JP2007130548A - Desalinating apparatus - Google Patents

Desalinating apparatus Download PDF

Info

Publication number
JP2007130548A
JP2007130548A JP2005324771A JP2005324771A JP2007130548A JP 2007130548 A JP2007130548 A JP 2007130548A JP 2005324771 A JP2005324771 A JP 2005324771A JP 2005324771 A JP2005324771 A JP 2005324771A JP 2007130548 A JP2007130548 A JP 2007130548A
Authority
JP
Japan
Prior art keywords
water
raw water
pipe
electrode
pipe body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005324771A
Other languages
Japanese (ja)
Other versions
JP4516000B2 (en
Inventor
Kenji Fujihata
健二 藤畑
Kazuya Yamada
和矢 山田
Tadashi Fukushima
正 福島
Hideji Seki
秀司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005324771A priority Critical patent/JP4516000B2/en
Publication of JP2007130548A publication Critical patent/JP2007130548A/en
Application granted granted Critical
Publication of JP4516000B2 publication Critical patent/JP4516000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desalinating apparatus enabling secure desalination even under a high-temperature and a high-pressure conditions. <P>SOLUTION: The desalinating apparatus comprises: a closed-end metal-made pipe body 1 including an inlet water pipe 7 of raw water, an outlet water pipe 9 of the raw water and an electrode water pipe 10; a flange 2 blocking the opening of the pipe body 1 by filling with a liquid to form a closed space inside the pipe body 1; a hollow insulating material 4 placed so as to cover the inner peripheral face of the pipe body 1 in the closed space in the pipe body 1, including an inlet water hole 19 of the raw water, an outlet water hole 20 of the raw water and an electrode water hole 21, and forming a plurality of ditches 3 on the inner peripheral face at an optional interval; at least a pair of electrodes 5 including a cathode 5a and an anode 5b inserted into the ditches 3 of the insulating material 4; and a separator 6 facing the cathode 5a and the anode 5b inserted into the ditches 3 of the insulating material 4 between the cathode 5a and the anode 5b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原水を脱塩するための脱塩装置に関する。   The present invention relates to a desalting apparatus for desalting raw water.

一般に、従来の原子力発電プラントでは、原子炉の信頼性の高い運転を行うために、一次冷却水の水中に含まれる不純物を除去し、純度の高い給水に処理して原子炉内構造物の健全性を保つようにしている。
このため、原子力発電プラントにおいては、復水および給水の浄化作用が行われている。
このような復水および給水を浄化する手段として従来より脱塩装置が用いられている。
In general, in a conventional nuclear power plant, in order to operate the reactor with high reliability, impurities contained in the primary cooling water are removed and treated with high-purity water to ensure the soundness of the reactor internals. I try to keep sex.
For this reason, in the nuclear power plant, the condensate and feed water purifying actions are performed.
Conventionally, a desalinator has been used as means for purifying such condensate and feed water.

この脱塩装置は、有機材料にイオン交換基を付加した正および負のイオン交換膜を原水と接するように配置し、原水中に含まれる正あるいは負のイオンがその帯電荷のイオン交換基を持つイオン交換膜を透過させるような極性方向の電場を原水に与えることにより、原水がイオン交換膜を透過する間に原水から正あるいは負のイオンを分離するものである。   In this desalination apparatus, positive and negative ion exchange membranes in which an ion exchange group is added to an organic material are placed in contact with the raw water, and positive or negative ions contained in the raw water are charged with ion exchange groups of the charged charge. A positive or negative ion is separated from the raw water while the raw water passes through the ion exchange membrane by applying an electric field in the polarity direction that allows the ion exchange membrane to pass through the raw water.

これによって、原水はイオンが除かれた浄化水となり、その一方、原水から除かれたイオンはイオン交換膜を介して移動し、濃縮されることになる。   As a result, the raw water becomes purified water from which ions have been removed, while the ions removed from the raw water move through the ion exchange membrane and are concentrated.

このような脱塩装置を大型化するためには、原水と正および負のイオン交換膜とが接する面積を大きくすることや、一対の電極およびイオン交換膜とで構成されるユニットを最小としてこれを積層化すること、印加する電圧あるいは電流を増大すること、反応系を乱流とする構造として原水とイオン交換膜との接触を増長すること、原水が通過するイオン交換膜間のイオンの移動距離を小さくすることなどが考えられる。
特開2004−243178号公報 特開2005−87961号公報 特開2005−181190号公報
In order to increase the size of such a desalting apparatus, the area where the raw water and the positive and negative ion exchange membranes are in contact with each other is increased, or the unit composed of a pair of electrodes and an ion exchange membrane is minimized. Layering, increasing the voltage or current to be applied, increasing the contact between the raw water and the ion exchange membrane as a structure that makes the reaction system turbulent, moving ions between the ion exchange membranes through which the raw water passes It is possible to reduce the distance.
JP 2004-243178 A Japanese Patent Laying-Open No. 2005-87961 JP 2005-181190 A

前記の大型化のための改良によって、最大で1m程度の原水とイオン交換膜の接触面積、数100個程度の積層化されたユニット、30A/dm程度の電流密度、網目状スペーサあるいは蛇行状の流路である構造、最小で0.2mm程度のイオン交換膜間の距離といった実機大モデルの脱塩装置が考えられている。 Due to the above-mentioned improvement for the enlargement, the maximum contact area of raw water and ion exchange membrane of about 1 m 2 , several hundreds of stacked units, current density of about 30 A / dm 2 , mesh spacer or meandering An actual large-scale model desalination apparatus, such as a structure having a channel-like flow path and a distance between ion exchange membranes of about 0.2 mm at the minimum, is considered.

このような脱塩装置は、通常、四角形の平板を積層したタイプであって、これは内側を空洞としたパッキンを兼ねた絶縁性の樹脂材料を用い、その空洞をそのまま反応面とする反応室枠とそれを挟む形で配置される電極およびイオン交換膜によって構成されるもので、この反応室枠には反応面への流水が可能となる溝があり、原水が流通するイオン交換膜間の反応室枠とイオンが濃縮される電極とイオン交換膜の間の反応室枠にそれぞれ通水される構造となっている。
これを最小ユニットとして複数個のユニットを積層し、全体をプレスすることによって電気式脱塩装置が構成される。
Such a desalinator is usually a type in which rectangular flat plates are laminated, and this is a reaction chamber that uses an insulating resin material that also serves as a packing with a hollow inside, and the hollow as a reaction surface. The reaction chamber frame has a groove that allows water to flow to the reaction surface between the ion exchange membrane through which the raw water circulates. Water is passed through the reaction chamber frame and the reaction chamber frame between the ion concentrating electrode and the ion exchange membrane.
An electric desalination apparatus is configured by stacking a plurality of units with this as a minimum unit and pressing the entire unit.

ここで問題となるのは、最大で原水とイオン交換膜の接触面積だけで1m程度で、それ以外の付属的な部位を合わせると1.5m程度となる大きさのものを、最小で0.2mm程度の微小なイオン交換膜間の距離で配置し、これを数100個程度にまで積層化するという点検交換作業である。 The problem here is that the maximum contact area between the raw water and the ion exchange membrane is about 1 m 2 , and the other ancillary parts are about 1.5 m 2. This is an inspection / replacement operation in which the ion exchange membranes are arranged at a distance of about 0.2 mm and stacked up to about several hundreds.

例えば、数100個程度に積層化された脱塩装置の各最小のユニットは、陽極、陰イオン濃縮反応室枠、陰イオン交換膜、原水反応室枠、陽イオン交換膜、陽イオン濃縮反応室枠、陰極の順となる配置で構成されるが、これが1ユニットでも間違った配置となると装置全体としての効率を大きく低減してしまう要因となる。   For example, each of the smallest units of the desalination apparatus stacked in the order of several hundred pieces includes an anode, an anion concentration reaction chamber frame, an anion exchange membrane, a raw water reaction chamber frame, a cation exchange membrane, and a cation concentration reaction chamber. Although the arrangement is in the order of the frame and the cathode, if one unit is wrongly arranged, the efficiency of the entire apparatus is greatly reduced.

あるいは、ユニット全体は強力な圧縮プレスにより1装置を構成するわけであるが、1.5m程度のユニットを数100個程度も積層するのであれば破損、変形等の故障が起こる可能性は当然高くなる。 Alternatively, the entire unit constitutes one apparatus by a powerful compression press, but if several hundred units of about 1.5 m 2 are stacked, it is natural that failure such as breakage and deformation may occur. Get higher.

本発明は以上の問題点に鑑みて、高温高圧条件の基においても確実に脱塩処理を行うことのできる脱塩装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a desalting apparatus that can reliably perform desalting even under high temperature and high pressure conditions.

以上の課題を解決するために請求項1記載の脱塩装置は、原水の入口水管、出口水管および電極水管を備えた有底の金属製の管体と、前記管体の開口を液密に閉塞し、管体の内部に密閉された空間を形成するフランジと、前記管体の密閉空間において、管体の内周面を被うように配置され、原水の入口水孔、出口水孔および電極水孔を備え、内周面に任意の間隔で複数個の溝が形成された中空の絶縁材と、前記絶縁材の溝に填め込まれた陰極と陽極とから成る少なくとも一対の電極と、前記陰極と陽極との間において、絶縁材の溝に填め込まれた陰極と陽極に対向するセパレータとからなることを特徴とする。   In order to solve the above-described problems, a desalination apparatus according to claim 1 includes a bottomed metal tube including an inlet water pipe, an outlet water pipe, and an electrode water pipe of raw water, and a liquid-tight opening of the pipe body. A flange that closes and forms a sealed space inside the tubular body, and is disposed so as to cover the inner peripheral surface of the tubular body in the sealed space of the tubular body; A hollow insulating material provided with electrode water holes and having a plurality of grooves formed at arbitrary intervals on the inner peripheral surface, and at least a pair of electrodes comprising a cathode and an anode embedded in the grooves of the insulating material; It is characterized by comprising a cathode and a separator opposed to the anode, which are embedded in a groove of an insulating material between the cathode and the anode.

以上のように本発明によれば、高温高圧条件の基においても確実に脱塩処理を行うことのできる脱塩装置を提供することができる。   As described above, according to the present invention, it is possible to provide a desalting apparatus that can reliably perform desalting treatment even under high temperature and high pressure conditions.

以下、本発明の実施の形態について図面を参照して説明する。
(第1の実施の形態)
図1乃至図3は本発明の第1の実施の形態を示す図で、図1は脱塩装置の最小ユニットを示す断面斜視図、図2は脱塩装置を構成する管体およびフランジを示す分解斜視図、図3は同じく脱塩装置を構成する絶縁体の分解斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIGS. 1 to 3 are views showing a first embodiment of the present invention, FIG. 1 is a cross-sectional perspective view showing a minimum unit of a desalting apparatus, and FIG. 2 shows a tube body and a flange constituting the desalting apparatus. FIG. 3 is an exploded perspective view of an insulator constituting the desalination apparatus.

本実施の形態による脱塩装置は、図1に示すように、有底の金属製の管体1と、この管体1の開口を液密に閉塞し、管体1の内部に密閉された空間を形成するするフランジ2と、管体1の内周面を被うように配置され、さらにそれ自体の内周面に任意の間隔で複数個の溝3が形成された中空の絶縁材4と、陰極5aおよび陽極5bとから成り、前記絶縁材4の溝3に填め込まれた一対の電極5と、この2枚一対の電極5a、5b間に配置され、前記絶縁材4の溝3に填め込まれ、前記陰極5a、陽極5bに対向する位置に配置された2枚のセパレータ6a、6bとからなるセパレータ6とから構成されている。   As shown in FIG. 1, the desalinating apparatus according to the present embodiment has a bottomed metal tube body 1 and an opening of the tube body 1 closed in a liquid-tight manner and sealed inside the tube body 1. A hollow insulating material 4 which is arranged so as to cover the flange 2 forming the space and the inner peripheral surface of the tube 1 and further has a plurality of grooves 3 formed at arbitrary intervals on the inner peripheral surface of itself. And a pair of electrodes 5 that are inserted in the groove 3 of the insulating material 4, and are disposed between the pair of electrodes 5 a and 5 b, and the groove 3 of the insulating material 4. And a separator 6 composed of two separators 6a and 6b disposed at positions facing the cathode 5a and the anode 5b.

絶縁材4内周面に形成された溝3には前記一方の電極である陰極5a、セパレータ6a、6b、他方の電極である陽極5bの順で填め込まれ、配置されている。
ここで金属製の管体1の底には原水の入口水管7と電極リード線管8aが形成され、他方フランジ2には原水の出口水管9、電極水の出口水管10、電極リード線管8bが形成されている。
In the groove 3 formed on the inner peripheral surface of the insulating material 4, the cathode 5a as one electrode, the separators 6a and 6b, and the anode 5b as the other electrode are filled and arranged in this order.
Here, the raw water inlet water pipe 7 and the electrode lead wire pipe 8a are formed at the bottom of the metal tube 1, while the raw water outlet water pipe 9, the electrode water outlet water pipe 10, and the electrode lead wire pipe 8b are formed on the flange 2. Is formed.

原水Wは入口水管7から管体1内に流入され、電極5a、5bにより電場が印加されたセパレータ6a、6b間に通水された後、出口水管9から流出する。
セパレータ6a、6b間では電極5による電場の印加によって原水に含まれる正および負のイオンがそれぞれ極性にしたがって電極方向に隔膜を介して移動し、正および負の電極水に含まれて出口水管9から流出する。
The raw water W flows into the pipe body 1 from the inlet water pipe 7, passes through the separators 6 a and 6 b to which an electric field is applied by the electrodes 5 a and 5 b, and then flows out from the outlet water pipe 9.
Between the separators 6a and 6b, positive and negative ions contained in the raw water move through the diaphragm in the direction of the electrode according to the polarity by application of an electric field by the electrode 5, and the outlet water pipe 9 is contained in the positive and negative electrode water. Spill from.

金属製の管体1とフランジ2とは図2に示すように、フランジ2に形成されたボルト孔11にボルト12を通して、管体1の開口端部に形成されたネジ孔13にねじ込むことによって締結される。   As shown in FIG. 2, the metal pipe body 1 and the flange 2 are screwed into a screw hole 13 formed at the opening end of the pipe body 1 by passing a bolt 12 through a bolt hole 11 formed in the flange 2. It is concluded.

電極リード線管8a、8bには電極5a、5bと電気的に接続された電極リード線14a、14bが挿入され、電極リード線14a、14bの外周には絶縁材が被覆され、端部にリード線用の絶縁性パッキン15a、15bを介在して、ナット16a、16bにより締め付け固定されている。   The electrode lead wires 14a and 14b electrically connected to the electrodes 5a and 5b are inserted into the electrode lead wires 8a and 8b, the outer periphery of the electrode lead wires 14a and 14b is covered with an insulating material, and the ends are lead. It is fastened and fixed by nuts 16a and 16b with wire insulating packings 15a and 15b interposed.

絶縁性パッキン15a、15bは電極リード線管8a、8bにおいて空冷されるが、原水が100℃以上の高温の場合、フッ化物系材料やシリカ系材料、ジルコニア系やアルミナ系の無機材料が適用できる。   The insulating packings 15a and 15b are air-cooled in the electrode lead tubes 8a and 8b, but when the raw water is at a high temperature of 100 ° C. or higher, fluoride-based materials, silica-based materials, zirconia-based, and alumina-based inorganic materials can be applied. .

フランジ2の外縁にはパッキン用の溝17が形成されていて、フッ化物系材料あるいは金属材料のパッキン18を用いることが管体1の開口を水密に封止しているが、原水温度が230℃を超える高温の場合には耐熱温度の観点からフッ化物材料は望ましくない。   A groove 17 for packing is formed on the outer edge of the flange 2, and the use of a packing 18 made of fluoride material or metal material seals the opening of the tube 1 in a watertight manner, but the raw water temperature is 230. In the case of a high temperature exceeding ℃, the fluoride material is not desirable from the viewpoint of the heat resistance temperature.

管体1およびフランジ2の材質としてはステンレス鋼(SUS)、ハステロイ、インコネル、チタン等の金属材料から要求仕様に合わせたものを選択し、内面には絶縁を考慮して絶縁材4と同様な絶縁材料で被覆するようにしてもよい。   The material of the tube 1 and the flange 2 is selected from metal materials such as stainless steel (SUS), Hastelloy, Inconel, and titanium according to the required specifications, and the inner surface is similar to the insulating material 4 in consideration of insulation. You may make it coat | cover with an insulating material.

絶縁材4は図3に示すように、管体1の内周面に配置され、管体1の軸方向に沿って二つか、それ以上に分割され、溝3内に電極5およびセパレータ6を填め込んだ後、組立てられる構造となっている。
溝の幅は電極あるいはセパレータの厚さに対応する。
As shown in FIG. 3, the insulating material 4 is arranged on the inner peripheral surface of the tube body 1, divided into two or more along the axial direction of the tube body 1, and the electrode 5 and the separator 6 are placed in the groove 3. It is structured to be assembled after being inserted.
The width of the groove corresponds to the thickness of the electrode or separator.

絶縁材4には原水Wと電極水の流通路も備えてあり、管体1の入口水管7から流入した原水Wは絶縁材1の入口水孔19からセパレータ間の溝でない部分にある孔からセパレータ間を流通し、絶縁材1の入口水孔19の対向する位置にある出口水孔20からフランジ12の出口水管9を経て流出する。   The insulating material 4 is also provided with a flow path of raw water W and electrode water, and the raw water W flowing from the inlet water pipe 7 of the tube body 1 is from a hole in a portion that is not a groove between the inlet water hole 19 of the insulating material 1 and the separator. It flows between the separators and flows out from the outlet water hole 20 at the position facing the inlet water hole 19 of the insulating material 1 through the outlet water pipe 9 of the flange 12.

他方、電極5とセパレータ間の溝でない部分にある電極水孔21からは原水Wの一部が電極水として流通し、フランジ2の電極水の出口管10から流出する。なお、図3中、孔21は陽極5b側のみに記載されているが、陽極5a側も同様に孔が明いた構成となっている。   On the other hand, a part of the raw water W circulates as electrode water from the electrode water hole 21 in a portion that is not a groove between the electrode 5 and the separator, and flows out from the outlet pipe 10 of the electrode water of the flange 2. In FIG. 3, the hole 21 is shown only on the anode 5b side, but the anode 5a side is similarly configured to have a hole.

絶縁材4の材質は原水Wが100℃以上の場合、フッ化物材料やシリカ系材料あるいはアルミナ等の無機材料を単独あるいは金属材料等に被覆して用いることが望ましい。
さらに原水が200℃以上となるとフッ化物材料では軟化が著しく、シリカ系材料では耐熱温度以上となるため、実用的にはアルミナ等の無機材料が適する。
As the material of the insulating material 4, when the raw water W is 100 ° C. or higher, it is desirable to use an inorganic material such as a fluoride material, a silica-based material, or alumina alone or a metal material.
Further, when the raw water is 200 ° C. or higher, the fluoride material is significantly softened, and the silica-based material is higher than the heat resistant temperature. Therefore, an inorganic material such as alumina is suitable for practical use.

電極5は絶縁材4の溝に合わせた形状が必要であるが、ここでは板状であって管体1あるいはフランジ2側の面に電極リード線14a、14bが付けられ、厚さは薄い方がコスト的に有利である。
材質はチタンを基材として白金や白金族元素を被覆したものが一般的である。
The electrode 5 needs to have a shape that matches the groove of the insulating material 4, but here it is plate-like, and electrode lead wires 14 a and 14 b are attached to the surface of the tube 1 or the flange 2, and the thickness is thinner. Is advantageous in terms of cost.
The material is generally a titanium base material coated with platinum or a platinum group element.

セパレータ6も電極同様に絶縁材の溝3に合わせた形状が必要であり、ここでは板状となる。
セパレータ6に必要な機能は拡散の抑制効果であるが、これは一般的なフィルターを用いることができる。
Similarly to the electrode, the separator 6 needs to have a shape that matches the groove 3 of the insulating material, and is in the form of a plate here.
A function necessary for the separator 6 is a diffusion suppressing effect, and a general filter can be used.

セパレータ6の厚さは拡散の抑制効果によって異なるが、基本的には孔径が小さいほど薄くできると言える。材質は原水Wが100℃以上の場合、フッ化物材料、アルミナ等の無機材料、チタン等の金属材料、繊維状活性炭素が適用できる。さらに原水Wが200℃以上となるとフッ化物材料では軟化が著しく取り扱いが難しくなる。   Although the thickness of the separator 6 varies depending on the diffusion suppressing effect, it can be said that the separator 6 can basically be made thinner as the hole diameter is smaller. When the raw water W is 100 ° C. or higher, a material such as a fluoride material, an inorganic material such as alumina, a metal material such as titanium, or fibrous activated carbon can be applied. Further, when the raw water W is 200 ° C. or higher, the fluoride material is remarkably softened and becomes difficult to handle.

このような電気式の脱塩装置によれば、原水の温度が100℃以上の圧縮水であっても原水から正あるいは負の電荷を持つ不純物を電場によって分離することが可能であり、かつ、メンテナンス作業においても短時間で容易に行うことがとなる。   According to such an electric desalination apparatus, it is possible to separate impurities having positive or negative charges from the raw water by an electric field even if the temperature of the raw water is compressed water of 100 ° C. or higher, and Maintenance work can be easily performed in a short time.

あるいは、実施の形態に示した材料の適用によっては処理温度および圧力の範囲を大きく拡大でき、例えば、温度285℃、圧力80気圧の原子炉水のような高温高圧水であっても電気式の脱塩処理を行うことが可能となる。   Alternatively, depending on the application of the materials shown in the embodiment, the processing temperature and pressure range can be greatly expanded. For example, even high-temperature high-pressure water such as reactor water at a temperature of 285 ° C. and a pressure of 80 atm It is possible to perform desalting.

(第2の実施の形態)
次に本発明の第2の実施の形態について図4及び図5を参照して説明する。なお、以下の第2の実施の形態の説明において、前記第1の実施の形態と同一部分には同一の符号を付し、詳細な説明は省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the following description of the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態は、図4、図5に示すように、絶縁材4の内周面に形成された複数個の溝3に対して一方の端に形成された溝から前記一方の電極5a、セパレータ6a、6b、他方の電極5bの順序で填め込まれ、更にこれに続いて電極5bを共通にして次のユニットのセパレータ6b、6aが埋め込まれ他方の電極5aが埋め込まれ、同様にして複数ユニットの電極とセパレータが填め込まれている。
その他の構成は図1に示す前記第1の実施の形態と同様である。
In the present embodiment, as shown in FIGS. 4 and 5, the one electrode 5a, from the groove formed on one end with respect to the plurality of grooves 3 formed on the inner peripheral surface of the insulating material 4, The separators 6a and 6b and the other electrode 5b are inserted in this order, and then the electrode 5b is used in common, and the next unit separators 6b and 6a are embedded and the other electrode 5a is embedded. The unit's electrode and separator are inserted.
Other configurations are the same as those of the first embodiment shown in FIG.

このように本実施の形態による脱塩装置であると、電極とセパレータのユニットが管体1内に複数個多層に設けられているので、多層となったユニットの数だけ大きな脱塩処理量を得ることができ、特に高温高圧下では設計強度の観点から高コストとなる管体あるいはフランジの数を低減できる。   As described above, in the desalination apparatus according to the present embodiment, since a plurality of electrode and separator units are provided in the tube body 1 in multiple layers, a large amount of desalting treatment can be achieved by the number of multilayer units. In particular, it is possible to reduce the number of pipes or flanges that are expensive from the viewpoint of design strength under high temperature and high pressure.

なお、前記実施の形態の説明においては、発電プラントに設置される脱塩装置について説明したが、本発明は発電プラントに限定されるものではなく、その他一般の各種プラントの脱塩装置において実施し得るものである。   In the above description of the embodiment, the desalination apparatus installed in the power plant has been described. However, the present invention is not limited to the power plant, and is implemented in the desalination apparatus of other general plants. To get.

本発明の第1の実施の形態による脱塩装置の最小ユニットを示す断面斜視図。The cross-sectional perspective view which shows the minimum unit of the desalination apparatus by the 1st Embodiment of this invention. 本発明の第1の実施の形態による脱塩装置を構成する管体およびフランジを示す分解斜視図。The disassembled perspective view which shows the pipe body and flange which comprise the desalination apparatus by the 1st Embodiment of this invention. 本発明の第1の実施の形態による脱塩装置を構成する絶縁体の分解斜視図。The disassembled perspective view of the insulator which comprises the desalination apparatus by the 1st Embodiment of this invention. 本発明の第2の実施の形態による脱塩装置の最小ユニットを示す断面斜視図。The cross-sectional perspective view which shows the minimum unit of the desalination apparatus by the 2nd Embodiment of this invention. 本発明の第2の実施の形態による脱塩装置を構成する絶縁体の分解斜視図。The disassembled perspective view of the insulator which comprises the desalination apparatus by the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…管体、2…フランジ、3…溝、4…絶縁材、5…電極、5a…陰極、5b…陽極、6、6a、6b…セパレータ、7…原水の入口水管、8a、8b…電極リード線管、9…原水の出口水管、10…電極水の出口水管、11…ボルト孔、12…ボルト、13…ネジ孔、14a、14b…電極リード線、15a、15b…絶縁性パッキン、16a、16b…ナット、17…パッキン用の溝、18…パッキン、19…入口水孔、20…出口水孔、21…電極水孔。   DESCRIPTION OF SYMBOLS 1 ... Tube, 2 ... Flange, 3 ... Groove, 4 ... Insulation material, 5 ... Electrode, 5a ... Cathode, 5b ... Anode, 6, 6a, 6b ... Separator, 7 ... Raw water inlet water pipe, 8a, 8b ... Electrode Lead wire tube, 9 ... Raw water outlet water tube, 10 ... Electrode water outlet water tube, 11 ... Bolt hole, 12 ... Bolt, 13 ... Screw hole, 14a, 14b ... Electrode lead wire, 15a, 15b ... Insulating packing, 16a , 16b ... nut, 17 ... packing groove, 18 ... packing, 19 ... inlet water hole, 20 ... outlet water hole, 21 ... electrode water hole.

Claims (8)

原水の入口水管、出口水管および電極水管を備えた有底の金属製の管体と、前記管体の開口を液密に閉塞し、管体の内部に密閉された空間を形成するフランジと、前記管体の密閉空間において、管体の内周面を被うように配置され、原水の入口水孔、出口水孔および電極水孔を備え、内周面に任意の間隔で複数個の溝が形成された中空の絶縁材と、前記絶縁材の溝に填め込まれた陰極と陽極とから成る少なくとも一対の電極と、前記陰極と陽極との間において、絶縁材の溝に填め込まれた陰極と陽極に対向するセパレータとからなることを特徴とする脱塩装置。   A bottomed metal tube provided with an inlet water pipe, an outlet water pipe and an electrode water pipe for raw water, a flange for liquid-tightly closing the opening of the pipe body, and forming a sealed space inside the pipe body; In the sealed space of the tubular body, the tubular body is disposed so as to cover the inner peripheral surface of the tubular body, and is provided with an inlet water hole, an outlet water hole, and an electrode water hole of raw water, and a plurality of grooves at arbitrary intervals on the inner peripheral surface. Formed between the cathode and the anode, and at least a pair of electrodes composed of a cathode and an anode filled in the groove of the insulating material. A desalting apparatus comprising a cathode and a separator facing the anode. 前記金属製の管体および前記フランジの材質が、ステンレス、ハステロイ、チタンの少なくともいずれか1つであることを特徴とする請求項1記載の脱塩装置。   The desalination apparatus according to claim 1, wherein a material of the metal pipe body and the flange is at least one of stainless steel, hastelloy, and titanium. 前記金属製の管体および前記フランジに、シリカ系材料、フッ化物系材料、無機材料の少なくともいずれか1つを被覆することを特徴とする請求項1記載の脱塩装置。   The desalination apparatus according to claim 1, wherein the metal pipe body and the flange are covered with at least one of a silica-based material, a fluoride-based material, and an inorganic material. 前記絶縁材の材質が、シリカ系材料、フッ化物系材料、無機系材料の少なくともいずれか1つであることを特徴とする請求項1記載の脱塩装置。   The desalinating apparatus according to claim 1, wherein a material of the insulating material is at least one of a silica material, a fluoride material, and an inorganic material. 前記絶縁材が、金属材料にシリカ系材料、フッ化物系材料、無機材料の少なくともいずれか1つを被覆したものであることを特徴とする請求項1記載の脱塩装置。   The desalinating apparatus according to claim 1, wherein the insulating material is a metal material coated with at least one of a silica-based material, a fluoride-based material, and an inorganic material. 前記セパレータが、イオン交換膜であることを特徴とする請求項1記載の脱塩装置。   The desalinator according to claim 1, wherein the separator is an ion exchange membrane. 前記セパレータが、金属材料、あるいはアルミナ、マグネシア等の無機系材料の多孔物であることを特徴とする請求項1記載の脱塩装置。   2. The desalinating apparatus according to claim 1, wherein the separator is a porous material of a metal material or an inorganic material such as alumina or magnesia. 原水が原子力プラントの一次冷却水であることを特徴とする請求項1記載の脱塩装置。   The desalination apparatus according to claim 1, wherein the raw water is primary cooling water of a nuclear power plant.
JP2005324771A 2005-11-09 2005-11-09 Desalination equipment Expired - Fee Related JP4516000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324771A JP4516000B2 (en) 2005-11-09 2005-11-09 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324771A JP4516000B2 (en) 2005-11-09 2005-11-09 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2007130548A true JP2007130548A (en) 2007-05-31
JP4516000B2 JP4516000B2 (en) 2010-08-04

Family

ID=38152635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324771A Expired - Fee Related JP4516000B2 (en) 2005-11-09 2005-11-09 Desalination equipment

Country Status (1)

Country Link
JP (1) JP4516000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090245A (en) * 2007-10-11 2009-04-30 Ebara Corp High pressure type electric type deionization device, high pressure type electric type deionization system, and method for producing high purity water
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
JP2010194404A (en) * 2009-02-23 2010-09-09 Japan Organo Co Ltd Container for desalting chamber, cap for electrode chamber, and electric deionized water production apparatus
JP2012121003A (en) * 2010-12-10 2012-06-28 Ihi Inspection & Instrumentation Co Ltd Electrodialyzer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142179A (en) * 1978-04-28 1979-11-06 Katsuyoshi Kojima Method of using porous ion exchanger as electrolyte electric conductor
JPS5824897A (en) * 1981-08-06 1983-02-14 株式会社日立製作所 Method and device for cleaning reactor water
JPH07265865A (en) * 1994-03-29 1995-10-17 Japan Organo Co Ltd Electrolytic deionized water producing device
JP2001259647A (en) * 2000-02-04 2001-09-25 Sgl Technik Gmbh Method and device for simultaneously manufacturing high purity acid and base
JP2005181190A (en) * 2003-12-22 2005-07-07 Toshiba Corp Water treatment system and water treatment method, and nuclear power plant
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142179A (en) * 1978-04-28 1979-11-06 Katsuyoshi Kojima Method of using porous ion exchanger as electrolyte electric conductor
JPS5824897A (en) * 1981-08-06 1983-02-14 株式会社日立製作所 Method and device for cleaning reactor water
JPH07265865A (en) * 1994-03-29 1995-10-17 Japan Organo Co Ltd Electrolytic deionized water producing device
JP2001259647A (en) * 2000-02-04 2001-09-25 Sgl Technik Gmbh Method and device for simultaneously manufacturing high purity acid and base
JP2005181190A (en) * 2003-12-22 2005-07-07 Toshiba Corp Water treatment system and water treatment method, and nuclear power plant
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090245A (en) * 2007-10-11 2009-04-30 Ebara Corp High pressure type electric type deionization device, high pressure type electric type deionization system, and method for producing high purity water
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method
JP4724194B2 (en) * 2008-03-10 2011-07-13 株式会社東芝 Water treatment apparatus and water treatment method
JP2009268999A (en) * 2008-05-09 2009-11-19 Toshiba Corp Method and apparatus for treating water
JP2010194404A (en) * 2009-02-23 2010-09-09 Japan Organo Co Ltd Container for desalting chamber, cap for electrode chamber, and electric deionized water production apparatus
JP2012121003A (en) * 2010-12-10 2012-06-28 Ihi Inspection & Instrumentation Co Ltd Electrodialyzer

Also Published As

Publication number Publication date
JP4516000B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
AU2011326018B2 (en) Electrochemical separation modules
KR100934161B1 (en) Capacitive deionization electrode module
KR101612688B1 (en) Electrolyzer apparatus and method of making it
JP4516000B2 (en) Desalination equipment
US8298383B2 (en) Cylindrical membranous electrolytic cell and assembled anode and diaphragm
JP2020527452A (en) Subblock sealing of electrochemical separation device
JP4444052B2 (en) Desalination equipment
KR100915338B1 (en) A structure for composing an apparatus for purifying water through an electrical adsorption-desorption cycle
JP4383845B2 (en) Water treatment apparatus, water treatment method, and nuclear power plant
JP4557686B2 (en) Electric desalination apparatus and desalting method
JP4874831B2 (en) Cylindrical desalter
KR102048113B1 (en) Electrochemical separation device
DK178796B1 (en) Pressurised Electrolysis Stack
KR101329046B1 (en) Tubular electrolytic cell for producing sodium hypochlorite
JP4599113B2 (en) Impurity removal equipment
JP4631173B2 (en) Electrodeionization equipment
JP2018508339A (en) Electrolytic module
CA2520486C (en) Apparatus for carrying out an electrolytic process on a halogenide compound
CN220449881U (en) Electrode arrangement for a plurality of membrane capacitive deionization electrode assemblies
KR102366103B1 (en) Stacked filter module for capacitive deionization (CDI) water treatment equipment
KR102559981B1 (en) Electric deionization module with flow path structure applicable to thin separator
EP1298231B1 (en) Apparatus for carrying out an electrolytic process on a halogenide compound
JP4799077B2 (en) Reactor water purification equipment
US20160230293A1 (en) Bypass Electrolysis System and Method
JP2003039070A (en) Device and method for producing desalted water

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees