WO2014102978A1 - Method for removing iron components from heater drain water in power-generating plant - Google Patents

Method for removing iron components from heater drain water in power-generating plant Download PDF

Info

Publication number
WO2014102978A1
WO2014102978A1 PCT/JP2012/083940 JP2012083940W WO2014102978A1 WO 2014102978 A1 WO2014102978 A1 WO 2014102978A1 JP 2012083940 W JP2012083940 W JP 2012083940W WO 2014102978 A1 WO2014102978 A1 WO 2014102978A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heater drain
heater
drain water
filtration device
Prior art date
Application number
PCT/JP2012/083940
Other languages
French (fr)
Japanese (ja)
Inventor
仙市 椿▲崎▼
政治 高田
浩 御立田
直矢 浦田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2012/083940 priority Critical patent/WO2014102978A1/en
Priority to CN201280075201.7A priority patent/CN104520643B/en
Publication of WO2014102978A1 publication Critical patent/WO2014102978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound

Definitions

  • the present invention relates to a method for removing iron components in heater drain water in a power plant, by filtering iron components in heater drain water fed from a feed water heater, and making the heater drain water recoverable in a water supply pipe at all times. .
  • the feed water to the boiler contains impurities mainly composed of iron oxide, and these impurities gradually adhere to the inner surface of the heat transfer tube of the boiler, and this deposit may increase the differential pressure of the boiler. In other words, there is a risk of damage to boilers and piping. For this reason, it is practiced to remove impurities mainly composed of iron oxide by installing an iron removal filter in the flow path through which the water supply of the water supply system flows (Patent Document 1).
  • JP 2001-17983 A Japanese Patent Laid-Open No. 11-57416
  • heater drain water containing a large amount of iron or the like exceeding the reference value must be discharged outside the system, and cannot be returned to the water supply system for reuse. Therefore, as a result of operating the power generation output at about 60 to 80% to supply new water to the boiler, a large amount of water (pure water) is required and the power generation output of the turbine equipment is increased to 100%. It takes 3 days to complete.
  • wastewater treatment equipment for treating a large amount of wastewater discharged outside the system and a pure water production facility for producing a large amount of water (pure water) are required, resulting in an increase in equipment costs. It was.
  • the present invention has been made to solve the above-described problems, and provides a method for removing iron components in heater drain water in a power plant, which can reduce the iron concentration in feed water supplied to a boiler to a reference value or less.
  • the purpose is to do.
  • a method for removing an iron component in heater drain water in a power plant includes a boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the boiler, and a steam turbine
  • a condenser for condensing exhaust gas includes a water supply system for supplying condensate condensed in the condenser as feed water to the boiler side, and a water supply pipe of the water supply system.
  • a part of the exhaust gas supplied to the heater is extracted, and a water heater is used to heat the water supply, a heater drain tank for storing heater drain water discharged from the water heater, and iron particles in the heater drain water
  • the heater drain water When the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value, the heater drain water is discharged outside the system, and the heater drain discharged from the heater drain tank is When the iron ion concentration in the water is below a predetermined value, the heater drain water is supplied to the filtration device, or when the preset predetermined time has not elapsed, the heater drain water The heater drain water is supplied to the filtration device when the preset predetermined time has elapsed.
  • the power plant includes a boiler that generates steam by heat from a heat source, a steam turbine that is operated by steam of the boiler, and condensate that condenses exhaust from the steam turbine.
  • a water supply system that supplies the condensate condensed in the condenser as feed water to the boiler side, and an exhaust gas that is interposed in a water supply pipe of the water supply system and that is supplied from the steam turbine to the reheater
  • a water heater that heats the water supply using this, a heater drain tank that stores heater drain water discharged from the water heater, and a filtration device that filters iron particles in the heater drain water
  • a power plant that performs oxygen treatment by injecting oxygen into the water supply, wherein the iron ion concentration in the heater drain water discharged from the heater drain tank When it is higher than a predetermined value, the heater drain water is discharged out of the system, and when the iron ion concentration in the heater drain water discharged from the heater drain tank is equal to or lower than a predetermined
  • the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value. If it is high, the heater drain water is discharged out of the system, and if the iron ion concentration in the heater drain water discharged from the heater drain tank is below a predetermined value, the heater drain water is supplied to the filtration device or set in advance. When the predetermined time has not elapsed, the heater drain water is discharged out of the system, and when the preset predetermined time has elapsed, the heater drain water is supplied to the filtration device.
  • the “predetermined time” is a time (for example, 4 hours) required for the iron ion concentration in the heater drain water discharged from the heater drain tank to be a predetermined value or less, which is actually measured in the power plant. . Thereby, the iron density
  • the configuration may be such that the heater drain water is guided to the water heater through a bypass pipe that bypasses the filtration device.
  • the differential pressure of the filtration device becomes a predetermined pressure (for example, 110 kPa) or more
  • the heater drain water is passed through a bypass pipe that bypasses the filtration device. It will be guided to the water heater. Thereby, the amount of water supplied to the boiler can be secured.
  • the heater drain water when the heater drain water is guided to the feed water heater via a bypass pipe that bypasses the filtration device, the heater drain water is supplied to the filtration device at a minimum flow rate.
  • the structure which makes it flow may be sufficient.
  • the differential pressure of the filtration device becomes equal to or higher than a predetermined pressure (for example, 110 kPa)
  • a predetermined pressure for example, 110 kPa
  • the heater drain water is passed through only the surface layer portion of the filter element that constitutes the filtration device, and the interior of the container that houses the filter element. It may be configured to replace the water.
  • the iron concentration in the feed water supplied to the boiler can be reduced to a reference value or less.
  • FIG. 1 It is a schematic structure figure of a power plant concerning one embodiment of the present invention. It is a systematic diagram which shows the principal part of the power plant concerning one Embodiment of this invention in detail. It is a figure which shows the outline of the filtration apparatus which concerns on one Embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a perspective view of a filter element. It is a figure which shows the outline of the filtration apparatus which concerns on other embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a top view of a filter element.
  • FIG. 1 is a schematic configuration diagram of a power plant according to the present embodiment
  • FIG. 2 is a system diagram showing in detail a main part of the power plant according to the present embodiment.
  • this invention is not limited by this embodiment.
  • constituent elements in the present embodiment include those that can be easily assumed by those skilled in the art or that are substantially the same.
  • a power plant 10 includes a boiler 118 that generates steam 11 by heat from a heat source, a steam turbine 12 that operates with the steam 11 of the boiler 118, and the steam turbine 12.
  • a condenser 106 for condensing the exhaust gas of the boiler, a water supply system A for supplying the condensate condensed in the condenser 106 to the boiler 118 side as water supply 107, and a water supply pipe 13 of the water supply system A.
  • a low-pressure feed water heater 109 that extracts a part of the exhaust gas fed from the steam turbine 12 to the reheater 115 as the extraction air 14 and heats the feed water 107 using this, and the low-pressure feed water heater 109, a low pressure heater drain tank 116 for storing the heater drain water 117 discharged from 109, and a filtration device 15 for filtering iron in the heater drain water 117;
  • the iron ion concentration in the heater drain water 117 provided between the low-pressure heater drain tank 116 and the filtration device 15 and discharged from the low-pressure heater drain tank 116 is a predetermined value (in this embodiment, 20 ⁇ g / l).
  • the heater drain water 117 is discharged out of the system, and when the iron ion concentration in the heater drain water 117 is below a predetermined value, the flow path is switched to supply to the filtration device 15 ( A second) flow path switching unit 16B.
  • the iron ion concentration in the heater drain water 117 is calculated as follows.
  • the iron ion refers to fine iron that cannot be collected by the filtration device 15, and has a particle diameter of 0.1 ⁇ m or less, for example.
  • the same amount of sample water I for analysis of total iron (iron particles + iron ions) and sample water II for analysis of iron particles are collected from the low-pressure heater drain tank 116.
  • the total iron amount contained in the sample water I for total iron analysis is measured using an absorptiometry or the like.
  • sample water II for iron particle analysis is passed through a filter having a pore diameter of 0.1 ⁇ m, and the amount of iron particles collected on the filter is measured using an absorptiometry or the like. Then, the amount of iron ions is obtained by subtracting the amount of iron particles from the total amount of iron.
  • the iron ion concentration in the heater drain water 117 is calculated by dividing the mass of iron ions by the volume of the sample water.
  • condensate is obtained by the condenser 106 disposed on the downstream side of the steam turbine 12, and makeup water 105 from a makeup water tank 104 provided outside is obtained. Is mixed with the condensate as necessary and supplied to the feed water system A as feed water 107 for circulation.
  • the condensate pump 18, the electromagnetic filter 19, the pure water device 20, and the condensate booster pump 21 are disposed between the condenser 106 and the low-pressure feed water heater 109.
  • a deaerator 110, a storage tank 111, and a boiler feed pump 22 are interposed in the water supply pipe 13 between the low pressure water heater 109 and the high pressure water heater 112. .
  • the feed water 107 heated in the low-pressure feed water heater 109 is further heated in the high-pressure feed water heater 112 using high temperature / high pressure bleed air (not shown).
  • the water supply 107 heated through the high-pressure water heater 112 is supplied to the boiler 118.
  • the heater drain water 117 discharged from the low-pressure feed water heater 109 that heats the feed water 107 is stored in the low-pressure heater drain tank 116, and the low-pressure heater drain pump 23 performs the low-pressure heater drain tank 23. 116 is discharged to the filtration device 15.
  • the flow path switching unit 16B switches the flow path, discharges the heater drain water 117 out of the system, and the predetermined value. In the following cases, the iron particles in the heater drain water 117 are removed by supplying to the filtration device 15.
  • the flow path switching unit 16A switches the flow path, and supplies the heater drain water 117 to the condenser 106. You may make it circulate through the inside of the water supply system A.
  • the iron ion concentration in the said heater drain water 117 is below a predetermined value, an iron particle is filtered by the said filtration apparatus 15, and it supplies to the said water supply pipe
  • the heater drain water 117 to be mixed is drain filtered water 117A, and the heater drain water 117 supplied as recycled water to the condenser 106 side is drain feed water 117B.
  • the drain water supply 117B is supplied to the condenser 106 to circulate in the water supply system A. I am doing so. This is because, for example, when the drain water supply 117B is supplied to the condenser 106 as reused water, the device provided in the water supply system A is not contaminated by iron particles or the like in the heater drain water 117. It is to do. Further, when the drain water 117B is supplied to the condenser 106, iron is further removed by a condensate treatment device (filter and condensate demineralizer) (not shown) installed on the downstream side thereof to the system. Since it is collected, water can be saved.
  • a condensate treatment device filter and condensate demineralizer
  • the predetermined value of the iron ion concentration in the heater drain water 117 is set to 20 ⁇ g / l.
  • the present invention is not limited to this, and the loosest standard defined in the JIS standard described above.
  • the predetermined value of the iron ion concentration in the heater drain water 117 may be 50 ⁇ g / l.
  • symbol 114 in FIG. 1 is a superheater.
  • the heater drain water 117 discharged from the low-pressure feed water heater 109 is guided to the low-pressure heater drain tank 116 via a (low-pressure feed water) drain main pipe 31.
  • the heater drain water 117 discharged from the low pressure heater drain tank 116 is guided to the filtration device 15 via the drain main pipe 31 and the filtration device.
  • the drain filtered water 117 A, in which the iron particles are filtered by 15, is fed to the feed water pipe 13 side of the feed water system A through the drain main pipe 31 and mixed with the feed water 107 flowing through the feed water pipe 13.
  • the heater drain water 117 discharged from the low pressure heater drain tank 116 is branched at the flow path switching unit 16A (low pressure water heater) drain. It is also possible to use the drain water supply 117B that is led to the condenser 106 through the branch pipe 32 and supplied to the condenser 106 side as recycled water.
  • the heater drain water 117 discharged from the low-pressure heater drain tank 116 is discharged outside the system through the system blow pipe 33.
  • the drain main pipe 31 positioned between the flow path switching unit 16 ⁇ / b> B and the filtration device 15, the filtration device 15, and the low-pressure water supply A bypass pipe 34 communicating with the drain main pipe 31 located between the heater 109 is provided.
  • a drain main pipe 31 located between the flow path switching unit 16B and the filtration device 15 is provided with a minimum flow supply pipe 35, and between the filtration device 15 and the low-pressure feed water heater 109.
  • a minimum flow return pipe 36 that communicates with the drain main pipe 31 located between the low-pressure heater drain tank 116 and the flow path switching portion 16A.
  • one end (upstream end) of the bypass pipe 34 is connected to a drain main pipe 31 located upstream from one end (upstream end) of the minimum flow supply pipe 35. Further, when the heater drain water 117 discharged from the low-pressure heater drain tank 116 is guided to the filtration device 15 via the drain main pipe 31, it is between the flow path switching unit 16A and the flow path switching unit 16B. , The valve 41 provided between the flow path switching unit 16B and the filtration device 15, and the downstream side of the filtration device 15 and the other end (downstream end) of the bypass pipe 34. The valve 43 provided in the middle of the drain main pipe 31 located upstream from the joining portion (location) to which the pipe is connected is fully opened, and the valve 44 provided in the middle of the drain branch pipe 32 is provided.
  • valve 45 provided in the middle of the extra-system blow pipe 33, the valve 46 provided in the middle of the bypass pipe 34, and the valve 4 provided in the middle of the minimum flow supply pipe 35 , And a valve 48 provided in the middle of the minimum flow return pipe 36 each of which is fully closed.
  • the pressure at the inlet of the filtration device 15 and the filtration device 15 When the difference from the pressure at the outlet (differential pressure of the filtration device 15) becomes a predetermined pressure (for example, 110 kPa) or more, or the iron ion concentration in the heater drain water 117 is 20 ⁇ g / l or less, and When the amount of iron particles at the outlet of the filtration device 15 becomes 0 ⁇ g / l, the valve 43 is switched from fully open to fully closed, the valve 46 is switched from fully closed to fully open, and the valves 47 and 48 are opened.
  • a predetermined pressure for example, 110 kPa
  • the valve 43 When the amount of iron particles at the outlet of the filtration device 15 becomes 0 ⁇ g / l, the valve 43 is switched from fully open to fully closed, the valve 46 is switched from fully closed to fully open, and the valves 47 and 48 are opened.
  • the amount of water supplied to the boiler 118 is ensured, and the heater drain water 117 is minimized in the filtration device 15.
  • the flow rate will flow.
  • the minimum flow rate is based on the minimum value that can be measured with a flow meter, and is, for example, about 2% of the water flow rate to the filter.
  • the filtration device 15 used in the present embodiment needs to be usable for water conditions during normal operation of the low-pressure feed water heater 109. Therefore, as the filtration device 15 used in this embodiment, for example, a pleated filtration element having a pore diameter of 0.1 ⁇ m made of polysulfonic acid, polyvinylidene fluoride (PVDF), Kevlar (registered trademark), metal porous filter, or the like is used.
  • PVDF polyvinylidene fluoride
  • Kevlar registered trademark
  • metal porous filter metal porous filter
  • the heater drain water when the iron ion concentration in the heater drain water discharged from the heater drain tank 116 is higher than 20 ⁇ g / l, the heater drain water is a system.
  • the heater drain water is supplied to the filtration device 15.
  • the “predetermined value” is 10% of the boiler recovery rate of the power plant (the ratio of heater drain water out of the feed water flowing into the boiler), and the iron concentration in the feed water at the boiler inlet is in accordance with the JIS standard described above.
  • the differential pressure of the filtration device 15 becomes a predetermined pressure (for example, 110 kPa) or more, the heater drain water 117 having the minimum flow rate is obtained. Is passed through the filtration device 15. Thereby, sticking of the iron particle collected by the filtration apparatus 15 can be prevented.
  • the heater drain water is passed through the filtration device 15 after the iron ion concentration in the heater drain water discharged from the heater drain tank 116 becomes 20 ⁇ g / l (predetermined value) or less.
  • the present invention is not limited to this, and the heater drain water may be passed through the filtration device 15 after a predetermined time has elapsed.
  • the “predetermined time” is a time required for the iron ion concentration in the heater drain water discharged from the heater drain tank to be less than or equal to a predetermined value, which is actually measured in the power plant.
  • the filter element 15a necessary for flowing the minimum flow rate for example, 5t / H ⁇ Fe: 20 ppb (mg / t) ⁇
  • a discharge pipe 15c that guides the heater drain water 117 that has been guided into the container 15b and passed through only the surface layer of the filter element 15a to the outside of the container 15b is required.
  • FIGS. 4 (a) and 4 (b) water is passed only to the surface layer portion of the filter element 15a, the water flow to the filter element 15a is interrupted, and the container 15b of the filtration device 15 is suspended.
  • an iron cleaning solution citric acid, EDTA, etc.
  • the filtration device 15 More preferably, the water inside the container 15b is replaced. In this case, part of the iron oxide adhering to the surface layer portion of the filter element 15a is dissolved and removed from the surface layer portion of the filter element 15a by the iron cleaning liquid, thereby extending the life of the filter element 15a. Can be made.
  • the filter element 15a when the power plant 10 is in a standby state, pure water with the minimum flow rate is supplied to the filter element 15a. More preferably, the filter element 15a can be backwashed by passing water from the reverse direction. In this case, the filter element 15a can be regenerated and the life of the filter element 15a can be extended.

Abstract

Provided is a method for removing iron components from heater drain water in a power-generating plant, whereby the iron concentration in supply water to be supplied to a boiler can be decreased to a reference value or lower. The heater drain water (117) is discharged to the outside of the system when the iron ion concentration in heater drain water (117) discharged from a heater drain tank (116) is higher than a predetermined value, and the heater drain water (117) is supplied to a filtration apparatus (15) when the iron ion concentration in the heater drain water (117) discharged from the heater drain tank (116) is equal to or lower than the predetermined value. Alternatively, the heater drain water (117) is discharged to the outside of the system when a predetermined period of time is not elapsed, and the heater drain water (117) is supplied to the filtration apparatus (15) when the predetermined period of time is elapsed.

Description

発電プラントにおけるヒータドレン水中の鉄成分の除去方法Method for removing iron components from heater drain water in power plants
 本発明は、給水ヒータから送給されるヒータドレン水中の鉄成分をろ過し、前記ヒータドレン水を常時給水管に回収可能な水質とする、発電プラントにおけるヒータドレン水中の鉄成分の除去方法に関するものである。 The present invention relates to a method for removing iron components in heater drain water in a power plant, by filtering iron components in heater drain water fed from a feed water heater, and making the heater drain water recoverable in a water supply pipe at all times. .
 従来、火力発電プラントでは、発生させた高温・高圧の蒸気をタービンに供給し、この蒸気によりタービンを駆動して発電を行っている。タービンを駆動した後の蒸気は、復水器により冷却されて水の状態に戻された後、再び加熱されてボイラに供給され、再使用される。 Conventionally, in a thermal power plant, generated high-temperature and high-pressure steam is supplied to a turbine, and the turbine is driven by this steam to generate power. The steam after driving the turbine is cooled by the condenser and returned to the water state, then heated again, supplied to the boiler, and reused.
 ところで、ボイラへの給水中には、酸化鉄を主体とする不純物が含まれており、この不純物がボイラの伝熱管内面に徐々に付着し、この付着物によってボイラの差圧力が上昇する場合があり、ひいてはボイラや配管等の破損を招くおそれもある。そのため、給水系統の給水が流れる流路に除鉄ろ過器を設置することにより、酸化鉄を主体とする不純物を除去することが行われている(特許文献1)。 By the way, the feed water to the boiler contains impurities mainly composed of iron oxide, and these impurities gradually adhere to the inner surface of the heat transfer tube of the boiler, and this deposit may increase the differential pressure of the boiler. In other words, there is a risk of damage to boilers and piping. For this reason, it is practiced to remove impurities mainly composed of iron oxide by installing an iron removal filter in the flow path through which the water supply of the water supply system flows (Patent Document 1).
 また、カートリッジ、中空糸、電磁フィルタ等の各種フィルタが鉄成分の除去方法として提案されているが、鉄酸化物の粒子は極めて微細であるため、これらのフィルタによる不純物除去性能は不安定であり、実用には至っていない(特許文献2)。
 さらに、ボイラ入口の給水中における鉄濃度は、5μg/l(ppb)以下、望ましくは2μg/l(ppb)以下とすることが、JIS規格に規定されている(非特許文献1)。
Various filters such as cartridges, hollow fibers, and electromagnetic filters have been proposed as a method for removing iron components. However, since the iron oxide particles are extremely fine, the impurity removal performance of these filters is unstable. However, it has not been put into practical use (Patent Document 2).
Furthermore, the JIS standard specifies that the iron concentration in the feed water at the boiler inlet is 5 μg / l (ppb) or less, preferably 2 μg / l (ppb) or less (Non-patent Document 1).
特開2001-17983号公報JP 2001-17983 A 特開平11-57416号公報Japanese Patent Laid-Open No. 11-57416
 しかしながら、基準値以上の多量の鉄分等を含有するヒータドレン水は系外に排出しなければならず、給水系統に戻して再利用することができない。そのため、ボイラに新たに給水を供給するために発電出力を60~80%程度で運転する結果、多量の水(純水)を必要とするとともに、タービン設備の発電出力を100%に上昇させるまでに3日も要する、といった問題点がある。
 また、系外に排出された多量の排水を処理する排水処理設備、および多量の水(純水)を製造する純水製造設備が必要になり、設備費が高騰してしまうといった問題点もあった。
However, heater drain water containing a large amount of iron or the like exceeding the reference value must be discharged outside the system, and cannot be returned to the water supply system for reuse. Therefore, as a result of operating the power generation output at about 60 to 80% to supply new water to the boiler, a large amount of water (pure water) is required and the power generation output of the turbine equipment is increased to 100%. It takes 3 days to complete.
In addition, there is a problem that wastewater treatment equipment for treating a large amount of wastewater discharged outside the system and a pure water production facility for producing a large amount of water (pure water) are required, resulting in an increase in equipment costs. It was.
 本発明は、上記課題を解決するためになされたものであり、ボイラに送給する給水中の鉄濃度を基準値以下にすることができる、発電プラントにおけるヒータドレン水中の鉄成分の除去方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a method for removing iron components in heater drain water in a power plant, which can reduce the iron concentration in feed water supplied to a boiler to a reference value or less. The purpose is to do.
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明の第1の態様に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法は、熱源からの熱によって蒸気を発生させるボイラと、前記ボイラの蒸気により作動する蒸気タービンと、前記蒸気タービンからの排気を復水する復水器と、前記復水器で凝縮された復水を給水として前記ボイラ側に送給する給水系統と、前記給水系統の給水管に介装され、前記蒸気タービンから再熱器に送給する排気の一部を抽気し、これを用いて前記給水を加熱する給水ヒータと、前記給水ヒータから排出されるヒータドレン水を貯蔵するヒータドレンタンクと、前記ヒータドレン水中の鉄粒子をろ過するろ過装置と、を有するとともに、前記給水中に酸素を注入して酸素処理を行う、発電プラントにおけるヒータドレン水中の鉄成分の除去方法であって、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値よりも高い場合には、前記ヒータドレン水が系外に排出されるようにし、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値以下の場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにした、あるいは、予め設定された所定時間が経過していない場合には、前記ヒータドレン水が系外に排出されるようにし、予め設定された所定時間が経過した場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにした。
The present invention employs the following means in order to solve the above problems.
A method for removing an iron component in heater drain water in a power plant according to a first aspect of the present invention includes a boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the boiler, and a steam turbine A condenser for condensing exhaust gas, a water supply system for supplying condensate condensed in the condenser as feed water to the boiler side, and a water supply pipe of the water supply system. A part of the exhaust gas supplied to the heater is extracted, and a water heater is used to heat the water supply, a heater drain tank for storing heater drain water discharged from the water heater, and iron particles in the heater drain water A method of removing iron components in heater drain water in a power plant, wherein the oxygen treatment is performed by injecting oxygen into the feed water. When the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value, the heater drain water is discharged outside the system, and the heater drain discharged from the heater drain tank is When the iron ion concentration in the water is below a predetermined value, the heater drain water is supplied to the filtration device, or when the preset predetermined time has not elapsed, the heater drain water The heater drain water is supplied to the filtration device when the preset predetermined time has elapsed.
 また、本発明の第2の態様に係る発電プラントは、熱源からの熱によって蒸気を発生させるボイラと、前記ボイラの蒸気により作動する蒸気タービンと、前記蒸気タービンからの排気を復水する復水器と、前記復水器で凝縮された復水を給水として前記ボイラ側に送給する給水系統と、前記給水系統の給水管に介装され、前記蒸気タービンから再熱器に送給する排気の一部を抽気し、これを用いて前記給水を加熱する給水ヒータと、前記給水ヒータから排出されるヒータドレン水を貯蔵するヒータドレンタンクと、前記ヒータドレン水中の鉄粒子をろ過するろ過装置と、を有するとともに、前記給水中に酸素を注入して酸素処理を行う、発電プラントであって、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値よりも高い場合には、前記ヒータドレン水が系外に排出され、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値以下の場合には、前記ヒータドレン水が前記ろ過装置に供給される、あるいは、予め設定された所定時間が経過していない場合には、前記ヒータドレン水が系外に排出され、予め設定された所定時間が経過した場合には、前記ヒータドレン水が前記ろ過装置に供給される。 Further, the power plant according to the second aspect of the present invention includes a boiler that generates steam by heat from a heat source, a steam turbine that is operated by steam of the boiler, and condensate that condenses exhaust from the steam turbine. , A water supply system that supplies the condensate condensed in the condenser as feed water to the boiler side, and an exhaust gas that is interposed in a water supply pipe of the water supply system and that is supplied from the steam turbine to the reheater A water heater that heats the water supply using this, a heater drain tank that stores heater drain water discharged from the water heater, and a filtration device that filters iron particles in the heater drain water, A power plant that performs oxygen treatment by injecting oxygen into the water supply, wherein the iron ion concentration in the heater drain water discharged from the heater drain tank When it is higher than a predetermined value, the heater drain water is discharged out of the system, and when the iron ion concentration in the heater drain water discharged from the heater drain tank is equal to or lower than a predetermined value, the heater drain water is supplied to the filtration device. Or when the preset predetermined time has not elapsed, the heater drain water is discharged out of the system, and when the preset predetermined time has elapsed, the heater drain water is Supplied to the filtration device.
 前記第1の態様に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法および前記第2の態様に係る発電プラントによれば、ヒータドレンタンクから排出されるヒータドレン水中の鉄イオン濃度が所定値よりも高い場合には、ヒータドレン水が系外に排出され、ヒータドレンタンクから排出されるヒータドレン水中の鉄イオン濃度が所定値以下の場合には、ヒータドレン水がろ過装置に供給される、あるいは、予め設定された所定時間が経過していない場合には、ヒータドレン水が系外に排出され、予め設定された所定時間が経過した場合には、ヒータドレン水がろ過装置に供給されることになる。
 ここで「所定値」は、発電プラントのボイラ回収率(ボイラに流入する給水のうち、ヒータドレン水が占める割合)が10%であり、ボイラ入口の給水中における鉄濃度を、上述したJIS規格に規定された最も厳しい基準値(2μg/l)以下とする場合、20(=2÷0.1)μg/lとなる。
 また、「所定の時間」は、当該発電プラントにおいて実測された、ヒータドレンタンクから排出されるヒータドレン水中の鉄イオン濃度が所定値以下となるのに要する時間(例えば、4時間)のことである。
 これにより、ボイラに送給する給水中の鉄濃度を、JIS規格に規定された基準値以下にすることができる。
According to the method for removing the iron component in the heater drain water in the power plant according to the first aspect and the power plant according to the second aspect, the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value. If it is high, the heater drain water is discharged out of the system, and if the iron ion concentration in the heater drain water discharged from the heater drain tank is below a predetermined value, the heater drain water is supplied to the filtration device or set in advance. When the predetermined time has not elapsed, the heater drain water is discharged out of the system, and when the preset predetermined time has elapsed, the heater drain water is supplied to the filtration device.
Here, the “predetermined value” is 10% of the boiler recovery rate of the power plant (the ratio of heater drain water out of the feed water flowing into the boiler), and the iron concentration in the feed water at the boiler inlet is in accordance with the JIS standard described above. When it is less than the strictest standard value (2 μg / l) specified, it becomes 20 (= 2 ÷ 0.1) μg / l.
Further, the “predetermined time” is a time (for example, 4 hours) required for the iron ion concentration in the heater drain water discharged from the heater drain tank to be a predetermined value or less, which is actually measured in the power plant. .
Thereby, the iron density | concentration in the feed water supplied to a boiler can be made below into the reference value prescribed | regulated to JIS specification.
 前記第1の態様に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法においては、前記ろ過装置の入口における圧力と、前記ろ過装置の出口における圧力との差が、所定の圧力以上になったら、前記ろ過装置をバイパスするバイパス管を介して前記ヒータドレン水を前記給水ヒータに導くようにする構成であってもよい。 In the method for removing the iron component in the heater drain water in the power plant according to the first aspect, when the difference between the pressure at the inlet of the filtration device and the pressure at the outlet of the filtration device is equal to or higher than a predetermined pressure, The configuration may be such that the heater drain water is guided to the water heater through a bypass pipe that bypasses the filtration device.
 このような発電プラントにおけるヒータドレン水中の鉄成分の除去方法によれば、ろ過装置の差圧が所定の圧力(例えば、110kPa)以上になったら、ろ過装置をバイパスするバイパス管を介してヒータドレン水が給水ヒータに導かれることになる。
 これにより、ボイラに供給される給水量を確保することができる。
According to the method for removing the iron component in the heater drain water in such a power plant, when the differential pressure of the filtration device becomes a predetermined pressure (for example, 110 kPa) or more, the heater drain water is passed through a bypass pipe that bypasses the filtration device. It will be guided to the water heater.
Thereby, the amount of water supplied to the boiler can be secured.
 上記構成に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法においては、前記ろ過装置をバイパスするバイパス管を介して前記ヒータドレン水を前記給水ヒータに導く際、前記ヒータドレン水を前記ろ過装置に最小流量流すようにする構成であってもよい。 In the method for removing the iron component in the heater drain water in the power plant according to the above configuration, when the heater drain water is guided to the feed water heater via a bypass pipe that bypasses the filtration device, the heater drain water is supplied to the filtration device at a minimum flow rate. The structure which makes it flow may be sufficient.
 このような発電プラントにおけるヒータドレン水中の鉄成分の除去方法によれば、ろ過装置の差圧が所定の圧力(例えば、110kPa)以上になった場合、最小流量のヒータドレン水がろ過装置に流されることになる。
 これにより、ろ過装置により捕集された鉄粒子の固着を防止することができる。
According to the method for removing the iron component in the heater drain water in such a power plant, when the differential pressure of the filtration device becomes equal to or higher than a predetermined pressure (for example, 110 kPa), the heater drain water having the minimum flow rate is caused to flow through the filtration device. become.
Thereby, sticking of the iron particle collected by the filtration apparatus can be prevented.
 上記構成に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法においては、前記ヒータドレン水を、前記ろ過装置を構成するフィルタエレメントの表層部のみに通水して、当該フィルタエレメントを収容する容器の内部の水を置換するようにする構成であってもよい。 In the method for removing the iron component in the heater drain water in the power plant according to the above configuration, the heater drain water is passed through only the surface layer portion of the filter element that constitutes the filtration device, and the interior of the container that houses the filter element. It may be configured to replace the water.
 このような発電プラントにおけるヒータドレン水中の鉄成分の除去方法によれば、フィルタエレメントへは通水されず、鉄の捕集は行われなくなるので、最小流量を流すのに必要なフィルタエレメント(例えば、5t/H×Fe:20ppb(mg/t)×24H×365day=876g-Feを捕集するのに必要なフィルタエレメント)を不要とすることができる。 According to the method for removing the iron component in the heater drain water in such a power plant, water is not passed through the filter element and iron is not collected, so that the filter element necessary for flowing the minimum flow rate (for example, 5t / H × Fe: 20 ppb (mg / t) × 24H × 365day = 876 g−filter element necessary to collect Fe) can be eliminated.
 本発明に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法によれば、ボイラに送給する給水中の鉄濃度を基準値以下にすることができるという効果を奏する。 According to the method for removing iron components from the heater drain water in the power plant according to the present invention, the iron concentration in the feed water supplied to the boiler can be reduced to a reference value or less.
本発明の一実施形態に係る発電プラントの概略構成図である。It is a schematic structure figure of a power plant concerning one embodiment of the present invention. 本発明の一実施形態に係る発電プラントの要部を詳細に示す系統図である。It is a systematic diagram which shows the principal part of the power plant concerning one Embodiment of this invention in detail. 本発明の一実施形態に係るろ過装置の概略を示す図であって、(a)は縦断面図、(b)はフィルタエレメントの斜視図である。It is a figure which shows the outline of the filtration apparatus which concerns on one Embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a perspective view of a filter element. 本発明の他の実施形態に係るろ過装置の概略を示す図であって、(a)は縦断面図、(b)はフィルタエレメントの平面図である。It is a figure which shows the outline of the filtration apparatus which concerns on other embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a top view of a filter element. 本発明の別の実施形態に係るろ過装置の概略を示す図であって、(a)は縦断面図、(b)はフィルタエレメントの平面図である。It is a figure which shows the outline of the filtration apparatus which concerns on another embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a top view of a filter element. 本発明のさらに別の実施形態に係るろ過装置の概略を示す図であって、(a)は縦断面図、(b)はフィルタエレメントの斜視図である。It is a figure which shows the outline of the filtration apparatus which concerns on another embodiment of this invention, Comprising: (a) is a longitudinal cross-sectional view, (b) is a perspective view of a filter element.
 以下、本発明の一実施形態に係る発電プラントにおけるヒータドレン水中の鉄成分の除去方法について、図1および図2を参照しながら説明する。
 図1は本実施形態に係る発電プラントの概略構成図、図2は本実施形態に係る発電プラントの要部を詳細に示す系統図である。
 なお、本実施形態によりこの発明が限定されるものではない。また、本実施形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
Hereinafter, a method for removing an iron component in heater drain water in a power plant according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a schematic configuration diagram of a power plant according to the present embodiment, and FIG. 2 is a system diagram showing in detail a main part of the power plant according to the present embodiment.
In addition, this invention is not limited by this embodiment. In addition, constituent elements in the present embodiment include those that can be easily assumed by those skilled in the art or that are substantially the same.
 図1に示すように、本実施形態に係る発電プラント10は、熱源からの熱によって蒸気11を発生させるボイラ118と、該ボイラ118の蒸気11により作動する蒸気タービン12と、該蒸気タービン12からの排気を復水する復水器106と、該復水器106で凝縮された復水を給水107として前記ボイラ118側に送給する給水系統Aと、前記給水系統Aの給水管13に介装され、前記蒸気タービン12から再熱器115に送給する排気の一部を抽気14として抜出し、これを用いて前記給水107を加熱する低圧給水ヒータ109と、を備えるとともに、前記低圧給水ヒータ109から排出されるヒータドレン水117を貯蔵する低圧ヒータドレンタンク116と、前記ヒータドレン水117中の鉄分をろ過するろ過装置15と、前記低圧ヒータドレンタンク116と前記ろ過装置15との間に設けられ、前記低圧ヒータドレンタンク116から排出される前記ヒータドレン水117中の鉄イオン濃度が所定値(本実施形態では、20μg/l)よりも高い場合には、前記ヒータドレン水117を系外に排出し、前記ヒータドレン水117中の鉄イオン濃度が所定値以下の場合には、前記ろ過装置15に供給するために流路を切替える(第2の)流路切替え部16Bと、を備えている。 As shown in FIG. 1, a power plant 10 according to this embodiment includes a boiler 118 that generates steam 11 by heat from a heat source, a steam turbine 12 that operates with the steam 11 of the boiler 118, and the steam turbine 12. A condenser 106 for condensing the exhaust gas of the boiler, a water supply system A for supplying the condensate condensed in the condenser 106 to the boiler 118 side as water supply 107, and a water supply pipe 13 of the water supply system A. A low-pressure feed water heater 109 that extracts a part of the exhaust gas fed from the steam turbine 12 to the reheater 115 as the extraction air 14 and heats the feed water 107 using this, and the low-pressure feed water heater 109, a low pressure heater drain tank 116 for storing the heater drain water 117 discharged from 109, and a filtration device 15 for filtering iron in the heater drain water 117; The iron ion concentration in the heater drain water 117 provided between the low-pressure heater drain tank 116 and the filtration device 15 and discharged from the low-pressure heater drain tank 116 is a predetermined value (in this embodiment, 20 μg / l). If it is higher, the heater drain water 117 is discharged out of the system, and when the iron ion concentration in the heater drain water 117 is below a predetermined value, the flow path is switched to supply to the filtration device 15 ( A second) flow path switching unit 16B.
 なお、前記ヒータドレン水117中の鉄イオン濃度の所定値を20μg/lとしているのは、本実施形態に係る発電プラント10のボイラ回収率(前記ボイラ118に流入する前記給水107のうち、前記ヒータドレン水117が占める割合)が10%であるからである。すなわち、ボイラ入口の給水中における鉄濃度を、上述したJIS規格に規定された最も厳しい基準値(2μg/l)以下とするには、前記ヒータドレン水117中の鉄イオン濃度の所定値を20(=2÷0.1)μg/lとすればよいからである。したがって、発電プラント10のボイラ回収率が5%である場合には、前記ヒータドレン水117中の鉄イオン濃度の所定値は40μg/lとなる。 The predetermined value of the iron ion concentration in the heater drain water 117 is set to 20 μg / l because the boiler drain rate of the power plant 10 according to this embodiment (the heater drain of the feed water 107 flowing into the boiler 118 is This is because the ratio of water 117 is 10%. That is, in order to make the iron concentration in the feed water at the boiler inlet equal to or less than the strictest standard value (2 μg / l) defined in the above-mentioned JIS standard, the predetermined value of the iron ion concentration in the heater drain water 117 is 20 ( = 2 ÷ 0.1) μg / l. Therefore, when the boiler recovery rate of the power plant 10 is 5%, the predetermined value of the iron ion concentration in the heater drain water 117 is 40 μg / l.
 また、本実施形態において、前記ヒータドレン水117中の鉄イオン濃度は、以下のようにして算出される。ここで、鉄イオンとは、ろ過装置15で捕集できない微粒な鉄を指し、例えば、0.1μm以下の粒径のものとする。
 まず、前記低圧ヒータドレンタンク116から、全鉄(鉄粒子+鉄イオン)分析用のサンプル水I、鉄粒子分析用のサンプル水IIを同量採取する。
 つぎに、吸光光度法等を用いて全鉄分析用のサンプル水Iに含まれる全鉄量を計測する。
 つづいて、鉄粒子分析用のサンプル水IIを細孔径0.1μmのフィルタに通水し、吸光光度法等を用いてフィルタに捕集された鉄粒子量を計測する。
 そして、全鉄量から鉄粒子量を引いて、鉄イオンの質量を得る。
 鉄イオンの質量をサンプル水の容量で割って、前記ヒータドレン水117中の鉄イオン濃度を算出する。
In this embodiment, the iron ion concentration in the heater drain water 117 is calculated as follows. Here, the iron ion refers to fine iron that cannot be collected by the filtration device 15, and has a particle diameter of 0.1 μm or less, for example.
First, the same amount of sample water I for analysis of total iron (iron particles + iron ions) and sample water II for analysis of iron particles are collected from the low-pressure heater drain tank 116.
Next, the total iron amount contained in the sample water I for total iron analysis is measured using an absorptiometry or the like.
Subsequently, sample water II for iron particle analysis is passed through a filter having a pore diameter of 0.1 μm, and the amount of iron particles collected on the filter is measured using an absorptiometry or the like.
Then, the amount of iron ions is obtained by subtracting the amount of iron particles from the total amount of iron.
The iron ion concentration in the heater drain water 117 is calculated by dividing the mass of iron ions by the volume of the sample water.
 ここで、本実施形態に係る発電プラント10においては、前記蒸気タービン12の下流側に配置された前記復水器106で復水を得るとともに、外部に設けた補給水タンク104からの補給水105を必要に応じて前記復水と混合して給水107として給水系統Aに供給し、循環している。 Here, in the power plant 10 according to the present embodiment, condensate is obtained by the condenser 106 disposed on the downstream side of the steam turbine 12, and makeup water 105 from a makeup water tank 104 provided outside is obtained. Is mixed with the condensate as necessary and supplied to the feed water system A as feed water 107 for circulation.
 なお、本実施形態に係る給水系統Aでは、前記復水器106と前記低圧給水ヒータ109との間に、復水ポンプ18、電磁フィルタ19、純水装置20、および復水ブースタポンプ21が前記給水管13に介装されており、前記低圧給水ヒータ109と前記高圧給水ヒータ112との間に、脱気器110、貯槽111、およびボイラ給水ポンプ22が前記給水管13に介装されている。 In the water supply system A according to the present embodiment, the condensate pump 18, the electromagnetic filter 19, the pure water device 20, and the condensate booster pump 21 are disposed between the condenser 106 and the low-pressure feed water heater 109. A deaerator 110, a storage tank 111, and a boiler feed pump 22 are interposed in the water supply pipe 13 between the low pressure water heater 109 and the high pressure water heater 112. .
 また、前記低圧給水ヒータ109において加熱された給水107は、高圧給水ヒータ112において図示しない高温・高圧の抽気を用いてさらに加熱される。そして、前記高圧給水ヒータ112を経て加熱された前記給水107は、前記ボイラ118に送給される。 Further, the feed water 107 heated in the low-pressure feed water heater 109 is further heated in the high-pressure feed water heater 112 using high temperature / high pressure bleed air (not shown). The water supply 107 heated through the high-pressure water heater 112 is supplied to the boiler 118.
 ここで、本実施形態では、前記給水107を加熱する前記低圧給水ヒータ109から排出された前記ヒータドレン水117は、前記低圧ヒータドレンタンク116に貯蔵され、低圧ヒータドレンポンプ23により該低圧ヒータドレンタンク116から前記ろ過装置15に排出される。 Here, in the present embodiment, the heater drain water 117 discharged from the low-pressure feed water heater 109 that heats the feed water 107 is stored in the low-pressure heater drain tank 116, and the low-pressure heater drain pump 23 performs the low-pressure heater drain tank 23. 116 is discharged to the filtration device 15.
 そして、前記サンプル水I・IIから算出された前記ヒータドレン水117中の鉄イオン濃度の測定結果に基づいて、鉄イオン濃度が所定値以下であるか否かが判断される。そして、判断の結果、前記ヒータドレン水117中の鉄イオン濃度が所定値よりも高い場合には、前記流路切替え部16Bにより流路を切替え、前記ヒータドレン水117を系外に排出し、所定値以下の場合には、前記ろ過装置15に供給して、前記ヒータドレン水117中の鉄粒子を除去するようにしている。 Then, based on the measurement result of the iron ion concentration in the heater drain water 117 calculated from the sample waters I and II, it is determined whether or not the iron ion concentration is a predetermined value or less. As a result of the determination, when the iron ion concentration in the heater drain water 117 is higher than a predetermined value, the flow path switching unit 16B switches the flow path, discharges the heater drain water 117 out of the system, and the predetermined value. In the following cases, the iron particles in the heater drain water 117 are removed by supplying to the filtration device 15.
 また、本実施形態では、前記ヒータドレン水117中の鉄イオン濃度が所定値以下の場合には、流路切替え部16Aにより流路を切替え、前記ヒータドレン水117を前記復水器106に供給して給水系統A内を循環させるようにしてもよい。 In this embodiment, when the iron ion concentration in the heater drain water 117 is equal to or lower than a predetermined value, the flow path switching unit 16A switches the flow path, and supplies the heater drain water 117 to the condenser 106. You may make it circulate through the inside of the water supply system A. FIG.
 ここで、本実施形態では、前記ヒータドレン水117中の鉄イオン濃度が所定値以下の場合に前記ろ過装置15によって鉄粒子をろ過し、前記給水系統Aの前記給水管13側に送給して混合する前記ヒータドレン水117をドレンろ過水117Aとし、前記復水器106側に再利用水として供給される前記ヒータドレン水117をドレン給水117Bとする。 Here, in this embodiment, when the iron ion concentration in the said heater drain water 117 is below a predetermined value, an iron particle is filtered by the said filtration apparatus 15, and it supplies to the said water supply pipe | tube 13 side of the said water supply system A. The heater drain water 117 to be mixed is drain filtered water 117A, and the heater drain water 117 supplied as recycled water to the condenser 106 side is drain feed water 117B.
 また、本実施形態では、前記ヒータドレン水117中の鉄イオン濃度の所定値として、20μg/l以下の場合に、前記復水器106に前記ドレン給水117Bを供給して給水系統A内を循環させるようにしている。これは、例えば、前記ドレン給水117Bが前記復水器106に再利用水として供給される際に前記給水系統A内に設けている装置が前記ヒータドレン水117中の鉄粒子等によって汚染されないようにするためである。
 また、前記ドレン給水117Bを復水器106に供給すると、その下流側に設置している復水処理装置(ろ過器及び復水脱塩装置)(図示せず)によって鉄分をさらに除去し系統へ回収するので、水の節約も図ることができる。
In this embodiment, when the predetermined value of the iron ion concentration in the heater drain water 117 is 20 μg / l or less, the drain water supply 117B is supplied to the condenser 106 to circulate in the water supply system A. I am doing so. This is because, for example, when the drain water supply 117B is supplied to the condenser 106 as reused water, the device provided in the water supply system A is not contaminated by iron particles or the like in the heater drain water 117. It is to do.
Further, when the drain water 117B is supplied to the condenser 106, iron is further removed by a condensate treatment device (filter and condensate demineralizer) (not shown) installed on the downstream side thereof to the system. Since it is collected, water can be saved.
 なお、本実施形態では、前記ヒータドレン水117中の鉄イオン濃度の所定値を20μg/lとしているが、本発明はこれに限定されるものではなく、上述したJIS規格に規定された最も緩い基準値(5μg/l)以下とする場合には、前記ヒータドレン水117中の鉄イオン濃度の所定値を50μg/lとしてもよい。
 また、図1中の符号114は、過熱器である。
In the present embodiment, the predetermined value of the iron ion concentration in the heater drain water 117 is set to 20 μg / l. However, the present invention is not limited to this, and the loosest standard defined in the JIS standard described above. When the value (5 μg / l) or less is set, the predetermined value of the iron ion concentration in the heater drain water 117 may be 50 μg / l.
Moreover, the code | symbol 114 in FIG. 1 is a superheater.
 図1および図2に示すように、前記低圧給水ヒータ109から排出された前記ヒータドレン水117は、(低圧給水ヒータ)ドレン本管31を介して前記低圧ヒータドレンタンク116に導かれる。
 前記ヒータドレン水117中の鉄イオン濃度が所定値以下の場合、前記低圧ヒータドレンタンク116から排出された前記ヒータドレン水117は、ドレン本管31を介して前記ろ過装置15に導かれ、前記ろ過装置15によって鉄粒子がろ過されたドレンろ過水117Aは、前記ドレン本管31を介して前記給水系統Aの前記給水管13側に送給され、前記給水管13を流れる前記給水107に混合する。
As shown in FIGS. 1 and 2, the heater drain water 117 discharged from the low-pressure feed water heater 109 is guided to the low-pressure heater drain tank 116 via a (low-pressure feed water) drain main pipe 31.
When the iron ion concentration in the heater drain water 117 is equal to or lower than a predetermined value, the heater drain water 117 discharged from the low pressure heater drain tank 116 is guided to the filtration device 15 via the drain main pipe 31 and the filtration device. The drain filtered water 117 A, in which the iron particles are filtered by 15, is fed to the feed water pipe 13 side of the feed water system A through the drain main pipe 31 and mixed with the feed water 107 flowing through the feed water pipe 13.
 また、前記ヒータドレン水117中の鉄イオン濃度が所定値以下の場合、前記低圧ヒータドレンタンク116から排出された前記ヒータドレン水117を、前記流路切替え部16Aのところで枝分かれした(低圧給水ヒータ)ドレン枝管32を介して前記復水器106に導き、前記復水器106側に再利用水として供給されるドレン給水117Bとすることもできる。
 一方、前記ヒータドレン水117中の鉄イオン濃度が所定値よりも高い場合、前記低圧ヒータドレンタンク116から排出された前記ヒータドレン水117は、系外ブロー管33を介して系外に排出される。
Further, when the iron ion concentration in the heater drain water 117 is a predetermined value or less, the heater drain water 117 discharged from the low pressure heater drain tank 116 is branched at the flow path switching unit 16A (low pressure water heater) drain. It is also possible to use the drain water supply 117B that is led to the condenser 106 through the branch pipe 32 and supplied to the condenser 106 side as recycled water.
On the other hand, when the iron ion concentration in the heater drain water 117 is higher than a predetermined value, the heater drain water 117 discharged from the low-pressure heater drain tank 116 is discharged outside the system through the system blow pipe 33.
 さて、図2に示すように、本実施形態に係る発電プラント10では、前記流路切替え部16Bと前記ろ過装置15との間に位置するドレン本管31と、前記ろ過装置15と前記低圧給水ヒータ109との間に位置するドレン本管31とを連通するバイパス管34が設けられている。
 また、前記流路切替え部16Bと前記ろ過装置15との間に位置するドレン本管31には、ミニマムフロー供給管35が設けられており、前記ろ過装置15と前記低圧給水ヒータ109との間に位置するドレン本管31と、前記低圧ヒータドレンタンク116と前記流路切替え部16Aとの間に位置するドレン本管31とを連通するミニマムフロー戻り管36が設けられている。
As shown in FIG. 2, in the power plant 10 according to the present embodiment, the drain main pipe 31 positioned between the flow path switching unit 16 </ b> B and the filtration device 15, the filtration device 15, and the low-pressure water supply A bypass pipe 34 communicating with the drain main pipe 31 located between the heater 109 is provided.
In addition, a drain main pipe 31 located between the flow path switching unit 16B and the filtration device 15 is provided with a minimum flow supply pipe 35, and between the filtration device 15 and the low-pressure feed water heater 109. And a minimum flow return pipe 36 that communicates with the drain main pipe 31 located between the low-pressure heater drain tank 116 and the flow path switching portion 16A.
 なお、バイパス管34の一端(上流端)は、ミニマムフロー供給管35の一端(上流端)よりも上流側に位置するドレン本管31に接続されている。
 また、前記低圧ヒータドレンタンク116から排出された前記ヒータドレン水117を、前記ドレン本管31を介して前記ろ過装置15に導く場合、前記流路切替え部16Aと前記流路切替え部16Bとの間に設けられたバルブ41、前記流路切替え部16Bと前記ろ過装置15との間に設けられたバルブ42、および前記ろ過装置15よりも下流側で、かつ、バイパス管34の他端(下流端)が接続されている合流部(箇所)よりも上流側に位置する前記ドレン本管31の途中に設けられたバルブ43はそれぞれ全開とされ、前記ドレン枝管32の途中に設けられたバルブ44、前記系外ブロー管33の途中に設けられたバルブ45、バイパス管34の途中に設けられたバルブ46、ミニマムフロー供給管35の途中に設けられたバルブ47、およびミニマムフロー戻り管36の途中に設けられたバルブ48はそれぞれ全閉とされる。
Note that one end (upstream end) of the bypass pipe 34 is connected to a drain main pipe 31 located upstream from one end (upstream end) of the minimum flow supply pipe 35.
Further, when the heater drain water 117 discharged from the low-pressure heater drain tank 116 is guided to the filtration device 15 via the drain main pipe 31, it is between the flow path switching unit 16A and the flow path switching unit 16B. , The valve 41 provided between the flow path switching unit 16B and the filtration device 15, and the downstream side of the filtration device 15 and the other end (downstream end) of the bypass pipe 34. The valve 43 provided in the middle of the drain main pipe 31 located upstream from the joining portion (location) to which the pipe is connected is fully opened, and the valve 44 provided in the middle of the drain branch pipe 32 is provided. The valve 45 provided in the middle of the extra-system blow pipe 33, the valve 46 provided in the middle of the bypass pipe 34, and the valve 4 provided in the middle of the minimum flow supply pipe 35 , And a valve 48 provided in the middle of the minimum flow return pipe 36 each of which is fully closed.
 前記低圧ヒータドレンタンク116から排出された前記ヒータドレン水117を、前記ドレン本管31を介して前記ろ過装置15に導いているときに、前記ろ過装置15の入口における圧力と、前記ろ過装置15の出口における圧力との差(前記ろ過装置15の差圧)が、所定の圧力(例えば、110kPa)以上になったら、あるいは前記ヒータドレン水117中の鉄イオン濃度が20μg/l以下で、かつ、前記ろ過装置15の出口における鉄粒子量が0μg/lになったら、前記バルブ43は全開から全閉に切り換えられ、前記バルブ46は全閉から全開に切り換えられるとともに、前記バルブ47,48が開かれて、前記ボイラ118に供給される給水量が確保されるとともに、前記ろ過装置15に前記ヒータドレン水117が最小流量流されることになる。ここで、最小流量とは流量計で計測できる最小の値を目安とし、例えばフィルタへの通水流量の2%程度である。 When the heater drain water 117 discharged from the low-pressure heater drain tank 116 is guided to the filtration device 15 via the drain main pipe 31, the pressure at the inlet of the filtration device 15 and the filtration device 15 When the difference from the pressure at the outlet (differential pressure of the filtration device 15) becomes a predetermined pressure (for example, 110 kPa) or more, or the iron ion concentration in the heater drain water 117 is 20 μg / l or less, and When the amount of iron particles at the outlet of the filtration device 15 becomes 0 μg / l, the valve 43 is switched from fully open to fully closed, the valve 46 is switched from fully closed to fully open, and the valves 47 and 48 are opened. In addition, the amount of water supplied to the boiler 118 is ensured, and the heater drain water 117 is minimized in the filtration device 15. The flow rate will flow. Here, the minimum flow rate is based on the minimum value that can be measured with a flow meter, and is, for example, about 2% of the water flow rate to the filter.
 ここで、本実施形態で用いるろ過装置15は、低圧給水ヒータ109の通常の運転時の水条件に使用可能なものである必要がある。そのため、本実施形態で用いるろ過装置15としては、例えば、ポリスルホン酸、ポリフッ化ビニリデン(PVDF)、ケブラー(登録商標)、金属ポーラスフィルタ等からなる、細孔径0.1μmのプリーツ型ろ過エレメントを使用するのが好ましいが、本発明はこれに限定されるものではない。 Here, the filtration device 15 used in the present embodiment needs to be usable for water conditions during normal operation of the low-pressure feed water heater 109. Therefore, as the filtration device 15 used in this embodiment, for example, a pleated filtration element having a pore diameter of 0.1 μm made of polysulfonic acid, polyvinylidene fluoride (PVDF), Kevlar (registered trademark), metal porous filter, or the like is used. However, the present invention is not limited to this.
 本実施形態に係る発電プラント10におけるヒータドレン水中の鉄成分の除去方法によれば、ヒータドレンタンク116から排出されるヒータドレン水中の鉄イオン濃度が20μg/lよりも高い場合には、ヒータドレン水が系外に排出され、ヒータドレンタンク116から排出されるヒータドレン水中の鉄イオン濃度が20μg/l以下の場合には、前記ヒータドレン水が前記ろ過装置15に供給されることになる。
 ここで「所定値」は、発電プラントのボイラ回収率(ボイラに流入する給水のうち、ヒータドレン水が占める割合)が10%であり、ボイラ入口の給水中における鉄濃度を、上述したJIS規格に規定された最も厳しい基準値(2μg/l)以下とする場合、20(=2÷0.1)μg/lとなる。
 これにより、ボイラ118に送給する給水中の鉄濃度を、JIS規格に規定された最も厳しい基準値以下にすることができる。
According to the method for removing the iron component in the heater drain water in the power plant 10 according to the present embodiment, when the iron ion concentration in the heater drain water discharged from the heater drain tank 116 is higher than 20 μg / l, the heater drain water is a system. When the iron ion concentration in the heater drain water discharged to the outside and discharged from the heater drain tank 116 is 20 μg / l or less, the heater drain water is supplied to the filtration device 15.
Here, the “predetermined value” is 10% of the boiler recovery rate of the power plant (the ratio of heater drain water out of the feed water flowing into the boiler), and the iron concentration in the feed water at the boiler inlet is in accordance with the JIS standard described above. When it is less than the strictest standard value (2 μg / l) specified, it becomes 20 (= 2 ÷ 0.1) μg / l.
Thereby, the iron density | concentration in the feed water supplied to the boiler 118 can be made below into the strictest reference value prescribed | regulated by JIS specification.
 また、本実施形態に係る発電プラント10におけるヒータドレン水中の鉄成分の除去方法によれば、ろ過装置15の差圧が所定の圧力(例えば、110kPa)以上になったら、ろ過装置15をバイパスするバイパス管34を介してヒータドレン水117が低圧給水ヒータ109に導かれることになる。
 これにより、ボイラ118に供給される給水量を確保することができる。
Moreover, according to the removal method of the iron component in heater drain water in the power plant 10 which concerns on this embodiment, when the differential pressure | voltage of the filtration apparatus 15 becomes more than predetermined | prescribed pressure (for example, 110 kPa), the bypass which bypasses the filtration apparatus 15 The heater drain water 117 is guided to the low-pressure feed water heater 109 through the pipe 34.
Thereby, the amount of water supplied to the boiler 118 can be secured.
 さらに、本実施形態に係る発電プラント10におけるヒータドレン水中の鉄成分の除去方法によれば、ろ過装置15の差圧が所定の圧力(例えば、110kPa)以上になった場合、最小流量のヒータドレン水117がろ過装置15に流されることになる。
 これにより、ろ過装置15により捕集された鉄粒子の固着を防止することができる。
Furthermore, according to the method for removing the iron component from the heater drain water in the power plant 10 according to the present embodiment, when the differential pressure of the filtration device 15 becomes a predetermined pressure (for example, 110 kPa) or more, the heater drain water 117 having the minimum flow rate is obtained. Is passed through the filtration device 15.
Thereby, sticking of the iron particle collected by the filtration apparatus 15 can be prevented.
 なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更して実施することもできる。
 例えば、上述した実施形態では、ヒータドレンタンク116から排出されるヒータドレン水中の鉄イオン濃度が20μg/l(所定値)以下になってからヒータドレン水をろ過装置15に通水するようにしている。
 しかし、本発明はこれに限定されるものではなく、予め設定された所定時間が経過してからヒータドレン水をろ過装置15に通水するようにしてもよい。
 ここで「所定の時間」は、当該発電プラントにおいて実測された、ヒータドレンタンクから排出されるヒータドレン水中の鉄イオン濃度が所定値以下となるのに要する時間のことである。例えば、出力1000MWのプラントの場合、ドレンが発生してから鉄イオン濃度が20μg/l(所定値)以下となるまで約2時間かかる。よって、2時間経過後、ろ過装置15への通水を開始する。このように、予めプラント出力に応じた実績値から、ろ過装置15への通水開始時期を決定することで、作業効率の向上を図ることができる。
In addition, this invention is not limited to embodiment mentioned above, It can also implement by changing and changing suitably as needed.
For example, in the above-described embodiment, the heater drain water is passed through the filtration device 15 after the iron ion concentration in the heater drain water discharged from the heater drain tank 116 becomes 20 μg / l (predetermined value) or less.
However, the present invention is not limited to this, and the heater drain water may be passed through the filtration device 15 after a predetermined time has elapsed.
Here, the “predetermined time” is a time required for the iron ion concentration in the heater drain water discharged from the heater drain tank to be less than or equal to a predetermined value, which is actually measured in the power plant. For example, in the case of a plant with an output of 1000 MW, it takes about 2 hours from the generation of drain until the iron ion concentration becomes 20 μg / l (predetermined value) or less. Therefore, after 2 hours have passed, water flow to the filtration device 15 is started. Thus, the work efficiency can be improved by determining the water passage start time to the filtration device 15 from the actual value corresponding to the plant output in advance.
 また、上述した実施形態では、最小流量のヒータドレン水117がろ過装置15に流される際、図3(a)および図3(b)に示すように、フィルタエレメント15aへの通水を継続させるようにしている。
 しかし、本発明はこれに限定されるものではなく、図4(a)および図4(b)に示すように、フィルタエレメント15aの表層部のみに通水して、フィルタエレメント15aへの通水を中断させ、ろ過装置15の容器15bの内部の水を置換するようにしてもよい。
 この場合、フィルタエレメント15aへは通水されず、鉄の捕集は行われなくなるので、最小流量を流すのに必要なフィルタエレメント15a(例えば、5t/H×Fe:20ppb(mg/t)×24H×365day=876g-Feを捕集するのに必要なフィルタエレメント15a)を不要とすることができる。
 なお、この場合、容器15bの内部に導かれて、フィルタエレメント15aの表層部のみを通過したヒータドレン水117を容器15bの外部に導く排出用の配管15cが必要になる。
Moreover, in embodiment mentioned above, when the heater drain water 117 of the minimum flow is poured into the filtration apparatus 15, as shown to Fig.3 (a) and FIG.3 (b), it is made to continue the water flow to the filter element 15a. I have to.
However, the present invention is not limited to this, and as shown in FIGS. 4 (a) and 4 (b), water is passed only to the surface layer portion of the filter element 15a, and water is passed to the filter element 15a. And the water inside the container 15b of the filtration device 15 may be replaced.
In this case, since water is not passed through the filter element 15a and iron is not collected, the filter element 15a necessary for flowing the minimum flow rate (for example, 5t / H × Fe: 20 ppb (mg / t) × The filter element 15a) necessary to collect 24H × 365day = 876 g-Fe can be eliminated.
In this case, a discharge pipe 15c that guides the heater drain water 117 that has been guided into the container 15b and passed through only the surface layer of the filter element 15a to the outside of the container 15b is required.
 さらに、図4(a)および図4(b)に示す実施形態において、フィルタエレメント15aの表層部のみに通水して、フィルタエレメント15aへの通水を中断させ、ろ過装置15の容器15bの内部の水を置換する際、図5(a)および図5(b)に示すように、鉄洗浄用の液(クエン酸、EDTA等)を容器15bの内部に通水して、ろ過装置15の容器15bの内部の水を置換するようにするとさらに好適である。
 この場合、鉄洗浄用の液によりフィルタエレメント15aの表層部に付着した鉄酸化物の一部が溶解し、フィルタエレメント15aの表層部から除去されることになるので、フィルタエレメント15aの寿命を延伸させることができる。
Further, in the embodiment shown in FIGS. 4 (a) and 4 (b), water is passed only to the surface layer portion of the filter element 15a, the water flow to the filter element 15a is interrupted, and the container 15b of the filtration device 15 is suspended. When replacing the water in the interior, as shown in FIGS. 5 (a) and 5 (b), an iron cleaning solution (citric acid, EDTA, etc.) is passed through the container 15b, and the filtration device 15 More preferably, the water inside the container 15b is replaced.
In this case, part of the iron oxide adhering to the surface layer portion of the filter element 15a is dissolved and removed from the surface layer portion of the filter element 15a by the iron cleaning liquid, thereby extending the life of the filter element 15a. Can be made.
 さらにまた、図1および図2に示す実施形態において、図6(a)および図6(b)に示すように、発電プラント10が待機状態にある時に、最小流量の純水がフィルタエレメント15aへ逆方向から通水され、フィルタエレメント15aを逆洗することができるように構成されているとさらに好適である。
 この場合、フィルタエレメント15aを再生させることができ、フィルタエレメント15aの寿命を延伸させることができる。
Furthermore, in the embodiment shown in FIGS. 1 and 2, as shown in FIGS. 6 (a) and 6 (b), when the power plant 10 is in a standby state, pure water with the minimum flow rate is supplied to the filter element 15a. More preferably, the filter element 15a can be backwashed by passing water from the reverse direction.
In this case, the filter element 15a can be regenerated and the life of the filter element 15a can be extended.
 10  発電プラント
 12  蒸気タービン
 13  給水管
 15  ろ過装置
 15a フィルタエレメント
 15b 容器
 34  バイパス管
106  復水器
109  (低圧)給水ヒータ
115  再熱器
116  ヒータドレンタンク
117  ヒータドレン水
118  ボイラ
  A  給水系統
DESCRIPTION OF SYMBOLS 10 Power plant 12 Steam turbine 13 Feed pipe 15 Filtration apparatus 15a Filter element 15b Container 34 Bypass pipe 106 Condenser 109 (Low pressure) Feed water heater 115 Reheater 116 Heater drain tank 117 Heater drain water 118 Boiler A Feed water system

Claims (5)

  1.  熱源からの熱によって蒸気を発生させるボイラと、
     前記ボイラの蒸気により作動する蒸気タービンと、
     前記蒸気タービンからの排気を復水する復水器と、
     前記復水器で凝縮された復水を給水として前記ボイラ側に送給する給水系統と、
     前記給水系統の給水管に介装され、前記蒸気タービンから再熱器に送給する排気の一部を抽気し、これを用いて前記給水を加熱する給水ヒータと、
     前記給水ヒータから排出されるヒータドレン水を貯蔵するヒータドレンタンクと、
     前記ヒータドレン水中の鉄粒子をろ過するろ過装置と、
    を有するとともに、
     前記給水中に酸素を注入して酸素処理を行う、発電プラントにおけるヒータドレン水中の鉄成分の除去方法であって、
     前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値よりも高い場合には、前記ヒータドレン水が系外に排出されるようにし、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値以下の場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにしたこと、
     あるいは、予め設定された所定時間が経過していない場合には、前記ヒータドレン水が系外に排出されるようにし、予め設定された所定時間が経過した場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにした、発電プラントにおけるヒータドレン水中の鉄成分の除去方法。
    A boiler that generates steam by heat from a heat source;
    A steam turbine operated by steam of the boiler;
    A condenser for condensing exhaust from the steam turbine;
    A water supply system that feeds the condensate condensed in the condenser as feed water to the boiler side;
    A water heater that is interposed in a water supply pipe of the water supply system, bleeds a part of the exhaust gas that is supplied from the steam turbine to the reheater, and heats the water supply using this;
    A heater drain tank for storing heater drain water discharged from the water heater;
    A filtration device for filtering iron particles in the heater drain water;
    And having
    A method for removing iron components in heater drain water in a power plant, wherein oxygen treatment is performed by injecting oxygen into the feed water,
    When the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value, the heater drain water is discharged outside the system, and the heater drain water discharged from the heater drain tank When the iron ion concentration is below a predetermined value, the heater drain water is supplied to the filtration device,
    Alternatively, when the preset predetermined time has not elapsed, the heater drain water is discharged out of the system, and when the preset predetermined time has elapsed, the heater drain water is supplied to the filtration device. A method for removing iron components in heater drain water in a power plant, which is supplied to a power plant.
  2.  前記ろ過装置の入口における圧力と、前記ろ過装置の出口における圧力との差が、所定の圧力以上になったら、前記ろ過装置をバイパスするバイパス管を介して前記ヒータドレン水を前記給水ヒータに導くようにした、請求項1に記載の発電プラントにおけるヒータドレン水中の鉄成分の除去方法。 When the difference between the pressure at the inlet of the filtration device and the pressure at the outlet of the filtration device exceeds a predetermined pressure, the heater drain water is guided to the feed water heater via a bypass pipe that bypasses the filtration device. The removal method of the iron component in heater drain water in the power plant of Claim 1 made.
  3.  前記ろ過装置をバイパスするバイパス管を介して前記ヒータドレン水を前記給水ヒータに導く際、前記ヒータドレン水を前記ろ過装置に最小流量流すようにした、請求項2に記載の発電プラントにおけるヒータドレン水中の鉄成分の除去方法。 The iron in the heater drain water in the power plant according to claim 2, wherein when the heater drain water is guided to the feed water heater via a bypass pipe that bypasses the filtration device, the heater drain water flows through the filtration device at a minimum flow rate. How to remove ingredients.
  4.  前記ヒータドレン水を、前記ろ過装置を構成するフィルタエレメントの表層部のみに通水して、当該フィルタエレメントを収容する容器の内部の水を置換するようにした、請求項3に記載の発電プラントにおけるヒータドレン水中の鉄成分の除去方法。 4. In the power plant according to claim 3, the heater drain water is passed through only a surface layer portion of a filter element constituting the filtration device to replace water inside a container that accommodates the filter element. A method for removing iron components from heater drain water.
  5.  熱源からの熱によって蒸気を発生させるボイラと、
     前記ボイラの蒸気により作動する蒸気タービンと、
     前記蒸気タービンからの排気を復水する復水器と、
     前記復水器で凝縮された復水を給水として前記ボイラ側に送給する給水系統と、
     前記給水系統の給水管に介装され、前記蒸気タービンから再熱器に送給する排気の一部を抽気し、これを用いて前記給水を加熱する給水ヒータと、
     前記給水ヒータから排出されるヒータドレン水を貯蔵するヒータドレンタンクと、
     前記ヒータドレン水中の鉄粒子をろ過するろ過装置と、
    を有するとともに、
     前記給水中に酸素を注入して酸素処理を行う、発電プラントであって、
     前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値よりも高い場合には、前記ヒータドレン水が系外に排出されるようにし、前記ヒータドレンタンクから排出される前記ヒータドレン水中の鉄イオン濃度が所定値以下の場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにしたこと、
     あるいは、予め設定された所定時間が経過していない場合には、前記ヒータドレン水が系外に排出されるようにし、予め設定された所定時間が経過した場合には、前記ヒータドレン水が前記ろ過装置に供給されるようにした発電プラント。
    A boiler that generates steam by heat from a heat source;
    A steam turbine operated by steam of the boiler;
    A condenser for condensing exhaust from the steam turbine;
    A water supply system that feeds the condensate condensed in the condenser as feed water to the boiler side;
    A water heater that is interposed in a water supply pipe of the water supply system, bleeds a part of the exhaust gas that is supplied from the steam turbine to the reheater, and heats the water supply using this;
    A heater drain tank for storing heater drain water discharged from the water heater;
    A filtration device for filtering iron particles in the heater drain water;
    And having
    A power plant that performs oxygen treatment by injecting oxygen into the water supply,
    When the iron ion concentration in the heater drain water discharged from the heater drain tank is higher than a predetermined value, the heater drain water is discharged outside the system, and the heater drain water discharged from the heater drain tank When the iron ion concentration is below a predetermined value, the heater drain water is supplied to the filtration device,
    Alternatively, when the preset predetermined time has not elapsed, the heater drain water is discharged out of the system, and when the preset predetermined time has elapsed, the heater drain water is supplied to the filtration device. A power plant designed to be supplied to
PCT/JP2012/083940 2012-12-27 2012-12-27 Method for removing iron components from heater drain water in power-generating plant WO2014102978A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/083940 WO2014102978A1 (en) 2012-12-27 2012-12-27 Method for removing iron components from heater drain water in power-generating plant
CN201280075201.7A CN104520643B (en) 2012-12-27 2012-12-27 The minimizing technology of the ferrous components in water discharged by the heater of generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083940 WO2014102978A1 (en) 2012-12-27 2012-12-27 Method for removing iron components from heater drain water in power-generating plant

Publications (1)

Publication Number Publication Date
WO2014102978A1 true WO2014102978A1 (en) 2014-07-03

Family

ID=51020130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083940 WO2014102978A1 (en) 2012-12-27 2012-12-27 Method for removing iron components from heater drain water in power-generating plant

Country Status (2)

Country Link
CN (1) CN104520643B (en)
WO (1) WO2014102978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131345A1 (en) * 2019-12-26 2021-07-01 三菱パワー株式会社 Water treatment device and power generation plant, and water treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501416A (en) * 1990-10-03 1994-02-17 アライド シグナル インコーポレイテッド Plug-in automotive filter
JP2003290639A (en) * 2002-04-01 2003-10-14 Babcock Hitachi Kk Oxygen injection device
JP2005288391A (en) * 2004-04-02 2005-10-20 Hitachi Ltd Oil filter device
JP2008025922A (en) * 2006-07-21 2008-02-07 Mitsubishi Heavy Ind Ltd Turbine facility, and water treatment method of heater drain water from turbine facility
JP2009243836A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Oxygen processing method of turbine equipment, and turbine equipment
JP2010131568A (en) * 2008-12-08 2010-06-17 Toyota Boshoku Corp Filter for air conditioning
JP2012240048A (en) * 2011-05-18 2012-12-10 Pall Corp Filter device and filter apparatus including filter device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202105502U (en) * 2011-06-02 2012-01-11 孙维涛 High-temperature iron removing filter of condensed water in boiler
CN202419635U (en) * 2011-12-20 2012-09-05 西安龙源环保科技工程有限责任公司 High-temperature heat supply network drainage processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501416A (en) * 1990-10-03 1994-02-17 アライド シグナル インコーポレイテッド Plug-in automotive filter
JP2003290639A (en) * 2002-04-01 2003-10-14 Babcock Hitachi Kk Oxygen injection device
JP2005288391A (en) * 2004-04-02 2005-10-20 Hitachi Ltd Oil filter device
JP2008025922A (en) * 2006-07-21 2008-02-07 Mitsubishi Heavy Ind Ltd Turbine facility, and water treatment method of heater drain water from turbine facility
JP2009243836A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Oxygen processing method of turbine equipment, and turbine equipment
JP2010131568A (en) * 2008-12-08 2010-06-17 Toyota Boshoku Corp Filter for air conditioning
JP2012240048A (en) * 2011-05-18 2012-12-10 Pall Corp Filter device and filter apparatus including filter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131345A1 (en) * 2019-12-26 2021-07-01 三菱パワー株式会社 Water treatment device and power generation plant, and water treatment method
JP2021104481A (en) * 2019-12-26 2021-07-26 三菱パワー株式会社 Water treatment apparatus, power generation plant and water treatment method
JP7286530B2 (en) 2019-12-26 2023-06-05 三菱重工業株式会社 Water treatment equipment, power plant, and water treatment method

Also Published As

Publication number Publication date
CN104520643B (en) 2016-08-24
CN104520643A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP6620441B2 (en) Radioactive liquid processing equipment
WO2007067391A1 (en) System and method of reducing organic contaminants in feed water
JP2008180492A (en) Preparation method for boiler supply water
EP3437720B1 (en) Desulfurization processing device and operation method for desulfurization processing device
JP2008025922A (en) Turbine facility, and water treatment method of heater drain water from turbine facility
JP2019174050A (en) Exhaust heat recovery/recycling system of water treatment facility in semiconductor manufacturing facility
KR20150060723A (en) Method for recovering process wastewater from a steam power plant
JP5357943B2 (en) Method for removing iron components from heater drain water in power plants
WO2014102978A1 (en) Method for removing iron components from heater drain water in power-generating plant
KR101603785B1 (en) Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof
JP2013245833A (en) Power generating plant
JP2008178826A (en) Water treatment apparatus
KR100740652B1 (en) Operation device and method of electro-deionization equipment for condensate
CN109979635B (en) Pressurized water reactor nuclear power plant steam generator sewage treatment system
CN207891094U (en) Thermal power plant&#39;s low plus hydrophobic removes iron processing system
KR102565087B1 (en) Reverse Osmosis Purification Water Treatment System Using Purified Water Bypass Piping
KR20160047548A (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
JP6882076B2 (en) Carbon dioxide capture system and carbon dioxide capture method
KR102565078B1 (en) Water Treatment System with Thermal Energy Utilization Method of Purified Water Purified by Reverse Osmosis
JP6137972B2 (en) Method and apparatus for inhibiting corrosion of nuclear reactor structure
JPH01218611A (en) Apparatus for purifying feed water
JP5882869B2 (en) Power plant operation method
JP2011212586A (en) Filtration apparatus and operation method thereof
JP2009216495A (en) Water treatment device and water treatment method
JP2020085276A (en) Condensate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP