JP2009216495A - Water treatment device and water treatment method - Google Patents

Water treatment device and water treatment method Download PDF

Info

Publication number
JP2009216495A
JP2009216495A JP2008059464A JP2008059464A JP2009216495A JP 2009216495 A JP2009216495 A JP 2009216495A JP 2008059464 A JP2008059464 A JP 2008059464A JP 2008059464 A JP2008059464 A JP 2008059464A JP 2009216495 A JP2009216495 A JP 2009216495A
Authority
JP
Japan
Prior art keywords
water
steam generator
water treatment
desalting
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008059464A
Other languages
Japanese (ja)
Other versions
JP4724194B2 (en
Inventor
Shinobu Shigeniwa
忍 茂庭
Masahiko Osaki
正彦 大崎
Yoshie Akai
芳恵 赤井
Hideji Seki
秀司 関
Hidechika Nagayama
英睦 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008059464A priority Critical patent/JP4724194B2/en
Publication of JP2009216495A publication Critical patent/JP2009216495A/en
Application granted granted Critical
Publication of JP4724194B2 publication Critical patent/JP4724194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize water treatment with impurity ion demineralization/purification load, ammonia consumption, and heat loss reduced, by removing impurities contained in treated water through electric demineralization treatment at a high temperature while holding and reusing most of inlet chemical of high concentration contained in the treated water, thus allowing efficient operation of a nuclear power plant. <P>SOLUTION: In this water treatment device, the treated water containing ozonic gas is introduced into at least one reaction vessel 7 to oxidize at least one of contained component of the treated water in the reaction vessel 7. This treatment device includes a pressurizing vortex flow pump 3 for sucking ozone generated in an ozone generator 2 and the treated water to send them out to the reaction vessel, a pressure regulating member 6 provided below the reaction vessel 7, and a pressurizing pipe 4 provided between the flow pump 3 and the regulating member 6 for pressurizing the treated water containing the ozonic gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子力発電プラントや火力発電プラントにおける水処理技術に係り、特に加圧水型原子力発電所の2次系や火力発電所の系統水に用いられる水処理装置及び水処理方法に関する。   The present invention relates to a water treatment technique in a nuclear power plant or a thermal power plant, and more particularly to a water treatment apparatus and a water treatment method used for secondary water in a pressurized water nuclear power plant or system water in a thermal power plant.

一般に加圧水型発電所では、蒸気発生器で1次系と2次系とに分かれており、1次系の原子炉で発生した高温高圧水を蒸気発生器で熱交換し、この熱交換した熱によって2次系の水から蒸気を発生させ、その蒸気を2次系の蒸気タービンに送り、蒸気タービンを駆動させて発電をしている。   In general, in a pressurized water power plant, a steam generator is divided into a primary system and a secondary system. The steam generator generates heat from the high-temperature high-pressure water generated in the primary reactor, and this heat-exchanged heat is generated. Thus, steam is generated from the secondary system water, the steam is sent to the secondary system steam turbine, and the steam turbine is driven to generate electricity.

蒸気タービンを駆動した蒸気は続いて復水器に導入され、復水器内で冷却されて凝縮し、復水となる。この復水は、必要に応じて復水脱塩器でイオン交換樹脂等によるイオン除去の脱塩処理が行われ、その後、発電プラント系統のヒータで加熱されて蒸気発生器に供給される。   The steam that has driven the steam turbine is subsequently introduced into the condenser, where it is cooled and condensed in the condenser to become condensate. This condensate is subjected to demineralization treatment for removing ions with an ion exchange resin or the like in a condensate demineralizer as necessary, and then heated by a heater of a power plant system and supplied to a steam generator.

蒸気発生器に供給される水は発電プラント系統の原子炉2次系系統内の構造材(配管や機器)の腐食抑制の観点から薬剤注入物質が注入される。このうち、pH調整剤としてアンモニアやアミン化合物、脱酸素剤としてヒドラジンなどが用いられる。   Water supplied to the steam generator is injected with a chemical injection material from the viewpoint of suppressing corrosion of structural materials (piping and equipment) in the reactor secondary system of the power plant system. Among these, ammonia or an amine compound is used as a pH adjuster, and hydrazine is used as an oxygen scavenger.

一方、蒸気発生器では、発電プラント系統である原子炉2次系系統内に持ち込まれたイオン等の不純物や腐食生成物が濃縮されるため、蒸気発生器内の伝熱管の腐食や伝熱性低下を起こす要因となっている。このため、蒸気発生器内の水の一部を排出(ブローダウン)する操作が行なわれている。   On the other hand, in the steam generator, impurities such as ions and corrosion products brought into the reactor secondary system, which is the power plant system, are concentrated, so corrosion of the heat transfer tubes in the steam generator and reduced heat transfer It is a factor to cause. For this reason, operation which discharges a part of water in a steam generator (blowdown) is performed.

蒸気発生器からのブローダウン水は、復水脱塩器等の既設の水質浄化設備に導かれて浄化される。ブローダウン水に含まれる薬剤注入物質であるpH調整剤は、復水脱塩器の脱塩処理で除去された後、別途新しい薬剤注入物質が注入される。復水脱塩器でpH調整剤を除去し、別途新しい薬剤を注入することは、復水脱塩器でのイオン除去負荷を増大させ、薬剤注入コストを増加させる要因となっている。   Blow-down water from the steam generator is guided and purified by existing water purification equipment such as a condensate demineralizer. After the pH adjusting agent, which is a drug injection substance contained in the blowdown water, is removed by the desalting process of the condensate demineralizer, a new drug injection substance is separately injected. Removing the pH adjusting agent with the condensate demineralizer and injecting a new drug separately increases the ion removal load in the condensate demineralizer and increases the drug injection cost.

そのため、蒸気発生器のブローダウン水から、復水脱塩器でのブローダウン水のイオン除去を軽減し、注入薬剤コストを軽減する方法として、復水脱塩器(復水脱塩塔)をバイパスする手段が提案されている(特許文献1〜3)。   Therefore, a condensate demineralizer (condensate demineralizer) is used as a method to reduce the ion removal from the blowdown water of the steam generator and to reduce the injection chemical cost. Means for bypassing have been proposed (Patent Documents 1 to 3).

しかしながら、蒸気発生器からのブローダウン水は高温であるため、既設の水質浄化設備では、復水脱塩器に熱に弱いイオン効果樹脂が用いられる関係から、ブローダウン水を冷却し、常温で処理している。このように、既存の水質浄化設備では処理前にブローダウン水を冷却操作しており、冷却操作技術を用いないと、復水脱塩器は脱塩機能を充分に維持させることができない(特許文献4)。   However, since the blowdown water from the steam generator is hot, the existing water purification equipment cools the blowdown water at room temperature because the heat-sensitive ion effect resin is used in the condensate demineralizer. Processing. In this way, the existing water purification equipment cools the blow-down water before treatment, and the condensate demineralizer cannot sufficiently maintain the desalting function unless the cooling operation technique is used (patents). Reference 4).

既設の水質浄化設備におけるブローダウン水の脱塩操作は、ブローダウン水中の不純物イオンの除去が本来の目的である。しかしながら、加圧水型原子炉2次系の系統水中に含まれる不純物のイオン種のうち、高濃度に存在するのは、pH調整剤として注入されているアンモニアなどの薬剤である。   The desalting operation of blowdown water in the existing water purification equipment is intended to remove impurity ions in the blowdown water. However, among the ion species of impurities contained in the system water of the pressurized water reactor secondary system, a high concentration is a chemical such as ammonia injected as a pH adjuster.

復水脱塩器でのイオン除去負荷を軽減するために、復水脱塩器をバイパスする技術や(特許文献1〜3)、イオン交換樹脂とイオン交換膜とを使用する電気式脱イオン装置にてブローダウン水からイオンを除去する技術がある(特許文献5〜7)。その際、注入薬剤コストを軽減する方法として、電気式脱イオン装置から除去されたアンモニアをリサイクルする技術も提案されている(特許文献8、9)。
特開2000−171585号公報 特開2000−258589号公報 特開2005−329314号公報 特開2006−226697号公報 特開2006−43580号公報 特開2006−88004号公報 特開2006−136846号公報 特開平11−47560号公報 特開2007−90299号公報 特開2005−144226号公報 特開2005−214123号公報
In order to reduce the ion removal load in the condensate demineralizer, a technique for bypassing the condensate demineralizer (Patent Documents 1 to 3), an electric deionization apparatus using an ion exchange resin and an ion exchange membrane There is a technique for removing ions from blowdown water (Patent Documents 5 to 7). At that time, as a method for reducing the cost of the injected drug, a technique for recycling ammonia removed from the electric deionization apparatus has also been proposed (Patent Documents 8 and 9).
JP 2000-171585 A JP 2000-258589 A JP 2005-329314 A JP 2006-226697 A JP 2006-43580 A JP 2006-88004 A JP 2006-136846 A JP 11-47560 A JP 2007-90299 A JP 2005-144226 A JP-A-2005-214123

加圧水型原子力発電所の2次系に適用される従来の水処理装置においては、ブローダウン水中の不純物イオンの他、pH調整剤も同時に除去されるために、復水脱塩器の負荷軽減を図ることができるが、注入するpH調整剤のコスト軽減を図ることが困難である。   In the conventional water treatment equipment applied to the secondary system of the pressurized water nuclear power plant, the impurity ions in the blowdown water as well as the pH adjuster are removed at the same time, reducing the load on the condensate demineralizer. Although it can be achieved, it is difficult to reduce the cost of the pH adjusting agent to be injected.

また、電気式脱塩装置で除去したpH調整剤をリサイクルする技術においては、pH調整剤と同時に除去濃縮される不純物イオンの分離精製が必要となり、面倒であった。これを改善した特許文献9においては、陰イオン不純物のみを選択除去するため、pH調整剤と共に陽イオン不純物を再注入することとなる。   Moreover, in the technique of recycling the pH adjuster removed by the electric desalting apparatus, it is necessary to separate and purify impurity ions that are removed and concentrated simultaneously with the pH adjuster, which is troublesome. In Patent Document 9 in which this is improved, in order to selectively remove only the anionic impurities, the cationic impurities are reinjected together with the pH adjuster.

このため、ブローダウン水から不純物イオンのみを選択的に除去でき、薬剤注入によって不純物イオンに較べ高濃度に注入調整されるpH調整剤を残存させる脱塩技術を確立させることができれば、復水脱塩器におけるイオン除去負荷を軽減させることができ、かつ、pH調整剤の薬剤注入コストの軽減も図ることができ、メリットがある。   For this reason, if it is possible to selectively remove only the impurity ions from the blow-down water and establish a desalting technique that leaves a pH adjusting agent that is injected and adjusted to a higher concentration than the impurity ions by chemical injection, condensate desorption is possible. The ion removal load in the salt device can be reduced, and the drug injection cost of the pH adjuster can be reduced, which is advantageous.

また、蒸気発生器から高温で排出されるブローダウン水は、イオン交換樹脂を用いる既設の脱塩技術や、イオン交換樹脂とイオン交換膜を用いる従来の電気再生式脱イオン装置では、高温に弱いイオン交換樹脂の耐熱性の観点から、イオン交換機能を維持するために、常温まで冷却されることが要求され、熱交換器等を用いた冷却設備が必要となる。   In addition, blowdown water discharged from a steam generator at a high temperature is vulnerable to high temperatures in existing demineralization technology using an ion exchange resin and a conventional electric regenerative deionization apparatus using an ion exchange resin and an ion exchange membrane. From the viewpoint of heat resistance of the ion exchange resin, in order to maintain the ion exchange function, it is required to be cooled to room temperature, and cooling equipment using a heat exchanger or the like is required.

本発明は、上述した事情を考慮してなされたもので、脱塩装置による脱塩処理を高温で行うことができ、ブローダウン水の冷却操作に伴う熱損失の軽減を図ることができる水処理装置及び水処理方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is capable of performing desalination treatment with a desalinator at a high temperature and reducing heat loss associated with cooling operation of blowdown water. An object is to provide an apparatus and a water treatment method.

また、本発明は、加圧水型原子炉2次系や火力発電プラントの系統水に薬剤注入を必要とする発電システム系統水に、不純物イオン脱塩浄化負荷が小さく、アンモニア等の薬剤消費や熱損失の少ない水処理を実施することができる水処理装置及び水処理方法を提供することを目的とする。   In addition, the present invention provides power system water that requires chemical injection into the secondary system of a pressurized water reactor or thermal power plant, has a small impurity ion desalting and purification load, consumes chemicals such as ammonia, and heat loss. An object of the present invention is to provide a water treatment apparatus and a water treatment method that can carry out water treatment with a small amount of water.

本発明に係る水処理装置は、上述した課題を解決するために、蒸気発生器に給水するとともにpH調整剤が注入される給水系統と、前記蒸気発生器から発生する蒸気の凝縮水を前記給水系統へ循環する循環系統と、前記蒸気発生器から排出される蒸気発生器ブローダウン水を被処理水として脱塩処理する電気脱塩装置と、を有する発電プラントの水処理装置において、
前記電気脱塩装置は、隔膜の内側に形成された脱塩部と、前記隔膜の外側に配置された電極と、前記隔膜と前記電極の間に形成された濃縮部と、からなるとともに、前記被処理水を高温で脱塩処理し、前記電気脱塩装置から排出される前記pH調整剤を含む不純物脱塩処理水を前記給水系統に戻すことを特徴とすることを特徴とする。
In order to solve the above-described problem, a water treatment apparatus according to the present invention supplies a water supply system in which a pH adjuster is injected while supplying water to a steam generator, and condensate of steam generated from the steam generator. In a water treatment device of a power plant, comprising: a circulation system that circulates to a system; and an electric desalination device that performs desalination treatment using steam generator blowdown water discharged from the steam generator as treated water,
The electric desalination apparatus comprises a desalting part formed inside the diaphragm, an electrode disposed outside the diaphragm, and a concentration part formed between the diaphragm and the electrode, and The water to be treated is desalted at a high temperature, and the impurity desalted water containing the pH adjuster discharged from the electric desalting apparatus is returned to the water supply system.

また、本発明に係る水処理方法は、蒸気発生器に給水するとともにpH調整剤が注入される給水系統と、前記蒸気発生器から発生する蒸気の凝縮水を前記給水系統へ循環する循環系統と、前記蒸気発生器から排出される蒸気発生器ブローダウン水を被処理水として脱塩処理する電気脱塩装置と、を有する発電プラントの水処理方法において、
前記被処理水を前記電気脱塩装置内の脱塩部で高温脱塩処理するステップと、前記脱塩部から排出された前記pH調整剤を含む不純物脱塩処理水を前記給水系統に戻すステップと、前記電気脱塩装置内の濃縮部から不純物イオンを前記電気脱塩装置の外部に排出するステップと、を有することを特徴とする。
Further, the water treatment method according to the present invention includes a water supply system in which water is supplied to the steam generator and a pH adjuster is injected, and a circulation system that circulates condensed water of steam generated from the steam generator to the water supply system. In the water treatment method of a power plant, comprising: an electric desalination apparatus for desalinating the steam generator blowdown water discharged from the steam generator as treated water,
A step of subjecting the water to be treated to a high-temperature desalination treatment in a desalination section in the electric desalination apparatus; And discharging the impurity ions from the concentrating part in the electric desalting apparatus to the outside of the electric desalting apparatus.

本発明に係る水処理装置及び水処理方法によれば、ブローダウン水を高温下で電気脱塩処理することにより、被処理水に含まれる不純物イオンのみを効率的に除去できる一方、被処理水に含まれる高濃度の注入薬剤の大部分を保持しつつ再利用することができる。さらに、注入薬剤が含まれる処理水を給水系に高温高圧のまま返送することで、薬剤の再注入量と給水再加熱負荷を軽減することができ、その結果、不純物イオン脱塩浄化負荷と薬剤消費、および熱損失の少ない水処理が実現できるので、発電プラントを効率よく適切に運用することができる。   According to the water treatment apparatus and the water treatment method of the present invention, only the impurity ions contained in the water to be treated can be efficiently removed by subjecting the blowdown water to an electrodesalting treatment at a high temperature, while the water to be treated is treated. Can be reused while retaining most of the high-concentration infused drug contained in. Furthermore, by returning the treated water containing the injected chemical to the water supply system in a high temperature and high pressure state, the amount of chemical reinjection and the water reheating load can be reduced. Since water treatment with low consumption and heat loss can be realized, the power plant can be efficiently and appropriately operated.

本発明に係る水処理装置の実施の形態について添付図面を参照して説明する。
[第1の実施形態]
本発明に係る水処理装置は、加圧水型原子力発電所の加圧水型原子炉2次系(PWR2次系)や火力発電所の系統水に適用される。
Embodiments of a water treatment apparatus according to the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
The water treatment apparatus according to the present invention is applied to a pressurized water nuclear reactor secondary system (PWR secondary system) of a pressurized water nuclear power plant or system water of a thermal power plant.

図1は本発明の第1の実施形態に係る水処理装置の構成図である。
加圧水型原子力発電所では、蒸気発生器1が発電システム系統に設けられ、この蒸気発生器1により加圧水型原子炉1次系と2次系に分けられる。原子炉(図示せず)で発生した高温高圧水は蒸気発生器1に送られ、ここで蒸気発生器1に供給される給水と熱交換される。蒸気発生器1で発生した蒸気は循環系統により給水系統に循環されるが、その間、蒸気は、高圧タービン2、湿分分離器3を経由して低圧タービン4に供給され、高圧タービン2および低圧タービン4をタービン駆動させて発電する。
FIG. 1 is a configuration diagram of a water treatment apparatus according to the first embodiment of the present invention.
In a pressurized water nuclear power plant, a steam generator 1 is provided in a power generation system system, and the steam generator 1 is divided into a primary system and a secondary system of a pressurized water reactor. High-temperature and high-pressure water generated in a nuclear reactor (not shown) is sent to the steam generator 1 where it is heat-exchanged with water supplied to the steam generator 1. The steam generated in the steam generator 1 is circulated to the water supply system by the circulation system. During this time, the steam is supplied to the low-pressure turbine 4 via the high-pressure turbine 2 and the moisture separator 3, and the high-pressure turbine 2 and the low-pressure turbine. The turbine 4 is driven to generate electricity.

高圧タービン2へ供給された蒸気の一部は、高圧抽気2−1として、高圧給水加熱器9の熱源に用いたのち、配管2−2を介して蒸気発生器1の給水系統へ、また、湿分分離器3にて蒸気から除去された水分は、配管3−1を介して蒸気発生器1の給水系統へ、さらに、低圧タービン4から抽気された低圧抽気4−1は、低圧給水加熱器7の熱源に用いられた後に配管4−2を介して蒸気発生器1の給水系統へ、それぞれ導入される。また、低圧タービンから排出される主蒸気は復水器5で水になり、復水ポンプ5−1を介して、蒸気発生器1の給水系統へ導入される。なお図1中の破線矢印は蒸気の流れを、実線の矢印は水の流れを示している。   A part of the steam supplied to the high-pressure turbine 2 is used as a heat source for the high-pressure feed water heater 9 as high-pressure extraction air 2-1, and then to the water supply system of the steam generator 1 via the pipe 2-2. The moisture removed from the steam by the moisture separator 3 is supplied to the water supply system of the steam generator 1 through the pipe 3-1, and the low-pressure extraction 4-1 extracted from the low-pressure turbine 4 is heated by the low-pressure supply water. After being used as a heat source for the generator 7, it is introduced into the water supply system of the steam generator 1 through the pipe 4-2. Further, the main steam discharged from the low-pressure turbine becomes water in the condenser 5 and is introduced into the water supply system of the steam generator 1 through the condensate pump 5-1. In addition, the broken-line arrow in FIG. 1 shows the flow of steam, and the solid-line arrow shows the flow of water.

前記給水系統では、復水ポンプ5−1から供給された給水は、復水脱塩器6にて水質浄化され、薬剤注入20にて水質調整し、低圧給水加熱器7で温度調節され、脱気器8で気液分離され、次いで、高圧給水加熱器9で温度調節が行われた後、蒸気発生器1へ給水される。   In the water supply system, the feed water supplied from the condensate pump 5-1 is purified by the condensate demineralizer 6, the water quality is adjusted by the chemical injection 20, the temperature is adjusted by the low pressure feed water heater 7, and the water is removed. After the gas and liquid are separated by the vaporizer 8, the temperature is adjusted by the high-pressure feed water heater 9, and then the water is fed to the steam generator 1.

また、蒸気発生器1には、蒸気発生器1内の伝熱管の腐食や伝熱性能低下を防止するために、蒸気発生器1中の2次系の水の一部を排出する蒸気発生器ブローダウン水排出経路10が配置される。このブローダウン水排出経路10は復水器5側に延び、復水器5または復水器5から復水脱塩器6上流側の配管に接続される(図示せず)。   Further, the steam generator 1 includes a steam generator that discharges a part of the secondary water in the steam generator 1 in order to prevent corrosion of the heat transfer tubes in the steam generator 1 and deterioration in heat transfer performance. A blowdown water discharge path 10 is arranged. This blow-down water discharge path 10 extends to the condenser 5 side, and is connected to the condenser 5 or a pipe from the condenser 5 to the upstream side of the condensate demineralizer 6 (not shown).

ブローダウン水排出経路10の途中には、蒸気発生器1のブローダウン水がバイパスされるバイパス経路10−1を有する電気脱塩装置11が設けられている。電気脱塩装置11は、図2に模式図で示すように構成され、高温で脱塩操作が行われるようになっている。   In the middle of the blowdown water discharge path 10, an electric desalination apparatus 11 having a bypass path 10-1 through which the blowdown water of the steam generator 1 is bypassed is provided. The electrical desalting apparatus 11 is configured as shown in a schematic diagram in FIG. 2, and desalting operation is performed at a high temperature.

次に、図2を用いて電気脱塩装置11の構成・機能を詳細に説明する。
図2において、電気脱塩装置11は、被処理水12の導入経路と、不純物脱塩処理水13の排出経路を有し、電気脱塩装置11の筐体に、1対の等間隔に配置される隔膜14と、隔膜外側に配される直流印加のための電極17が配置され、隔膜間に脱塩部15、各隔膜と各電極間に濃縮部16が形成される。被処理水12は脱塩部15に導入され、脱塩処理後、脱塩処理水13として排出される一方、濃縮部16からは除去不純物の濃縮水である不純物濃縮排水18が矢印19のように排出される。
Next, the configuration and function of the electrical desalting apparatus 11 will be described in detail with reference to FIG.
In FIG. 2, the electric desalting apparatus 11 has an introduction path for the water to be treated 12 and a discharge path for the impurity desalting water 13, and is arranged in a pair of equal intervals in the casing of the electric desalination apparatus 11. The diaphragm 14 and the electrode 17 for direct current application arranged on the outer side of the diaphragm are disposed, and a desalting part 15 is formed between the diaphragms, and a concentrating part 16 is formed between each diaphragm and each electrode. The treated water 12 is introduced into the desalting unit 15, and after the desalting treatment, is discharged as desalted processing water 13, while the concentrated concentrated water 16 from the concentrating unit 16 is an impurity-concentrated drainage 18 that is a concentrated impurity of removed impurities. To be discharged.

本第1の実施形態では、蒸気発生器1から排出されるブローダウン水が、蒸気発生器ブローダウン水排出経路10より被処理水12として導入され、脱塩処理水13は蒸気発生器1の給水系統へと送られる。   In the first embodiment, blowdown water discharged from the steam generator 1 is introduced as treated water 12 from the steam generator blowdown water discharge path 10, and desalted treated water 13 is supplied from the steam generator 1. Sent to the water supply system.

ところで、蒸気発生器ブローダウン水排出経路10に設けられた電気脱塩装置11は、図2に示したように電極17に直流印加を行うことで脱塩処理が行われる。その際、電気脱塩装置11の筐体と電極17や、電気脱塩装置11の筐体と隔膜14、電極17と隔膜14、および対をなす隔膜14同士はそれぞれ互いに電気的に絶縁することが望ましい。   By the way, the electric desalination apparatus 11 provided in the steam generator blowdown water discharge path 10 performs a desalting process by applying a direct current to the electrode 17 as shown in FIG. At that time, the housing and the electrode 17 of the electric desalting apparatus 11, the housing and the diaphragm 14 of the electric desalting apparatus 11, the electrode 17 and the diaphragm 14, and the paired diaphragms 14 are electrically insulated from each other. Is desirable.

また、電気脱塩装置11内の脱塩部15および濃縮部16に満たされる液は、電気脱塩装置11の内部において、隔膜16以外の場所からの液体が混ざり合わないことが望ましい。電極17は、脱塩時に不純物脱塩処理水13に電極17の構成成分が溶出しにくい材質で構成され、電気脱塩装置11の運用温度、電流安定域で安定に使用できる材料が選定される。   Further, it is desirable that the liquid filled in the desalting unit 15 and the concentrating unit 16 in the electric desalting apparatus 11 is not mixed with liquids from places other than the diaphragm 16 inside the electric desalting apparatus 11. The electrode 17 is made of a material that does not easily elute the constituent components of the electrode 17 into the impurity demineralized water 13 during desalting, and a material that can be used stably in the operating temperature and current stable range of the electric desalting apparatus 11 is selected. .

電気脱塩装置11内を脱塩部15と濃縮部16とを仕切る隔膜14は、対を成して対向配置され、互いに等間隔に、電極17と平行に配置される。隔膜14は、金属、合金、セラミックス、あるいは耐熱性樹脂系等の素材で構成され、その構成成分が、蒸気発生器ブローダウン水である高温の被処理水であっても、脱塩処理運用環境で溶出、腐食しにくい材料が選定されて利用される。隔膜14の配置は、例えば、平板(プレート)状の隔膜を平行に配置する構成、又は同心円筒状(楕円筒状、角筒状も含む)の隔膜を配置する構成等が考えられる。   The membranes 14 that partition the desalting unit 15 and the concentration unit 16 in the electric desalting apparatus 11 are arranged to face each other in pairs, and are arranged in parallel to the electrode 17 at equal intervals. The diaphragm 14 is made of a material such as a metal, an alloy, ceramics, or a heat-resistant resin, and even if the component is high-temperature treated water that is steam generator blowdown water, the desalination treatment operation environment The materials that are difficult to elute and corrode are selected and used. The arrangement of the diaphragm 14 may be, for example, a structure in which flat plate (plate) -like diaphragms are arranged in parallel, or a structure in which concentric cylindrical (including elliptical and rectangular) diaphragms are arranged.

電気脱塩装置11は、脱塩部15に導入された被処理水12に(蒸気発生器ブローダウン水)含まれるイオン成分を、電気脱塩装置11の内部で電極17によって印加される電位勾配によって、脱塩部15と接する隔膜14を透過して脱塩部15の外へ電気泳動により移動する。その結果、脱塩部15から電気脱塩装置11によりイオン除去された処理水が不純物脱塩処理水13として排出される。   The electric desalting apparatus 11 is a potential gradient in which an ionic component contained in the water 12 to be treated (steam generator blowdown water) introduced into the desalting unit 15 is applied by the electrode 17 inside the electric desalting apparatus 11. As a result, the membrane 14 permeates through the diaphragm 14 in contact with the desalting unit 15 and moves out of the desalting unit 15 by electrophoresis. As a result, the treated water ion-removed from the desalting unit 15 by the electric desalting apparatus 11 is discharged as the impurity desalted treated water 13.

電気脱塩装置11において、脱塩部15での電位勾配によって脱塩部15および隔膜14の外に配置される濃縮室16へ移動したイオン成分は、不純物濃縮排水18として電気脱塩装置11外に排出される。   In the electric desalination apparatus 11, the ionic components that have moved to the concentration chamber 16 disposed outside the desalination section 15 and the diaphragm 14 due to the potential gradient in the desalination section 15 are extracted from the electric desalination apparatus 11 as impurity concentrated drainage 18. To be discharged.

加圧水型原子炉2次系(以下、PWR2次系という。)の系統水には、pH調整剤として薬剤注入を行っており、例えばアンモニアが薬剤として用られた場合、発電システム系統を構成するPWR2次系の系統水をpH9〜10程度に調整するためには、アンモニア濃度を約1〜10mg/Lに調整する必要がある。   The system water of the pressurized water reactor secondary system (hereinafter referred to as the PWR secondary system) is injected with a chemical as a pH adjuster. For example, when ammonia is used as a chemical, PWR 2 constituting the power generation system system is used. In order to adjust the system water of the next system to about pH 9 to 10, it is necessary to adjust the ammonia concentration to about 1 to 10 mg / L.

一方、PWR2次系系統水中には、ppbオーダーのイオン分を含む不純物が含有されている。つまり蒸気発生器1から排出される蒸気発生器ブローダウン水中から、不純物を除去し、アンモニアをリサイクルしてPWR2次系へ返送するリサイクル形態においては、アンモニアを添加したアンモニア水から、ppbオーダーの不純物を除去することが求められる。   On the other hand, the PWR secondary system water contains impurities containing ppb order ions. That is, in the recycling mode in which impurities are removed from the steam generator blowdown water discharged from the steam generator 1 and ammonia is recycled and returned to the PWR secondary system, impurities in the ppb order are added from the ammonia water to which ammonia is added. Is required to be removed.

ブローダウン水は、蒸気発生器1から排出される高温高圧の液体(被処理水)である。水中におけるアンモニアがアンモニウムイオンに電離(イオン化)する解離定数は、アンモニア濃度、温度、水の密度に依存することが明らかになっている。アンモニアは、高温高圧になると、電離の割合(電離度)が図3に示すように低下する。電気脱塩装置11では、薬剤注入物質に由来するアンモニアを含む被処理水12は、被処理水中12に含まれるアンモニウムイオンを除く他の少なくとも1種のイオン種により電解度が大きい条件で脱塩操作される。   Blowdown water is a high-temperature and high-pressure liquid (treated water) discharged from the steam generator 1. It has been clarified that the dissociation constant at which ammonia in water is ionized (ionized) into ammonium ions depends on the ammonia concentration, temperature, and water density. When the temperature of ammonia increases at a high temperature and a high pressure, the ionization rate (degree of ionization) decreases as shown in FIG. In the electrical desalting apparatus 11, the water to be treated 12 containing ammonia derived from the drug injection substance is desalted under a condition in which the degree of electrolysis is high due to at least one other ion species excluding ammonium ions contained in the water to be treated 12. Operated.

図3は、アンモニア電離度が6MPaの環境下においてアンモニアがアンモニアイオンに電離する電離依存性を示している。アンモニア濃度0.5ppm以下(破線)の範囲ではアンモニウムイオンで存在する割合は常温で50%以上であるが、温度増加と共に電離度は低下する。また、アンモニア濃度1.0ppm(実線)や、10ppm(一点破線)でも同様に、高温になるほどアンモニウムイオンの割合が小さくなる。さらに、アンモニア濃度が高濃度になるほど、電離度が小さくなる。   FIG. 3 shows the ionization dependence of ammonia ionizing to ammonia ions in an environment with an ammonia ionization degree of 6 MPa. In the ammonia concentration range of 0.5 ppm or less (broken line), the proportion of ammonium ions present is 50% or more at room temperature, but the ionization degree decreases with increasing temperature. Similarly, even at an ammonia concentration of 1.0 ppm (solid line) and 10 ppm (single dotted line), the proportion of ammonium ions decreases as the temperature increases. Furthermore, the ionization degree decreases as the ammonia concentration increases.

図2に示される電気脱塩装置11では、被処理水12である蒸気発生器ブローダウン水をより高温で処理するほど、アンモニアはイオンとならないため、電気的に除去されにくい。このため、電気脱塩装置11では、高温で操作するほど、被処理水13中のアンモニア濃度が増加するとともに、蒸気発生器ブローダウン水(被処理水12)は高温のまま被処理水13としてPWR2次系系統へ返送することで、アンモニアと熱を有効に再利用することができる。処理温度は、100℃以上になると各種不純物イオンの移動度が高くなることから、電気脱塩装置11における処理温度を100℃以上にすることが望ましい。   In the electric desalting apparatus 11 shown in FIG. 2, ammonia is not easily ionized because ammonia does not become ions as the steam generator blowdown water as the water to be treated 12 is processed at a higher temperature. For this reason, in the electric desalination apparatus 11, the ammonia concentration in the treated water 13 increases as the temperature is increased, and the steam generator blowdown water (treated water 12) remains as the treated water 13 at a high temperature. By returning to the PWR secondary system, ammonia and heat can be effectively reused. Since the mobility of various impurity ions increases when the treatment temperature is 100 ° C. or higher, it is desirable to set the treatment temperature in the electrodeionization apparatus 11 to 100 ° C. or higher.

本第1の実施形態では、電気脱塩装置11から排出された不純物脱塩処理水13は、給水系の例えば脱気器8下流側に戻され、蒸気発生器1に還流される。還流された処理水13は蒸気発生器1で原子炉からの高温高圧水と熱交換されて蒸気化され、高圧タービン2、低圧タービン4に供給される。   In the first embodiment, the impurity demineralized treated water 13 discharged from the electric demineralizer 11 is returned to, for example, the downstream side of the deaerator 8 of the water supply system and is returned to the steam generator 1. The treated water 13 that has been refluxed is heat-exchanged with the high-temperature high-pressure water from the nuclear reactor in the steam generator 1 to be vaporized and supplied to the high-pressure turbine 2 and the low-pressure turbine 4.

その際、不純物脱塩処理水13の供給箇所は、電気脱塩装置11に供給される被処理水温度に応じて選定すればよいが、不純物脱塩処理水13が、特に、高温で脱塩処理した処理水である場合は、高温での運用可能な箇所を選定することが望ましい。不純物脱塩処理水13の給水系への供給には、供給先の温度圧力等を考慮し、任意にポンプ等の機器を設置して接続される。   At that time, the supply location of the impurity demineralized water 13 may be selected according to the temperature of the water to be treated supplied to the electric desalting apparatus 11. In the case of treated water, it is desirable to select a location that can be operated at high temperatures. The supply of the impurity desalted treated water 13 to the water supply system is connected by arbitrarily installing equipment such as a pump in consideration of the temperature and pressure of the supply destination.

また、高圧タービン2からのタービン抽気(高圧蒸気)を熱源として用いる高圧給水加熱器のドレン水をPWR2次系へ供給するドレン系統が配置されている場合、このドレン系統へ不純物脱塩処理水13を供給してもよい。   Moreover, when the drain system which supplies the drain water of the high pressure feed water heater which uses the turbine extraction (high pressure steam) from the high pressure turbine 2 as a heat source to the PWR secondary system is arrange | positioned, impurity demineralized treated water 13 is supplied to this drain system. May be supplied.

また、被処理水12に含まれ、一部イオンとして除去濃縮されたアンモニウムイオンは、図3に示すようにアンモニア濃度が高いほど電離度が低下する傾向にあり、電場によるイオン保持が困難となる。このため、電気脱塩装置11内でアンモニウムイオンがアンモニアとなって濃縮部16から拡散し、脱塩部15に戻ることとなる。   In addition, ammonium ions contained in the water to be treated 12 and removed and concentrated as some ions tend to have a lower ionization degree as the ammonia concentration is higher as shown in FIG. 3, making it difficult to hold ions by an electric field. . For this reason, ammonium ions are converted into ammonia in the electric desalting apparatus 11 and diffused from the concentration unit 16, and return to the desalting unit 15.

したがって、図2に示される電気脱塩装置11では、不純物イオン濃度よりも高濃度なアンモニアを含有する被処理水12から、不純物イオンの選択的な脱塩が行なわれ、脱塩部15でアンモニアが残存した処理水が不純物脱塩処理水13として得られる。   Therefore, in the electrical desalting apparatus 11 shown in FIG. 2, impurity ions are selectively desalted from the water to be treated 12 containing ammonia having a concentration higher than the impurity ion concentration. Is obtained as the impurity desalted treated water 13.

電気脱塩装置11は、図3に示されたアンモニアの電離度特性から(図2に示された電気脱塩装置11で脱塩する場合)、常温に比べ高温で操作することによって、不純物イオンに比べ、アンモニアの選択的残存が可能となる。電気脱塩装置11を構成する素材は、この意味から高温下で運用可能な素材であることが望ましい。また、処理温度は前述したように100℃以上が望ましい。   From the ionization degree characteristic of ammonia shown in FIG. 3 (when desalting is performed with the electric desalination device 11 shown in FIG. 2), the electric desalting device 11 operates at a higher temperature than normal temperature, thereby producing impurity ions. As compared with the above, ammonia can selectively remain. In this sense, the material constituting the electric desalting apparatus 11 is preferably a material that can be operated at high temperatures. Further, the treatment temperature is desirably 100 ° C. or higher as described above.

また、電気脱塩装置11は、高温での不純物イオン脱塩操作により、従来の水処理装置において必要であった蒸気発生器ブローダウン水処理時の冷却操作が不要となり、冷却のためのエネルギー消費を低減させることができる。   Moreover, the electric desalting apparatus 11 does not require a cooling operation during the steam generator blowdown water treatment, which is necessary in the conventional water treatment apparatus, due to the impurity ion desalting operation at a high temperature, and energy consumption for cooling. Can be reduced.

このように、図2に示された、電気脱塩装置11の高温での脱塩操作によって、蒸気発生器ブローダウン水が持つ熱量と、アンモニア量を低減させることなく、蒸気発生器1へ供給する熱及びアンモニアのリサイクルと、不純物イオン浄化を効率よく達成することができる。
なお、高温高圧下で運用する脱塩装置の形態としては、図2に示すものに限定されず、種々の脱塩装置の装置構成を採用することができる(特許文献7〜9)。
As described above, the desalting operation at a high temperature of the electric desalting apparatus 11 shown in FIG. 2 supplies the steam generator 1 without reducing the heat amount and ammonia amount of the steam generator blowdown water. Heat and ammonia recycling and impurity ion purification can be achieved efficiently.
In addition, as a form of the desalination apparatus operate | moved under high temperature / high pressure, it is not limited to what is shown in FIG. 2, The apparatus structure of various desalination apparatuses is employable (patent documents 7-9).

また、電気脱塩装置11は、同一形態の装置を複数台配置し、蒸気発生器1のブローダウン水を連続浄化実施時における、水質浄化と電気脱塩装置11内の洗浄操作を切り替えて実施してもよく、複数台配置により、PWR2次系系統水の浄化を常時安定に実施するために有効である。   Moreover, the electric desalination apparatus 11 arrange | positions several apparatuses of the same form, and switches and implements water quality purification and washing | cleaning operation in the electric desalination apparatus 11 at the time of continuous purification of the blowdown water of the steam generator 1 Alternatively, the arrangement of a plurality of units is effective in constantly purifying the PWR secondary system water.

この蒸気発生器ブローダウン水排出経路10の経路上には、フラッシュタンクや熱交換器、等の機器を、必要に応じて配置して良く、この機器構成等については、既存の技術を用いればよい。しかし、電気脱塩装置11へ送られるブローダウン水の水量や温度の変動が少なくなるように構成・運用することが望ましい。   On the steam generator blowdown water discharge path 10, devices such as a flash tank and a heat exchanger may be arranged as necessary. For this device configuration, etc., if existing technology is used. Good. However, it is desirable to configure and operate so that fluctuations in the amount and temperature of blowdown water sent to the electric desalting apparatus 11 are reduced.

また、本第1の実施形態では、pH調整剤としてアンモニアを用いた例を説明したが、アンモニアに限定されることはなく、他に、エタノールアミン、モルフォリオン等も注入薬剤として用いることができる。これらの薬剤も、アンモニアと同様に高温で電離特性が低下する傾向を有している。   Moreover, although the example which used ammonia as a pH adjuster was demonstrated in this 1st Embodiment, it is not limited to ammonia, Besides, ethanolamine, morpholion, etc. can be used as an injection | pouring medicine. . These agents also have a tendency to decrease the ionization characteristics at a high temperature like ammonia.

以上、本第1の実施形態に係る水処理装置及びその方法によれば、ブローダウン水を高温下で電気脱塩処理することにより、被処理水に含まれる不純物イオンのみを効率的に除去できる一方、被処理水に含まれる高濃度の注入薬剤の大部分を保持しつつ再利用することができる。さらに、注入薬剤が含まれる処理水を給水系に高温高圧のまま返送することで、薬剤の再注入量と給水再加熱負荷を軽減することができ、その結果、不純物イオン脱塩浄化負荷と薬剤消費、および熱損失の少ない水処理が実現でき、原子力発電プラントを効率よく適切に運用することができる。   As described above, according to the water treatment apparatus and the method thereof according to the first embodiment, only the impurity ions contained in the water to be treated can be efficiently removed by subjecting the blowdown water to the electrical desalination treatment at a high temperature. On the other hand, most of the high-concentration infusion drug contained in the water to be treated can be reused while being retained. Furthermore, by returning the treated water containing the injected chemical to the water supply system in a high temperature and high pressure state, the amount of chemical reinjection and the water reheating load can be reduced. Water treatment with low consumption and heat loss can be realized, and a nuclear power plant can be efficiently and appropriately operated.

[第2の実施形態]
本発明の第2の実施形態に係る水処理装置を、図4を用いて説明する。なお、図4において図1と同一部分には同一符号を付し、構成の説明は省略する。
[Second Embodiment]
A water treatment apparatus according to a second embodiment of the present invention will be described with reference to FIG. 4 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions of the configurations are omitted.

第2の実施形態に示された水処理装置は、PWR2次系に適用され、PWR2次系の蒸気発生器ブローダウン水排出経路10上に配した電気脱塩装置11より排出される不純物濃縮排水18を、既設の復水浄化設備である復水脱塩器6に供給するものである。   The water treatment apparatus shown in the second embodiment is applied to a PWR secondary system, and is an impurity-concentrated wastewater discharged from an electric desalination apparatus 11 disposed on a PWR secondary system steam generator blowdown water discharge path 10. 18 is supplied to the condensate demineralizer 6 which is an existing condensate purification facility.

この供給経路18−1上には、必要に応じて熱交換機器等の熱回収装置30が配置される。熱回収装置30の運用・形式等については、既存の技術を用いればよく、特にその形態等は限定しないが、熱回収装置30で回収された熱は、PWR2次系、例えば給水系で再利用されることが好ましい。   A heat recovery device 30 such as a heat exchange device is disposed on the supply path 18-1 as necessary. The existing technology may be used for the operation / form of the heat recovery device 30, and the form of the heat recovery device 30 is not particularly limited. The heat recovered by the heat recovery device 30 is reused in the PWR secondary system, for example, the water supply system. It is preferred that

復水脱塩器6は、復水脱塩器6の内部に充填されるイオン交換樹脂のメンテナンス等のために複数台並列配置され、供給経路を切り替えることが可能な形態をとる。電気脱塩装置11から排出される不純物イオンを濃縮した不純物濃縮排水18は、複数配置する復水脱塩器6のうち、復水を浄化中の復水脱塩器以外の脱塩器へ導入し、濃縮した不純物イオンを浄化する。   A plurality of condensate demineralizers 6 are arranged in parallel for maintenance of the ion exchange resin filled in the condensate demineralizer 6 and the supply path can be switched. Impurity-concentrated waste water 18 obtained by concentrating impurity ions discharged from the electric desalting apparatus 11 is introduced into a desalinator other than the condensate demineralizer that is purifying, among a plurality of condensate demineralizers 6 disposed. Then, the concentrated impurity ions are purified.

このように復水と不純物濃縮排水18を区別して、復水脱塩器6で浄化することは、復水脱塩器6にて浄化する被処理水の量ならびに質を区別することにより、復水脱塩器6に充填されているイオン交換樹脂の性能や、復水脱塩器6から排出され蒸気発生器1へ供給する原水質を維持するために有効である。また、電気脱塩装置11から排出される不純物濃縮排水18中の不純物を浄化し、水の再利用を行うことによって、PWR2次系系統水の補給水量を削減することができる。   In this way, the condensate and the impurity-concentrated waste water 18 are distinguished and purified by the condensate demineralizer 6 by recognizing the quantity and quality of the treated water to be purified by the condensate demineralizer 6. This is effective for maintaining the performance of the ion exchange resin filled in the water desalter 6 and the quality of the raw water discharged from the condensate desalter 6 and supplied to the steam generator 1. Moreover, the amount of replenishment water of PWR secondary system water can be reduced by purifying impurities in the impurity concentrated waste water 18 discharged from the electric desalting apparatus 11 and reusing water.

本第2実施形態の水処理装置によれば、電気脱塩装置11から排出される不純物濃縮排水18中の濃縮した不純物イオンを復水脱塩器を利用してさらに浄化することにより、濃縮不純物排水を安定に浄化することにより給水系水質の維持を可能とすることで、不純物イオンに対し高濃度で存在するアンモニアの大部分を保持でき、リサイクルしつつ不純物の除去を行うことができる。   According to the water treatment apparatus of the second embodiment, the concentrated impurity ions in the impurity-concentrated waste water 18 discharged from the electric desalination apparatus 11 are further purified using a condensate demineralizer, thereby providing concentrated impurities. By making it possible to maintain the quality of the water supply system by stably purifying the wastewater, most of the ammonia present at a high concentration relative to the impurity ions can be retained, and the impurities can be removed while being recycled.

[第3の実施形態]
本発明の第3の実施形態に係る水処理装置を、図5を用いて説明する。なお、図5において、図1と同一部分には同一符号を付し、その部分の構成の説明は省略する。
[Third Embodiment]
A water treatment apparatus according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 5, the same parts as those in FIG.

図5に示された第3の実施形態に係る水処理装置は、蒸気発生器ブローダウン水排出経路1に設けられる電気脱塩装置11の脱塩処理水13下流側であって、蒸気発生器1給水経路上の高圧給水加熱器9の上流側に、ろ過装置31を設けたことを特徴とする。   The water treatment apparatus according to the third embodiment shown in FIG. 5 is a steam generator downstream of the desalinized treated water 13 of the electric desalination apparatus 11 provided in the steam generator blowdown water discharge path 1. A filtration device 31 is provided on the upstream side of the high-pressure feed water heater 9 on one feed water path.

電気脱塩装置11は、蒸気発生器1に蓄積されたイオン成分の高温状態で除去する一方、不純物の電気脱塩装置11で脱塩処理された不純物脱塩処理水13は、発電システム系統の給水系を経て蒸気発生器11に還流される。   The electric desalting apparatus 11 removes the ionic components accumulated in the steam generator 1 in a high temperature state, while the impurity desalting water 13 subjected to the desalting process by the impurity electric desalting apparatus 11 is used in the power generation system. It returns to the steam generator 11 through the water supply system.

本第3の実施形態では、蒸気発生器ブローダウン水(被処理水)12に含まれる不純物の固体成分を除去するために、そのろ過装置31を設けることにより、高温での不純物イオンならびに固形分を除去し、還流先である蒸気発生器1や高圧給水加熱器9といった熱供給機器の防汚や伝熱性能を健全に維持できる。   In the third embodiment, in order to remove the solid component of impurities contained in the steam generator blowdown water (treated water) 12, by providing the filtration device 31, impurity ions and solid content at high temperatures are provided. Thus, the antifouling and heat transfer performance of the heat supply equipment such as the steam generator 1 and the high-pressure feed water heater 9 that are the reflux destination can be maintained soundly.

本第3の実施形態では、ろ過器31を給水系での高温部に該当する高圧給水加熱器9の入口に配置する。本構成により、蒸気発生器1のブローダウン水および復水器由来の給水中に含まれる固形物を、同一のろ過装置を用いて同時に除去することができる。   In this 3rd Embodiment, the filter 31 is arrange | positioned in the inlet_port | entrance of the high voltage | pressure feed water heater 9 applicable to the high temperature part in a feed water system. By this structure, the solid substance contained in the blowdown water of the steam generator 1 and the feed water derived from a condenser can be simultaneously removed using the same filtration apparatus.

ろ過装置31は、ろ過装置31へ供給される被処理水の温度、水質に併せた材質で構成されるろ過機器を使用すればよく、高温下で運用されるろ過装置では、例えば、特許文献10又は11に開示されたろ過装置が用いられる。   The filtration device 31 may use a filtration device made of a material combined with the temperature and quality of the water to be treated supplied to the filtration device 31. In a filtration device operated at a high temperature, for example, Patent Document 10 Alternatively, the filtration device disclosed in 11 is used.

また、ろ過装置31を複数台並列に接続配置し、ろ過装置とろ過差圧上昇時の逆洗操作工程とを独立して並行させるように構成してもよい。この場合には、複数のろ過装置31で水処理を連続的に行うことができる。
なお、ろ過装置31は電気脱塩装置11の前段側に配置してもよい。
Further, a plurality of filtration devices 31 may be connected and arranged in parallel, and the filtration device and the backwashing operation process at the time of increasing the filtration differential pressure may be independently arranged in parallel. In this case, water treatment can be continuously performed by the plurality of filtration devices 31.
In addition, you may arrange | position the filtration apparatus 31 in the front | former stage side of the electrical desalination apparatus 11. FIG.

本第3の実施形態によれば、PWR2次系の蒸気発生器1に蓄積する不純物の固形分除去と同時に、不純物イオンに対し、高濃度で存在するアンモニアの大部分を保持し、リサイクルしつつ、不純物の除去を行い、同時に、高温下での脱塩運用によって、不純物イオン脱塩浄化負荷と薬剤注入物質であるアンモニア消費や熱損失の少ない水処理を実現することができ、原子力プラントを効率よく適切に運用することができる。   According to the third embodiment, the solid content of impurities accumulated in the PWR secondary system steam generator 1 is removed, and at the same time, most of the ammonia present in a high concentration with respect to the impurity ions is retained and recycled. Impurities can be removed, and at the same time, the desalination operation at high temperature can realize the impurity ion desalting purification load and the water treatment with less ammonia consumption and heat loss as the chemical injection material. Can be used properly and well.

本発明の第1の実施形態に係る水処理装置の構成図。The block diagram of the water treatment apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る水処理層で用いられる脱塩装置の模式図。The schematic diagram of the desalination apparatus used with the water treatment layer which concerns on the 1st Embodiment of this invention. アンモニア電離度と温度の関係図。The relationship diagram of ammonia ionization degree and temperature. 本発明の第2の実施形態に係る水処理装置の構成図。The block diagram of the water treatment apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る水処理装置の構成図。The block diagram of the water treatment apparatus which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…蒸気発生器、2…高圧タービン(蒸気タービン)、2−1…高圧抽気、3…湿分分離器、4…低圧タービン(蒸気タービン)、4−1…低圧抽気、5…復水器、5−1…復水ポンプ、6…復水脱塩器、7…低圧給水加熱器(低圧ヒータ)、8…脱気器、9…高圧給水加熱器(高圧ヒータ)、10…蒸気発生器ブローダウン水(排出経路)、10−1…蒸気発生器ブローダウン水バイパス経路、11…電気脱塩装置、12…被処理水、13…不純物脱塩処理水、14…隔膜、15…脱塩部、16…濃縮部、17…電極、18…不純物濃縮排水(排出経路)、18−1…不純物濃縮排水の復水脱塩器供給経路、20…薬剤注入、30…熱回収装置、31…ろ過装置。   DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... High pressure turbine (steam turbine), 2-1 ... High pressure extraction, 3 ... Moisture separator, 4 ... Low pressure turbine (steam turbine), 4-1 ... Low pressure extraction, 5 ... Condenser 5-1 ... Condensate pump, 6 ... Condensate demineralizer, 7 ... Low pressure feed water heater (low pressure heater), 8 ... Deaerator, 9 ... High pressure feed water heater (high pressure heater), 10 ... Steam generator Blowdown water (discharge path), 10-1 ... Steam generator blowdown water bypass path, 11 ... Electric desalination device, 12 ... Water to be treated, 13 ... Impurity desalted water, 14 ... Separator, 15 ... Desalination , 16 ... Concentration part, 17 ... Electrode, 18 ... Impurity-concentrated waste water (discharge path), 18-1 ... Condensate demineralizer supply path for impurity-concentrated waste water, 20 ... Drug injection, 30 ... Heat recovery device, 31 ... Filtration device.

Claims (10)

蒸気発生器に給水するとともにpH調整剤が注入される給水系統と、前記蒸気発生器から発生する蒸気の凝縮水を前記給水系統へ循環する循環系統と、前記蒸気発生器から排出される高温の状態の蒸気発生器ブローダウン水を被処理水として脱塩処理する電気脱塩装置と、を有する発電プラントの水処理装置において、
前記電気脱塩装置は、隔膜の内側に形成された脱塩部と、前記隔膜の外側に配置された電極と、前記隔膜と前記電極の間に形成された濃縮部と、からなるとともに、前記被処理水を前記高温の状態で脱塩処理し、前記電気脱塩装置から排出される前記pH調整剤を含む不純物脱塩処理水を前記給水系統に戻すことを特徴とする水処理装置。
A water supply system that supplies water to the steam generator and is injected with a pH adjuster, a circulation system that circulates the condensed water of the steam generated from the steam generator to the water supply system, and a high-temperature exhaust that is discharged from the steam generator. In a water treatment device of a power plant having an electrical desalination device that desalinates the steam generator blowdown water in a state as treated water,
The electric desalination apparatus comprises a desalting part formed inside the diaphragm, an electrode disposed outside the diaphragm, and a concentration part formed between the diaphragm and the electrode, and A water treatment device, wherein the water to be treated is desalted in the high temperature state, and the impurity desalted water containing the pH adjuster discharged from the electric desalting device is returned to the water supply system.
前記pH調整剤がアンモニアであることを特徴とする請求項1記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the pH adjuster is ammonia. 前記被処理水を100℃以上で脱塩処理することを特徴とする請求項1又は2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein the water to be treated is desalted at 100 ° C or higher. 前記電気脱塩装置は、少なくとも2つ以上が並列配置されたことを特徴とする請求項1乃至3いずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein at least two of the electric desalting apparatuses are arranged in parallel. 前記電気脱塩装置から排出された不純物イオン濃縮水を、前記給水系統中の復水器下流側に配置された復水脱塩器に導入することを特徴とする請求項1乃至4いずれか1項に記載の水処理装置。   The impurity ion concentrated water discharged from the electric demineralizer is introduced into a condensate demineralizer disposed on the downstream side of the condenser in the water supply system. The water treatment apparatus according to item. 前記復水脱塩器を複数配置し、前記復水器の蒸気凝縮水の浄化と前記不純物イオン濃縮水の浄化を、それぞれ独立して行うことを特徴とする請求項5記載の水処理装置。   6. The water treatment apparatus according to claim 5, wherein a plurality of the condensate demineralizers are arranged, and purification of the steam condensate of the condenser and purification of the impurity ion concentrated water are performed independently. 前記不純物脱塩処理水を低圧給水加熱器出口と高圧給水加熱器出口との間に戻すことを特徴とする請求項1乃至6いずれか1項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 6, wherein the impurity desalted treated water is returned between a low-pressure feed water heater outlet and a high-pressure feed water heater outlet. 前記不純物脱塩処理水を蒸気発生器へ給水する経路上にろ過器を配置することを特徴とする請求項7記載の水処理装置。   The water treatment device according to claim 7, wherein a filter is disposed on a path for supplying the impurity desalted treated water to a steam generator. 請求項1乃至8いずれか1項に記載の水処理装置を原子炉二次系系統に備えたことを特徴とする加圧水型原子力発電プラント。   A pressurized water nuclear power plant comprising the water treatment apparatus according to any one of claims 1 to 8 in a reactor secondary system. 蒸気発生器に給水するとともにpH調整剤が注入される給水系統と、前記蒸気発生器から発生する蒸気の凝縮水を前記給水系統へ循環する循環系統と、前記蒸気発生器から排出される高温の状態の蒸気発生器ブローダウン水を被処理水として脱塩処理する電気脱塩装置と、を有する発電プラントの水処理方法において、
前記高温の状態の被処理水を前記電気脱塩装置内の脱塩部で高温脱塩処理するステップと、前記脱塩部から排出された前記pH調整剤を含む不純物脱塩処理水を前記給水系統に戻すステップと、前記電気脱塩装置内の濃縮部から不純物イオンを前記電気脱塩装置の外部に排出するステップと、を有することを特徴とする水処理方法。
A water supply system that supplies water to the steam generator and is injected with a pH adjuster, a circulation system that circulates the condensed water of the steam generated from the steam generator to the water supply system, and a high-temperature exhaust that is discharged from the steam generator. In a water treatment method for a power plant having an electrical desalination device for desalinating the steam generator blowdown water in a state as treated water,
A step of subjecting the water to be treated in a high temperature to a high temperature desalting process in a desalting unit in the electric desalting apparatus, and supplying the impurity desalted water containing the pH adjuster discharged from the desalting unit A water treatment method comprising: returning to a system; and discharging impurity ions from the concentration unit in the electric desalting apparatus to the outside of the electric desalting apparatus.
JP2008059464A 2008-03-10 2008-03-10 Water treatment apparatus and water treatment method Expired - Fee Related JP4724194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059464A JP4724194B2 (en) 2008-03-10 2008-03-10 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059464A JP4724194B2 (en) 2008-03-10 2008-03-10 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2009216495A true JP2009216495A (en) 2009-09-24
JP4724194B2 JP4724194B2 (en) 2011-07-13

Family

ID=41188509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059464A Expired - Fee Related JP4724194B2 (en) 2008-03-10 2008-03-10 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP4724194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
JP2013052354A (en) * 2011-09-05 2013-03-21 Toshiba Corp Plant water treatment apparatus, method of controlling electrical desalting apparatus, and steam turbine plant

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JPH1164575A (en) * 1997-08-27 1999-03-05 Japan Organo Co Ltd Secondary system line water treatment device for pressurized-water nuclear power plant
JP2000171585A (en) * 1998-12-02 2000-06-23 Japan Organo Co Ltd Condensate processing system and condensate processing method
JP2000218110A (en) * 1999-01-28 2000-08-08 Japan Organo Co Ltd Operation of condensed water filter apparatus in power plant
JP2005214123A (en) * 2004-01-30 2005-08-11 Toshiba Corp Filter and power generation plant
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method
JP2007090299A (en) * 2005-09-30 2007-04-12 Japan Organo Co Ltd Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JPH1164575A (en) * 1997-08-27 1999-03-05 Japan Organo Co Ltd Secondary system line water treatment device for pressurized-water nuclear power plant
JP2000171585A (en) * 1998-12-02 2000-06-23 Japan Organo Co Ltd Condensate processing system and condensate processing method
JP2000218110A (en) * 1999-01-28 2000-08-08 Japan Organo Co Ltd Operation of condensed water filter apparatus in power plant
JP2005214123A (en) * 2004-01-30 2005-08-11 Toshiba Corp Filter and power generation plant
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method
JP2007090299A (en) * 2005-09-30 2007-04-12 Japan Organo Co Ltd Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
JP2013052354A (en) * 2011-09-05 2013-03-21 Toshiba Corp Plant water treatment apparatus, method of controlling electrical desalting apparatus, and steam turbine plant

Also Published As

Publication number Publication date
JP4724194B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP3518112B2 (en) Fuel cell water treatment equipment
CN104379512B (en) ammonia treatment system
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
CN101108762A (en) Process technique for pharmacy wastewater
JP3760033B2 (en) Secondary water treatment system for pressurized water nuclear power plant
JP2001079358A (en) Electrically deionizing device
JP4982425B2 (en) Water treatment method and water treatment apparatus
JP4970064B2 (en) Water treatment equipment
JP4724194B2 (en) Water treatment apparatus and water treatment method
JP3800571B2 (en) Secondary water treatment system for pressurized water nuclear power plant
US11577202B2 (en) Electrodialysis process and bipolar membrane electrodialysis devices for silica removal
JP5738722B2 (en) Plant water treatment device, control method for electric desalination device, and steam turbine plant
JP2005066544A (en) Method for recovering monoethanolamine
CN113015702A (en) Pure water production apparatus and method for operating same
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP4673808B2 (en) Reactor coolant purification equipment
JP2001236981A (en) Water treatment system for fuel cell generator
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP2001079552A (en) Electric deionizing device
JP2005181190A (en) Water treatment system and water treatment method, and nuclear power plant
JP5039569B2 (en) Makeup water supply facility for pressurized water nuclear power plant
JP2013245833A (en) Power generating plant
JP3707940B2 (en) Condensate treatment system and condensate treatment method
JP4052652B2 (en) Water treatment method and equipment
KR100666309B1 (en) Deionization apparatus and Method for condensate with Continuous deionization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees