JP2006088004A - Desalinating apparatus - Google Patents

Desalinating apparatus Download PDF

Info

Publication number
JP2006088004A
JP2006088004A JP2004274898A JP2004274898A JP2006088004A JP 2006088004 A JP2006088004 A JP 2006088004A JP 2004274898 A JP2004274898 A JP 2004274898A JP 2004274898 A JP2004274898 A JP 2004274898A JP 2006088004 A JP2006088004 A JP 2006088004A
Authority
JP
Japan
Prior art keywords
pressure
resistant
heat
flow path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004274898A
Other languages
Japanese (ja)
Other versions
JP4444052B2 (en
Inventor
Kenji Fujihata
健二 藤畑
Kazuya Yamada
和矢 山田
Tadashi Fukushima
正 福島
Hideji Seki
秀司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004274898A priority Critical patent/JP4444052B2/en
Publication of JP2006088004A publication Critical patent/JP2006088004A/en
Application granted granted Critical
Publication of JP4444052B2 publication Critical patent/JP4444052B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric type desalinating apparatus for removing electrostatically chargeable impurities from liquid to be treated by applying an electrophoresis action, which has a simple constitution, is provided with high heat resistance and pressure resistance, and realizes demineralization treatment even to high purity water under high temperature-high pressure. <P>SOLUTION: A pair of electrodes composed of a cathode electrode 7a and an anode electrode 7b are arranged oppositely to each other and fixed in a heat resistant-pressure resistant vessel 19 made of metal via an insulator. At least a pair of diaphragms 16a, 16b are arranged and fixed via insulators 29a, 29b, 30a, 30b so as to longitudinally cross the counter axes of the electrodes 7a, 7b. The diaphragms 16a, 16b form three flow passages A (a cathode liquid passage), B (a passage for the liquid to be treated), and C (an anode liquid passage) inside the heat resistant-pressure resistant vessel 19 in a direction longitudinally crossing the counter axes of the electrodes 7a, 7b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原子力発電設備あるいは火力発電設備等の発電プラントに設置されている復水器からの復水を浄化するための復水浄化系における脱塩装置または各種プラントの脱塩処理に使用される脱塩装置に関する。   The present invention is used for a desalination apparatus in a condensate purification system for purifying condensate from a condenser installed in a power plant such as a nuclear power generation facility or a thermal power generation facility or a desalination treatment of various plants. The present invention relates to a desalting apparatus.

一般に、従来の原子力発電設備では、原子炉の信頼性の高い運転を行い、一次冷却材の水中に含まれる不純物を除去し、純度の高い給水に処理して原子炉内構造物の健全性を保つために、復水および給水の浄化が行われている。   In general, conventional nuclear power generation facilities operate the reactor with high reliability, remove impurities contained in the water of the primary coolant, and treat it with high-purity water to improve the integrity of the reactor internals. In order to keep it, condensate and purification of the water supply are carried out.

従来の原子力発電設備の一般的な系統を図3を参照して説明する。図3において符号51は原子炉であり、原子炉51で発生した高温、高圧の蒸気は主蒸気管52を介してタービン53に送られ、そこでタービン軸を回転してこれに接続された発電機54を駆動し、発電を行う。   A general system of a conventional nuclear power generation facility will be described with reference to FIG. In FIG. 3, reference numeral 51 denotes a nuclear reactor, and high-temperature and high-pressure steam generated in the nuclear reactor 51 is sent to a turbine 53 through a main steam pipe 52, where a turbine shaft is rotated to be connected to the generator. 54 is driven to generate power.

このタービン53で仕事を行った蒸気は主復水器55で冷却され凝縮して復水となり、低圧復水ポンプ56により空気抽出器57、グランド蒸気復水器58を経て脱塩装置59へ送られる。   The steam that has worked in the turbine 53 is cooled and condensed in the main condenser 55 to become condensed water, and is sent to the desalinator 59 through the air extractor 57 and the ground steam condenser 58 by the low-pressure condensate pump 56. It is done.

この脱塩装置59内では、装荷されている例えばイオン交換樹脂などによって復水中の溶解性金属イオン、不溶解性不純物(クラッド)、海水リーク時の塩化物イオンなどの帯電性の不純物が除去され、復水は浄化される。   In the desalting apparatus 59, charged impurities such as soluble metal ions, insoluble impurities (cladding) in the condensate, chloride ions at the time of seawater leak are removed by the loaded ion exchange resin, for example. The condensate is purified.

その後、復水は高圧復水ポンプ60により低圧給水加熱器61に送られ、さらに、給水ポンプ62、高圧給水加熱器63を経て昇温、昇圧され、給水管64を介して原子炉51へと還流される。   Thereafter, the condensate is sent to the low-pressure feed water heater 61 by the high-pressure condensate pump 60, and further heated and boosted through the feed water pump 62 and the high-pressure feed water heater 63, and then supplied to the reactor 51 through the feed water pipe 64. Refluxed.

この様に構成された従来の原子力発電設備において用いられる脱塩装置としては、前記したイオン交換樹脂を用いるものの他に、水に電界を加えることにより、水に含まれる微細な粒子が一方の極へ移動する電気泳動作用を応用して帯電性の不純物を除去するようにした電気式の脱塩装置も考えられている(例えば特許文献1参照。)。
しかしながら、このような電気式の脱塩装置においては、不純物の効率的な除去を行おうとするには最適な電界分布を考慮する必要がある。
As a desalination apparatus used in the conventional nuclear power plant constructed in this way, in addition to the one using the above-described ion exchange resin, by applying an electric field to the water, fine particles contained in the water are on one electrode. There is also considered an electric desalination apparatus that removes the chargeable impurities by applying the electrophoretic action of moving to (for example, see Patent Document 1).
However, in such an electric desalting apparatus, it is necessary to consider an optimum electric field distribution in order to efficiently remove impurities.

特に純度の高い水では、導電率が低くなるために、電界分布の変化が不純物の除去に大きく影響してくる。
このため、脱塩装置を構成する反応ユニット部材を絶縁性を有する塩化ビニールやテフロン(デュポン社商品名)などの有機材料により製作するようにしている。
特開2003−190961号公報
Particularly in high-purity water, the electric conductivity is lowered, so that the change in electric field distribution greatly affects the removal of impurities.
For this reason, the reaction unit member constituting the desalination apparatus is made of an organic material such as insulating vinyl chloride or Teflon (trade name of DuPont).
JP 2003-190961 A

しかしながら、脱塩装置を有機材料を用いて製作した場合、高温高圧水に対する耐熱性、耐圧性に劣るという課題がある。
例えば、塩化ビニールでは耐熱温度が120℃程度であるし、テフロンにおいては耐熱温度が230℃ではあるけれども、強度的には著しく劣っている。
このように、電気式の脱塩装置により高温高圧条件下の高純度の水を処理するためには、耐熱性、耐圧性および絶縁性という高い機能を備えた構造が求められている。
However, when a desalting apparatus is manufactured using an organic material, there exists a subject that it is inferior to the heat resistance with respect to high temperature / high pressure water, and pressure resistance.
For example, vinyl chloride has a heat resistance temperature of about 120 ° C. and Teflon has a heat resistance temperature of 230 ° C., but it is extremely inferior in strength.
Thus, in order to treat high-purity water under high-temperature and high-pressure conditions with an electric desalination apparatus, a structure having high functions of heat resistance, pressure resistance and insulation is required.

本発明は以上の課題を解決するためになされたものであり、簡易な構成で、高い耐熱性、耐圧性を備え、高温高圧条件下での高純度の水に対しても脱塩処理が可能な脱塩装置を得ることを目的とする。   The present invention has been made to solve the above problems, and has a simple structure, high heat resistance and pressure resistance, and can be desalted even for high-purity water under high-temperature and high-pressure conditions. An object is to obtain a simple desalination apparatus.

以上の課題を解決するために本発明の脱塩装置は、金属製の耐熱耐圧容器と、前記耐熱耐圧容器内に絶縁物を介して互いに対向して配置固定され、一方が陽電極で他方が陰電極である一対の電極と、前記耐熱耐圧容器内に絶縁物を介して、前記対向配置された電極の対向軸を横切るように配置固定され、前記耐熱耐圧容器内に帯電性の不純物を含む被処理液の流路と、陰極液の流路と、陽極液の流路とを形成する少なくとも一対の隔膜と、からなることを特徴とする。   In order to solve the above-described problems, a desalination apparatus according to the present invention includes a metal heat-resistant pressure-resistant container, and an arrangement of the heat-resistant pressure-resistant container facing each other through an insulator, one being a positive electrode and the other being A pair of electrodes that are negative electrodes and an insulating material in the heat-resistant pressure-resistant vessel are arranged and fixed so as to cross the opposing axis of the opposed electrodes, and the heat-resistant pressure-resistant vessel contains a chargeable impurity. It is characterized by comprising at least a pair of diaphragms that form a flow path of the liquid to be treated, a flow path of the catholyte, and a flow path of the anolyte.

本発明の脱塩装置によれば、簡易な構成で、且つ高い耐熱性、耐圧性を備え、高温高圧条件下で高純度の水に対しても脱塩処理が可能となる。   According to the desalination apparatus of the present invention, a simple configuration, high heat resistance, pressure resistance, and desalting treatment can be performed on high-purity water under high temperature and high pressure conditions.

以下本発明の実施の形態を図面を参照して説明する。図1は本発明の第1の実施の形態による脱塩装置を示す縦断正面図で、図1において、符号1は金属でできた有底円筒状の下部耐熱耐圧容器(以下単に下部容器と称する)、符号2は同じく金属でできた耐熱耐圧容器の蓋で、前記下部容器1の一端開口縁に形成されたフランジ部3にパッキング4を介して複数箇所においてボルト5a、ナット5bにより水密に締結固定されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal front view showing a desalination apparatus according to a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a bottomed cylindrical lower heat-resistant pressure-resistant container (hereinafter simply referred to as a lower container) made of metal. ), 2 is a lid of a heat-resistant pressure-resistant container made of metal, and fastened to a flange portion 3 formed at one end opening edge of the lower container 1 with bolts 5a and nuts 5b at a plurality of locations via a packing 4. It is fixed.

6はパッキング4の内側において、下部容器1と蓋2との間のスペースに挟み込まれた充填剤である。
下部容器1と蓋2との材質は、耐熱性および耐圧性、耐食性、加工性などが要求されることからステンレス鋼(以下SUSと呼ぶ。)、ハステロイ、チタン等の金属材料が適している。
6 is a filler sandwiched in a space between the lower container 1 and the lid 2 inside the packing 4.
As the material of the lower container 1 and the lid 2, metal materials such as stainless steel (hereinafter referred to as SUS), hastelloy, titanium, and the like are suitable because heat resistance, pressure resistance, corrosion resistance, workability, and the like are required.

価格の面や加工性の観点からはSUSが望ましいが、特に耐食性などに関する要求が強い場合にはハステロイやチタン等などの材質も考えられる。
また、パッキン材4の材質には耐熱性、耐圧性、耐食性、シール性などが、充填材料6の材質には耐熱性、耐圧性、耐食性などが必要であり、前記下部容器1や蓋2と同様な金属材料を適当できるが、構造を簡素化する必要がある場合にはフッ化物系あるいは無機物系の材料も考えられ、これらの選定には強度を補強する構造や溶出物などを調べることが必要である。
SUS is desirable from the viewpoint of price and workability, but materials such as Hastelloy and titanium are also conceivable particularly when there is a strong demand for corrosion resistance.
In addition, the material of the packing material 4 needs heat resistance, pressure resistance, corrosion resistance, sealability, and the like, and the material of the filling material 6 needs heat resistance, pressure resistance, corrosion resistance, and the like. Similar metal materials can be used, but if the structure needs to be simplified, fluoride or inorganic materials can be considered. is necessary.

7a、7bは下部容器1内に設けられた一対の電極で、互いに対向して配置固定され、一方を陰電極7a、他方を陽電極7bとしている。
電極7a、7bの材質には耐熱性、耐食性、不溶出性などが要求されるため、白金、ルテニウム、パラジウム、金、プラチナ等の白金族系の材料が望ましいが、これらは高価であるため、チタン等の基材に白金族系材料を被覆したものを適用してもよい。
Reference numerals 7a and 7b denote a pair of electrodes provided in the lower container 1, which are arranged and fixed to face each other, one being the negative electrode 7a and the other being the positive electrode 7b.
Since the materials of the electrodes 7a and 7b are required to have heat resistance, corrosion resistance, non-eluting properties, etc., platinum group materials such as platinum, ruthenium, palladium, gold and platinum are desirable, but these are expensive. A base material such as titanium coated with a platinum group material may be applied.

前記電極7a、7bからは電極端子金具8a、8bが下部容器1の中間部外周に向けて臍状に突出形成された端子部9a、9bの穴10a、10bを通して外部に引き出されている。   From the electrodes 7a and 7b, electrode terminal fittings 8a and 8b are drawn out through the holes 10a and 10b of the terminal portions 9a and 9b formed in a umbilical shape toward the outer periphery of the intermediate portion of the lower container 1.

端子部9a、9bの突出部の外周にはネジ11a、11bが形成され、このネジ11a、11bにキャップ状の締めボルト12a、12bがねじ込まれており、この締めボルト12a、12bの中心部に形成された孔13a、13bを電極端子金具8a、8bがパッキング14a、14bを介して貫通することにより水密に固定されている。   Screws 11a and 11b are formed on the outer periphery of the protruding portions of the terminal portions 9a and 9b, and cap-like fastening bolts 12a and 12b are screwed into the screws 11a and 11b. The electrode terminal fittings 8a and 8b pass through the formed holes 13a and 13b through the packings 14a and 14b, so that they are fixed in a watertight manner.

符号15a、15bはパッキング14a、14bの内側において、端子部9a、9bと電極端子金具8a、8bとの間に充填された充填材料で、下部容器1と電極端子金具8a、8bとを絶縁している。   Reference numerals 15a and 15b are packing materials filled between the terminal portions 9a and 9b and the electrode terminal fittings 8a and 8b inside the packings 14a and 14b, respectively, and insulate the lower container 1 from the electrode terminal fittings 8a and 8b. ing.

前記パッキング14a、14bと充填材料15a、15bの材質は、耐熱性、耐圧性、耐食性、シール性、絶縁性などが要求されることから、高温水に対する耐熱性を有するフッ化物系あるいは無機物系の佐材料が適している。   Since the materials of the packings 14a and 14b and the filling materials 15a and 15b are required to have heat resistance, pressure resistance, corrosion resistance, sealing properties, insulating properties, etc., they are fluoride or inorganic materials having heat resistance against high-temperature water. Support material is suitable.

符号16a、16bは前記下部容器1内で電極7a、7bの対向軸を縦に横切るように配置固定された少なくとも一対の隔膜で、この隔膜16a、16bによって下部容器1内に電極7a、7bの対向軸を縦に横切るような方向に延びる3つの流路A(陰極液流路)、B(被処理液流路)、C(陽極液流路)が形成されている。   Reference numerals 16a and 16b denote at least a pair of diaphragms arranged and fixed so as to vertically cross the opposing axes of the electrodes 7a and 7b in the lower container 1, and the electrodes 16a and 7b are placed in the lower container 1 by the diaphragms 16a and 16b. Three flow paths A (catholyte flow paths), B (treatment liquid flow paths), and C (anolyte flow paths) extending in a direction that crosses the opposing axis vertically are formed.

隔膜16a、16bの材質には耐熱性、耐食性、緻密性などが要求されるためSUS、チタン、ハステロイ等の金属材料が適当であるが、溶出物に対する要求などによってはセラミック材料やカーボン系材料、あるいはフッ化物系材料を用いることも考えられる。   The material of the diaphragms 16a and 16b is required to have heat resistance, corrosion resistance, denseness, and the like, and therefore metal materials such as SUS, titanium, and hastelloy are suitable. However, depending on the requirements for the eluate, ceramic materials, carbon-based materials, Alternatively, it is conceivable to use a fluoride-based material.

各流路A、B、Cにはそれぞれ蓋2および下部容器1を貫通して流入配管17A、17B、17Cと流出配管18A、18B、18Cとが設けられている。
これらの流入配管17A、17B、17Cと流出配管18A、18B、18Cとは必要に応じて図示しない流体の流通可能な絶縁性の継手を介して外部のプラントの水系統と接続されている。
The flow paths A, B, and C are provided with inflow pipes 17A, 17B, and 17C and outflow pipes 18A, 18B, and 18C through the lid 2 and the lower container 1, respectively.
These inflow pipes 17A, 17B, and 17C and the outflow pipes 18A, 18B, and 18C are connected to a water system of an external plant through an insulating joint (not shown) through which a fluid can flow as necessary.

前記した電極7a、7bと隔膜16a、16bとにより脱塩装置の反応ユニットが構成され、この反応ユニットは以下に記載するように絶縁物を介して下部容器1と蓋2とからなる耐熱耐圧容器19の中に支持固定されている。
すなわち、下部容器1の内面と陰電極7a、および陽電極7bとの間には、両者を絶縁する絶縁物20a、20bが介在されている。
The electrode 7a, 7b and the diaphragms 16a, 16b constitute a reaction unit of a desalting apparatus, and this reaction unit is a heat-resistant and pressure-resistant container composed of a lower container 1 and a lid 2 through an insulator as described below. 19 is supported and fixed.
That is, between the inner surface of the lower container 1 and the negative electrode 7a and the positive electrode 7b, insulators 20a and 20b that insulate both are interposed.

陰電極7a、および陽電極7bのそれぞれ上下端部には、陰電極7a、および陽電極7bと下部容器1および蓋2とを絶縁する絶縁物21a、22a、21b、22bが配置されている。   Insulators 21a, 22a, 21b, and 22b that insulate the negative electrode 7a and the positive electrode 7b from the lower container 1 and the lid 2 are disposed at the upper and lower ends of the negative electrode 7a and the positive electrode 7b, respectively.

流路Aの上下端において、陰電極7aと隔膜16aとの間には、流路A内を流れる陰極液23と下部容器1および蓋2とを絶縁し、且つ陰極液23が流入配管17Aおよび流出配管18Aを通過して流通可能な筒状の絶縁物24a、24bが配置されている。   In the upper and lower ends of the flow path A, the catholyte 23 that flows in the flow path A, the lower container 1 and the lid 2 are insulated between the negative electrode 7a and the diaphragm 16a, and the catholyte 23 flows into the inflow pipe 17A and Cylindrical insulators 24a and 24b that can flow through the outflow pipe 18A are arranged.

流路Bの上下端において、隔膜16aと16bの間には、流路B内を流れる被処理液25と下部容器1および蓋2とを絶縁し、且つ被処理液25が流入配管17Bおよび流出配管18Bを通過して流通可能な筒状の絶縁物26a、26bが配置されている。   At the upper and lower ends of the flow path B, the liquid to be processed 25 flowing in the flow path B, the lower container 1 and the lid 2 are insulated between the diaphragms 16a and 16b, and the liquid to be processed 25 flows into the inflow pipe 17B and the outflow. Cylindrical insulators 26a and 26b that can flow through the pipe 18B are disposed.

流路Cの上下端において、陽電極7bと隔膜16bとの間には、流路C内を流れる陽極液27と下部容器1および蓋2とを絶縁し、且つ陽極液27が流入配管17Cおよび流出配管18Cを通過して流通可能な筒状の絶縁物28a、28bが配置されている。   At the upper and lower ends of the flow path C, the anolyte 27 flowing through the flow path C, the lower container 1 and the lid 2 are insulated between the positive electrode 7b and the diaphragm 16b, and the anolyte 27 flows into the inflow pipe 17C and Cylindrical insulators 28a and 28b that can flow through the outflow pipe 18C are disposed.

陰極側の隔膜16aの上下端において、隔膜16aと蓋2および下部容器1との間には、隔膜16aと蓋2および下部容器1とを絶縁する絶縁物29a、29bが配置されている。
陽極側の隔膜16bの上下端において、隔膜16bと蓋2および下部容器1との間には、隔膜16bと蓋2および下部容器1とを絶縁する絶縁物30a、30bが配置されている。このように、脱塩装置の反応ユニットを下部容器1と蓋2とからなる耐熱耐圧容器19の中に絶縁物によって支持固定されている。
At the upper and lower ends of the diaphragm 16a on the cathode side, insulators 29a and 29b that insulate the diaphragm 16a from the lid 2 and the lower container 1 are arranged between the diaphragm 16a and the lid 2 and the lower container 1.
Insulators 30a and 30b that insulate the diaphragm 16b from the lid 2 and the lower container 1 are disposed between the diaphragm 16b and the lid 2 and the lower container 1 at the upper and lower ends of the diaphragm 16b on the anode side. As described above, the reaction unit of the desalting apparatus is supported and fixed by the insulator in the heat and pressure resistant container 19 including the lower container 1 and the lid 2.

これらの絶縁物の材質には耐熱性、耐食性、絶縁性などが要求されるため、高温水に対する耐熱性を有するフッ化物系あるいは無機物系を用いることができ、これらの選定には高温水中での強度や溶出物などを調べる必要がある。   Since these insulating materials are required to have heat resistance, corrosion resistance, insulation, etc., fluoride or inorganic materials having heat resistance against high temperature water can be used. It is necessary to check the strength and effluent.

次に本発明の第1の実施の形態による脱塩装置の作用について説明する。
電極端子金具8a、8bを通して電極7a、7bに図示しない電源から電圧を加えることにより耐熱耐圧容器19内の電極7a、7b間には電界が加えられる。
Next, the operation of the desalting apparatus according to the first embodiment of the present invention will be described.
An electric field is applied between the electrodes 7a and 7b in the heat and pressure resistant container 19 by applying a voltage from a power source (not shown) to the electrodes 7a and 7b through the electrode terminal fittings 8a and 8b.

この電界中に流入配管17Aおよび流出配管18Aを通して流路A内に陰極液23を、また流入配管17Bおよび流出配管18Bを通して流路B内に復水などの帯電性の不純物を含む被処理液25を、さらに流入配管17Cおよび流出配管18Cを通して流路C内に陽極液27を流入させる。   In this electric field, the catholyte 23 is contained in the flow path A through the inflow pipe 17A and the outflow pipe 18A, and the liquid to be treated 25 contains a chargeable impurity such as condensate in the flow path B through the inflow pipe 17B and the outflow pipe 18B. Then, the anolyte 27 is caused to flow into the flow path C through the inflow pipe 17C and the outflow pipe 18C.

電界中を通過する被処理液25は、電気泳動作用によりその液中に含まれる溶解性金属イオン、不溶解性不純物(クラッド)、海水リーク時の塩化物イオンなどの不純物がそれぞれの極性に従って隔膜16a、16bを透過して陰電極あるいは陽電極方向に泳動され、流路AまたはCを流れる陰極液23または陽極液27中に移動分離され、被処理液25中から除去される。
陰極液23または陽極液27中に分離移動した不純物は、陰極液23または陽極液27と共に流出配管18A、18Cから排出され、被処理液25は浄化される。
The liquid 25 to be treated that passes through the electric field is separated by impurities such as soluble metal ions, insoluble impurities (cladding) contained in the liquid by electrophoretic action, and chloride ions when seawater leaks. 16a and 16b are passed through the negative electrode or the positive electrode, migrated in the catholyte 23 or anolyte 27 flowing through the flow path A or C, and removed from the liquid 25 to be treated.
The impurities separated and moved into the catholyte 23 or the anolyte 27 are discharged from the outflow pipes 18A and 18C together with the catholyte 23 or the anolyte 27, and the liquid to be treated 25 is purified.

電極7a、7bと隔膜16a、16bとからなる本実施の形態における反応ユニットは、絶縁物により耐熱耐圧容器中に支持固定されているので電極から印加される電界は耐熱耐圧容器19に漏洩することなく、泳動作用による不純物の除去が確実に行われる。   The reaction unit in the present embodiment, which is composed of the electrodes 7a and 7b and the diaphragms 16a and 16b, is supported and fixed in the heat and pressure resistant container by an insulator, so that the electric field applied from the electrodes leaks to the heat and pressure resistant container 19. In addition, the removal of impurities by the migration action is surely performed.

また、金属製の耐熱耐圧容器19と反応ユニットとの組合わせにより、例えば280℃、70気圧程度の高温高圧の原子力発電所の系統水での使用が可能となり、高純度の水に対しても脱塩処理が可能となる。   In addition, the combination of the metal heat-resistant and pressure-resistant container 19 and the reaction unit makes it possible to use it in the system water of a high-temperature and high-pressure nuclear power plant of about 280 ° C. and about 70 atm. Desalting treatment is possible.

さらに、パッキン4、14a、14bは耐熱耐圧容器の一番外側に配置されているので、パッキンに掛かる温度が大気放冷によって冷却されるので熱的劣化を防ぐことができる。
さらにまた、パッキン4、14a、14bの内側に充填部材6、15a、15bが配置されているので反応ユニットからのパッキン4、14a、14bに運ばれる熱量を低減することができ、パッキン4、14a、14bの熱的劣化をより低減することができる。
Furthermore, since the packings 4, 14a and 14b are disposed on the outermost side of the heat and pressure resistant container, the temperature applied to the packing is cooled by air cooling, so that thermal deterioration can be prevented.
Furthermore, since the filling members 6, 15a, 15b are disposed inside the packings 4, 14a, 14b, the amount of heat transferred from the reaction unit to the packings 4, 14a, 14b can be reduced, and the packings 4, 14a , 14b can be further reduced.

次に本発明の第2の実施の形態について図2の概略構成図を参照して説明する。なお、図2において、図1に示す第1の実施の形態と同一部分には同一の符号を付し、詳細な説明は省略する。
本実施の形態においては、不純物の透過粒径の異なる二組の隔膜16a1、16b1と16a2、16b2とを電極7a、7bの対向軸に沿って適宜離間させて配置している。
Next, a second embodiment of the present invention will be described with reference to the schematic configuration diagram of FIG. In FIG. 2, the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the present embodiment, two sets of diaphragms 16a1, 16b1 and 16a2, 16b2 having different permeation particle sizes of impurities are disposed so as to be appropriately separated along the opposing axes of the electrodes 7a, 7b.

このようにすると、被処理液25中に含まれる不純物がその粒径の大きさによって隔膜16a1、16b1と16a2、16b2とによって振るいに欠けられ、異なる粒径の不純物を分別して除去することができる。
この隔膜の数は二種類までに限定されること無く必要に応じて複数枚設けることができる。
In this way, the impurities contained in the liquid to be treated 25 are not shaken by the diaphragms 16a1, 16b1 and 16a2, 16b2 depending on the size of the particle size, and impurities having different particle sizes can be separated and removed. .
The number of the diaphragms is not limited to two, and a plurality of diaphragms can be provided as necessary.

本発明の第1の実施の形態による脱塩装置を示す縦断正面図。1 is a longitudinal front view showing a desalting apparatus according to a first embodiment of the present invention. FIG. 本発明の第2の実施の形態による脱塩装置を示す概略構成図。The schematic block diagram which shows the desalination apparatus by the 2nd Embodiment of this invention. 従来の原子力発電設備の一般的な系統図。General system diagram of conventional nuclear power generation equipment.

符号の説明Explanation of symbols

1…下部容器、2…蓋、3…フランジ部、4…パッキング、5a…ボルト、5b…ナット、6…充填剤、7a…陰電極、7b…陽電極、8a、8b…電極端子金具、9a、9b…端子部、10a、10b…穴、11a、11b…ネジ、12a、12b…締めボルト、13a、13b…孔、14a、14b…パッキング、15a、15b…充填材料、16a、16b…隔膜、17A〜17C…流入配管、18A〜18B…流出配管、19…耐熱耐圧容器、23…陰極液、25…被処理液、27…陽極液、20a、20b、21a、21b、22a、22b、24a、24b、26a、26b、28a、28b、29a、29b、30a、30b…絶縁物。

DESCRIPTION OF SYMBOLS 1 ... Lower container, 2 ... Cover, 3 ... Flange part, 4 ... Packing, 5a ... Bolt, 5b ... Nut, 6 ... Filler, 7a ... Negative electrode, 7b ... Positive electrode, 8a, 8b ... Electrode terminal metal fitting, 9a , 9b ... terminal part, 10a, 10b ... hole, 11a, 11b ... screw, 12a, 12b ... fastening bolt, 13a, 13b ... hole, 14a, 14b ... packing, 15a, 15b ... filling material, 16a, 16b ... diaphragm, 17A-17C ... Inflow piping, 18A-18B ... Outflow piping, 19 ... Heat-resistant pressure vessel, 23 ... Catholyte, 25 ... Liquid to be treated, 27 ... Anolyte, 20a, 20b, 21a, 21b, 22a, 22b, 24a, 24b, 26a, 26b, 28a, 28b, 29a, 29b, 30a, 30b ... insulators.

Claims (7)

金属製の耐熱耐圧容器と、前記耐熱耐圧容器内に絶縁物を介して互いに対向して配置固定され、一方が陽電極で他方が陰電極である一対の電極と、前記耐熱耐圧容器内に絶縁物を介して、前記対向配置された電極の対向軸を横切るように配置固定され、前記耐熱耐圧容器内に帯電性の不純物を含む被処理液の流路と、陰極液の流路と、陽極液の流路とを形成する少なくとも一対の隔膜と、からなることを特徴とする脱塩装置。   A metal heat-resistant and pressure-resistant container, a pair of electrodes that are disposed and fixed facing each other through an insulator in the heat-resistant and pressure-resistant container, and one is a positive electrode and the other is a negative electrode, and is insulated in the heat-resistant and pressure-resistant container A flow path of a liquid to be treated containing a chargeable impurity in the heat and pressure-resistant vessel, a flow path of a catholyte, and an anode. A desalting apparatus comprising at least a pair of diaphragms forming a liquid flow path. 前記耐熱耐圧容器が、有底円筒状の容器と、この容器の一端開口にパッキングを介して締結固定された蓋とからなることを特徴とする請求項1記載の脱塩装置。   The desalination apparatus according to claim 1, wherein the heat and pressure resistant container comprises a bottomed cylindrical container and a lid fastened and fixed to one end opening of the container via a packing. 前記隔膜が、前記被処理液の流路を通過する不純物の透過粒径の異なる複数の隔膜からなることを特徴とする請求項1または2のいずれか1項に記載の脱塩装置。   The desalination apparatus according to claim 1, wherein the diaphragm includes a plurality of diaphragms having different permeation particle diameters of impurities passing through the flow path of the liquid to be treated. 前記パッキングの内側の容器と蓋との間に充填物を配置したことを特徴とする請求項2記載の脱塩装置。   The desalinating apparatus according to claim 2, wherein a filling material is disposed between the container inside the packing and the lid. 前記耐熱耐圧容器内の被処理液の流路と、陰極液の流路と、陽極液の流路とをそれぞれ流体の流通可能な絶縁継手を介して外部の水系統と接続したことを特徴とする請求項1記載の脱塩装置。   The flow path of the liquid to be treated, the flow path of the catholyte, and the flow path of the anolyte in the heat and pressure-resistant vessel are connected to an external water system via an insulating joint through which fluid can flow. The demineralizer according to claim 1. 前記電極の材料が、白金族系の材料、またはチタンの基材に白金族系の材料を被覆したもののいずれか一つであることを特徴とする請求項1記載の脱塩装置。   2. The desalinating apparatus according to claim 1, wherein the electrode material is one of a platinum group material or a titanium base material coated with a platinum group material. 前記隔膜の材料がステンレス鋼、チタン、ハステロイから選択された金属材料、またはセラミック材料の少なくともいずれか一つであることを特徴とする請求項1記載の脱塩装置。

The desalination apparatus according to claim 1, wherein the material of the diaphragm is at least one of a metal material selected from stainless steel, titanium, and Hastelloy, or a ceramic material.

JP2004274898A 2004-09-22 2004-09-22 Desalination equipment Expired - Fee Related JP4444052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274898A JP4444052B2 (en) 2004-09-22 2004-09-22 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274898A JP4444052B2 (en) 2004-09-22 2004-09-22 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2006088004A true JP2006088004A (en) 2006-04-06
JP4444052B2 JP4444052B2 (en) 2010-03-31

Family

ID=36229482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274898A Expired - Fee Related JP4444052B2 (en) 2004-09-22 2004-09-22 Desalination equipment

Country Status (1)

Country Link
JP (1) JP4444052B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP2008039631A (en) * 2006-08-08 2008-02-21 Toshiba Corp Reactor coolant purifying device
JP2008191084A (en) * 2007-02-07 2008-08-21 Toshiba Corp Cylindrical desalter
JP2009090245A (en) * 2007-10-11 2009-04-30 Ebara Corp High pressure type electric type deionization device, high pressure type electric type deionization system, and method for producing high purity water
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
EP2383757A1 (en) * 2010-04-29 2011-11-02 Voltea B.V. Apparatus and method for removal of ions
CN102674525A (en) * 2011-03-15 2012-09-19 吉林师范大学 Method for preparing cathode for cathode electro-fenton process
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP4516000B2 (en) * 2005-11-09 2010-08-04 株式会社東芝 Desalination equipment
JP2008039631A (en) * 2006-08-08 2008-02-21 Toshiba Corp Reactor coolant purifying device
JP4673808B2 (en) * 2006-08-08 2011-04-20 株式会社東芝 Reactor coolant purification equipment
JP2008191084A (en) * 2007-02-07 2008-08-21 Toshiba Corp Cylindrical desalter
JP2009090245A (en) * 2007-10-11 2009-04-30 Ebara Corp High pressure type electric type deionization device, high pressure type electric type deionization system, and method for producing high purity water
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method
JP4724194B2 (en) * 2008-03-10 2011-07-13 株式会社東芝 Water treatment apparatus and water treatment method
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
WO2011135048A1 (en) * 2010-04-29 2011-11-03 Voltea B.V. Apparatus and method for removal of ions
EP2383757A1 (en) * 2010-04-29 2011-11-02 Voltea B.V. Apparatus and method for removal of ions
JP2013525103A (en) * 2010-04-29 2013-06-20 ボルテア ビー.ブイ. Apparatus and method for removing ions
US8968544B2 (en) 2010-04-29 2015-03-03 Voltea B.V. Apparatus and method for removal of ions
CN102674525A (en) * 2011-03-15 2012-09-19 吉林师范大学 Method for preparing cathode for cathode electro-fenton process
US8671985B2 (en) 2011-10-27 2014-03-18 Pentair Residential Filtration, Llc Control valve assembly
US8961770B2 (en) 2011-10-27 2015-02-24 Pentair Residential Filtration, Llc Controller and method of operation of a capacitive deionization system
US9010361B2 (en) 2011-10-27 2015-04-21 Pentair Residential Filtration, Llc Control valve assembly
US9637397B2 (en) 2011-10-27 2017-05-02 Pentair Residential Filtration, Llc Ion removal using a capacitive deionization system
US9695070B2 (en) 2011-10-27 2017-07-04 Pentair Residential Filtration, Llc Regeneration of a capacitive deionization system
US9903485B2 (en) 2011-10-27 2018-02-27 Pentair Residential Filtration, Llc Control valve assembly

Also Published As

Publication number Publication date
JP4444052B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4444052B2 (en) Desalination equipment
CN110325668B (en) Method and electrolytic cell for producing detergent and disinfectant liquids
JPH08122491A (en) Control device of oxygen concentration of water in nuclear reactor
Fu et al. Asymmetric bipolar membrane electrodialysis for acid and base production
JP2001079358A (en) Electrically deionizing device
JP4874831B2 (en) Cylindrical desalter
Lips Water cooling of HVDC thyristor valves
JP4516000B2 (en) Desalination equipment
JP4982425B2 (en) Water treatment method and water treatment apparatus
JP4383845B2 (en) Water treatment apparatus, water treatment method, and nuclear power plant
JP2005066544A (en) Method for recovering monoethanolamine
JP4970064B2 (en) Water treatment equipment
Jackson et al. Corrosion in HVDC valve cooling systems
JP4557686B2 (en) Electric desalination apparatus and desalting method
JP4673808B2 (en) Reactor coolant purification equipment
JP5039569B2 (en) Makeup water supply facility for pressurized water nuclear power plant
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP2013245833A (en) Power generating plant
JP6303238B2 (en) Radioactive material treatment equipment
JP4724194B2 (en) Water treatment apparatus and water treatment method
JP4599113B2 (en) Impurity removal equipment
US3623967A (en) Electrolytic apparatus for the production of alkali metal chlorate with grounding means
JP4799077B2 (en) Reactor water purification equipment
Jackson et al. Corrosion in HVDC valve cooling systems
Rakhmetova et al. Modern water treatment system for high-quality water used in the energy industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees