of the condensate pump is determined based on the maximum differential pressure between the condensate desalination equipment and the filter.During normal operation, the differential pressure is small, so the differential pressure at the condenser control valve becomes excessive and the pressure drops. Controllability under load tended to deteriorate, but by installing the filter outside the main system, controllability can be improved. (The number of control valves is also reduced.) (E) Since no impurities are brought into the condenser, there are no problems such as clogging of the condensate pump suction strainer at the beginning of startup, and monitoring, inspection, pump switching, and strainer cleaning are eliminated. etc. operations are reduced and operability is improved.
その上、前記の実施例においては次記のごとく
設備費の低減が達成された。 Moreover, in the above embodiments, equipment costs were reduced as described below.
(イ) フイルタを主系統外で構成するため、復水ポ
ンプ全揚程を、フイルタ計画差圧分(20m)低
減する事ができ、復水ポンプ、モータの容量が
小さくなり設備費が低減される。さらに、復水
ポンプ全揚程低減に伴ない復水系の耐圧が低減
され、復水脱塩装置及び、系統の配管、弁の設
備費は低減されこれらを総合し、500MW級発
電設備とすれば約3000万円の低減となる。(b) Since the filter is configured outside the main system, the total head of the condensate pump can be reduced by the planned differential pressure of the filter (20 m), which reduces the capacity of the condensate pump and motor, reducing equipment costs. . Furthermore, as the total head of the condensate pump is reduced, the withstand pressure of the condensate system is reduced, and the equipment costs for the condensate desalination equipment, system piping, and valves are reduced, and if these are combined, a 500MW class power generation facility will be approximately This is a reduction of 30 million yen.
(ロ) フイルタを主系統に設置する場合、50%
MCR相当の容量で計画されており、本発明の
如く、系統外で構成する場合、25%MCR相当
に容量低減可能で設備費差とすると約3000万円
の低減となる。(b) If the filter is installed in the main system, 50%
It is planned to have a capacity equivalent to MCR, and if configured outside the grid as in the present invention, the capacity can be reduced to 25% equivalent to MCR, resulting in a reduction of approximately 30 million yen in equipment costs.
(ハ) 所内用水、排水の量が前述の如く低減される
ため、発電設備の純水装置、補給水ポンプ、補
給水タンク、排水処理設備等の容量を小さくす
る事ができ、大幅な設備費低減が可能となる。(c) Since the amount of in-house water and wastewater is reduced as mentioned above, the capacity of the power generation equipment's pure water equipment, make-up water pump, make-up water tank, wastewater treatment equipment, etc. can be reduced, resulting in significant equipment costs. reduction is possible.
更に、本実施例においてはフイルタがヒートサ
イクルの主系統でなくなるので、設置場所を自由
に選択できるという効果も認められる。 Furthermore, in this embodiment, since the filter is no longer part of the main system of the heat cycle, it is possible to freely select the installation location.
以上詳述したように、本発明のフイルタ系統
は、発電用の蒸気原動機プラントの給・復水系に
おいて、該給・復水系の主要系統外にフイルタを
設け、当該蒸気原動機プラントの各種のブロー水
を上記のフイルタを介して復水器に回収し得べく
為すことにより、(a)発電プラントの省用水、省廃
水を達成し、(b)給・復水系における動力消費軽減
および設備費低減を達成し、(c)発電プラントのク
リーンアツプ時間の短縮により起動損失を低減
し、(d)併せて発電プラント全体の信頼性向上に寄
与し得るという優れた実用的効果を奏する。
As described in detail above, the filter system of the present invention provides a filter outside the main system of the feed/condensate system in the feed/condensate system of a steam power plant for power generation, and the filter system is configured to provide a filter for various types of blow water in the steam power plant. By collecting the water into the condenser through the above-mentioned filter, we can (a) save water and reduce wastewater in the power plant, and (b) reduce power consumption and equipment costs in the feed and condensate systems. (c) reduces start-up loss by shortening the clean-up time of the power plant, and (d) also contributes to improving the reliability of the entire power plant.
第1図は従来技術の基本系統構成図、第2図は
本発明の1実施例の基本系統構成図、第3図は本
発明の1実施例の具体的系統構成図、第4図は上
記と異なる実施例の具体的系統構成図、第5図は
復水ポンプQ−H特性の一例を示す図表、第6図
は従来技術における復水ポンプQ−H特性、及
び、システム抵抗の一例を示す図表、第7図は本
発明実施例における復水ポンプQ−H特性及び、
システム抵抗の一例を示す図表である。
1……復水器、2……復水ポンプ、3……フイ
ルタ(電磁フイルタ等)、4……復水脱塩装置
(デミネ)、5……復水ブースタポンプ、6……第
1低圧給水加熱器、7……第2低圧給水加熱器、
8……第3低圧給水加熱器、9……脱気器、10
……ボイラ給水ポンプブースタポンプ、11……
ボイラ給水ポンプ、12……第1高圧給水加熱
器、13……第2高圧給水加熱器、14……第3
高圧給水加熱器、15……低圧給水加熱器ドレン
タンク、16……ドレンポンプ、17……脱気器
水位調節弁、18……復水ブロー系統、19……
低圧クリーンアツプブロー系統、20……高圧ク
リーンアツプブロー系統、21……低圧給水加熱
器シリカブロー系統、22……高圧給水加熱器シ
リカブロー系統(脱気器側)、23……高圧給水
加熱器シリカブロー系統(復水器側)、24……
ブロー管ヘツダー、25……系外ブロー系統、2
6……フイルタバイパス管、27……ブロータン
ク、28……フイルタポンプ、29……ブロータ
ンク系外ブロー系統、30……ブロータンクベン
ト管、……高圧給水加熱器ドレン系統(復水器
側)、……低圧クリーンアツプ系統、……高
圧クリーンアツプ系統、○イ……復水ポンプ出口ブ
ロー、○ロ……低圧クリーンアツプブロー、○ハ……
高圧クリーンアツプブロー、○ニ……低圧給水加熱
器ドレンブロー、○ホ……高圧給水加熱器ドレンブ
ロー(脱気器側)、○ヘ……高圧給水加熱器ドレン
ブロー(復水器側)、……従来技術の復水ポン
プQ−H曲線、……本発明実施例の復水ポンプ
Q−H曲線、……従来技術の復水ポンプ軸動力
曲線、……本発明の実施例の復水ポンプ軸動力
曲線、……従来技術の復水ポンプ仕様点Q−
H、……本発明の実施例の復水ポンプ仕様点Q
−H、……従来技術の復水ポンプ仕様点軸動
力、……本発明実施例の復水ポンプ仕様点軸動
力、……従来技術の復水ポンプ締切全揚程、
……本発明実施例の復水ポンプ締切全揚程。
Fig. 1 is a basic system configuration diagram of the prior art, Fig. 2 is a basic system configuration diagram of an embodiment of the present invention, Fig. 3 is a specific system configuration diagram of an embodiment of the present invention, and Fig. 4 is the above-mentioned system configuration diagram. 5 is a diagram showing an example of condensate pump Q-H characteristics, and FIG. 6 is a diagram showing an example of condensate pump Q-H characteristics and system resistance in the prior art. The chart shown in FIG. 7 shows the condensate pump Q-H characteristics in the embodiment of the present invention, and
It is a chart showing an example of system resistance. 1... Condenser, 2... Condensate pump, 3... Filter (electromagnetic filter, etc.), 4... Condensate desalination device (Demine), 5... Condensate booster pump, 6... First low pressure Feed water heater, 7... second low pressure feed water heater,
8... Third low pressure feed water heater, 9... Deaerator, 10
...Boiler feed water pump booster pump, 11...
Boiler feed water pump, 12...first high pressure feed water heater, 13...second high pressure feed water heater, 14...third
High pressure feed water heater, 15...Low pressure feed water heater drain tank, 16...Drain pump, 17...Deaerator water level control valve, 18...Condensate blow system, 19...
Low pressure clean up blow system, 20... High pressure clean up blow system, 21... Low pressure feed water heater silica blow system, 22... High pressure feed water heater silica blow system (deaerator side), 23... High pressure feed water heater Silica blow system (condenser side), 24...
Blow pipe header, 25...Outside blow system, 2
6...Filter bypass pipe, 27...Blow tank, 28...Filter pump, 29...Blow tank system outside blow system, 30...Blow tank vent pipe,...High pressure feed water heater drain system (condenser side ),...Low pressure clean-up system,...High pressure clean-up system, ○A...Condensate pump outlet blow, ○B...Low pressure clean-up blow, ○C...
High pressure clean up blow, ○D...Low pressure feed water heater drain blow, ○H...High pressure feed water heater drain blow (deaerator side), ○H...High pressure feed water heater drain blow (condenser side), ... Condensate pump Q-H curve of the prior art, ... Condensate pump Q-H curve of the embodiment of the present invention, ... Condensate pump shaft power curve of the prior art, ... Condensate pump of the embodiment of the present invention Pump shaft power curve, ... condensate pump specification point Q- of conventional technology
H,... Condensate pump specification point Q of the embodiment of the present invention
-H, ... Condensate pump specification point shaft power of the prior art, ... Specification point shaft power of the condensate pump of the embodiment of the present invention, ... Condensate pump cut-off total head of the prior art,
...The total shutoff head of the condensate pump according to the embodiment of the present invention.
Claims (1)
おいて、該給・復水系の主要系統外に、各種のブ
ロー水を集合せしめ、フイルタを介して復水器に
回収するように構成したことを特徴とする発電プ
ラントにおける給・復水系のフイルタ系統。 2 前記各種のブロー水それぞれの有する圧力に
より、フイルタおよびその付属機器類を流通する
ための圧力損失を負担せしめるように構成したこ
とを特徴とする特許請求の範囲第1項に記載の発
電プラントにおける給・復水系のフイルタ系統。 3 前記各種のブロー水を集合せしめて一時的に
貯えるブロータンクを設けるとともに、このブロ
ータンク内のブロー水をフイルタを介して復水器
に送入するためのフイルタポンプを設けたことを
特徴とする特許請求の範囲第1項に記載の発電プ
ラントにおける給・復水系のフイルタ系統。[Scope of Claims] 1. In a feed/condensate system of a steam power plant for power generation, various types of blow water are collected outside the main system of the feed/condensate system and collected through a filter into a condenser. A filter system for a feed/condensate system in a power generation plant, characterized in that it is configured as follows. 2. The power generation plant according to claim 1, characterized in that the power generation plant is configured so that the pressure of each of the various types of blown water is made to bear the pressure loss due to the flow through the filter and its attached equipment. Supply/condensate system filter system. 3. A blow tank is provided to collect and temporarily store the various types of blow water, and a filter pump is provided to send the blow water in the blow tank to the condenser via a filter. A filter system for a feed/condensate system in a power generation plant according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15250683A JPS6044707A (en) | 1983-08-23 | 1983-08-23 | Feedwater and condensate system filter system in power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15250683A JPS6044707A (en) | 1983-08-23 | 1983-08-23 | Feedwater and condensate system filter system in power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6044707A JPS6044707A (en) | 1985-03-09 |
JPH0428964B2 true JPH0428964B2 (en) | 1992-05-15 |
Family
ID=15541942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15250683A Granted JPS6044707A (en) | 1983-08-23 | 1983-08-23 | Feedwater and condensate system filter system in power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6044707A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001050499A (en) * | 1999-08-09 | 2001-02-23 | Miyawaki Inc | Filtering device for steam drain |
JP5882869B2 (en) * | 2012-09-25 | 2016-03-09 | 三菱日立パワーシステムズ株式会社 | Power plant operation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5325885A (en) * | 1976-08-21 | 1978-03-10 | Sumitomo Electric Ind Ltd | Bridged polyolefine insulat ing hightension cable having outer semiconductor layers which can be treated of f easily |
JPS5517089A (en) * | 1979-05-01 | 1980-02-06 | Mitsubishi Heavy Ind Ltd | Filter apparatus of biler feed water system in steam power plant and like |
-
1983
- 1983-08-23 JP JP15250683A patent/JPS6044707A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5325885A (en) * | 1976-08-21 | 1978-03-10 | Sumitomo Electric Ind Ltd | Bridged polyolefine insulat ing hightension cable having outer semiconductor layers which can be treated of f easily |
JPS5517089A (en) * | 1979-05-01 | 1980-02-06 | Mitsubishi Heavy Ind Ltd | Filter apparatus of biler feed water system in steam power plant and like |
Also Published As
Publication number | Publication date |
---|---|
JPS6044707A (en) | 1985-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008522124A (en) | Steam driving equipment, in particular, a method of operating steam driving equipment of a power plant for generating at least electric energy and the steam driving equipment | |
CN101415992B (en) | Steam circuit in a power station | |
KR20130139326A (en) | Retrofitting a heating steam extraction facility in a fossil-fired power plant | |
JPS6126957Y2 (en) | ||
Seigworth et al. | Case study: Integrating membrane processes with evaporation to achieve economical zero liquid discharge at the Doswell Combined Cycle Facility | |
JP3667525B2 (en) | Steam generator-attached nuclear power generation turbine facility | |
JPH0428964B2 (en) | ||
CN209763032U (en) | Boiler blowdown pot water zero discharge apparatus | |
CN111947032A (en) | High-energy steam pipeline condensate recovery and drain valve on-line detection system | |
JP3664759B2 (en) | Flash prevention device | |
CN220550021U (en) | Condensate polishing system and device for water cooling unit | |
JPS6141807A (en) | Feedwater-heater drain system | |
CA2941547A1 (en) | Flash tank design | |
CN221544401U (en) | Nuclear power station water recovery device | |
JPS6059481B2 (en) | Filtration equipment for water supply systems in thermal and nuclear power plants | |
KR101571490B1 (en) | Boiler feed water heating system by waste heat recovery for ship, and boiler feed water heating method using the same | |
CN216837290U (en) | Condensed water treatment device for condensing boiler | |
JPS6235033B2 (en) | ||
JPS6015209B2 (en) | condensate equipment | |
JPH11304993A (en) | Turbine equipment for power generation | |
JPS6144204A (en) | Clean-up method of steam power plant | |
WO2014102978A1 (en) | Method for removing iron components from heater drain water in power-generating plant | |
JP2519306B2 (en) | Drain recovery system purification device | |
JP2597594B2 (en) | Feed water heater drain injection device | |
JP3597683B2 (en) | Nuclear power plant |