JP2012121003A - Electrodialyzer - Google Patents

Electrodialyzer Download PDF

Info

Publication number
JP2012121003A
JP2012121003A JP2010275651A JP2010275651A JP2012121003A JP 2012121003 A JP2012121003 A JP 2012121003A JP 2010275651 A JP2010275651 A JP 2010275651A JP 2010275651 A JP2010275651 A JP 2010275651A JP 2012121003 A JP2012121003 A JP 2012121003A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
space
processing
anode plate
cathode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010275651A
Other languages
Japanese (ja)
Inventor
Mikiya Tsuda
幹也 津田
Takashi Sente
隆史 千手
Katsumi Takahashi
克巳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Inspection and Instrumentation Co Ltd
Original Assignee
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Inspection and Instrumentation Co Ltd filed Critical IHI Inspection and Instrumentation Co Ltd
Priority to JP2010275651A priority Critical patent/JP2012121003A/en
Publication of JP2012121003A publication Critical patent/JP2012121003A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrodialyzer properly processing city water and well water.SOLUTION: The electrodialyzer has a center part 13 forming a processing space 12 so as to pass raw water through, a first electrolyte membrane 16 located in one face side of the processing space 12, a second electrolyte membrane 17 located in the other face of the processing space 12, a positive electrode plate 18 coming into face contact with the first electrolyte membrane 16 and located in the opposite side of the processing space 12, and a negative electrode plate 19 coming into face contact with the second electrolyte membrane 17 and located in the opposite side of the processing space 12, and is constituted such that electrodes of the positive electrode plate 18 or the negative electrode plate 19 are arranged in all of the first electrolyte membrane 16 and the second electrolyte membrane 17, anions are removed from the raw water in the processing space 12 via the first electrolyte membrane 16 and the positive electrode plate 18 and cations are removed from the raw water in the processing space 12 via the second electrolyte membrane and the negative electrode plate 19 by energizing the positive electrode plate 18 and the negative electrode plate 19.

Description

本発明は、原水を処理する電気透析器に関するものである。   The present invention relates to an electrodialyzer for treating raw water.

現在、水道水や井戸水を軟水化する際には、イオン交換樹脂を配した軟水器を用いてCaやMg等の硬度成分を低減することが主流であり、より高度な純水処理の前処理には逆浸透(RO、Reverse Osmosis)膜を配した純水製造器が用いられている。   At present, when softening tap water and well water, it is the mainstream to reduce hardness components such as Ca and Mg by using a water softener with ion exchange resin. Pretreatment for more advanced pure water treatment Is used a pure water producing device provided with a reverse osmosis (RO) membrane.

また塩濃度の高い原水を処理する際には電気透析器を用いることが考えられており、一般的な電気透析器は図3に示す如く内部空間1の両側に陽極2と陰極3を配置し、内部空間1には、陽極2側から陰極3側へ向かって順に陰イオン交換膜4、陽イオン交換膜5が一定の間隔を介して交互に配置されている。また内部空間1は、陰イオン交換膜4及び陽イオン交換膜5によって脱塩槽6と濃縮槽7とに交互に区分けされており、脱塩槽6には、原水を流入させる流入ライン8と、処理した原水を送出する送出ライン9とが備えられ、また濃縮槽7には、濃縮した陽イオンまたは陰イオンを排出する排出ライン10とが備えられている。   In addition, it is considered to use an electrodialyzer when treating raw water having a high salt concentration, and a general electrodialyzer has an anode 2 and a cathode 3 arranged on both sides of an internal space 1 as shown in FIG. In the internal space 1, an anion exchange membrane 4 and a cation exchange membrane 5 are alternately arranged in order from the anode 2 side to the cathode 3 side with a constant interval. The internal space 1 is alternately divided into a desalting tank 6 and a concentrating tank 7 by an anion exchange membrane 4 and a cation exchange membrane 5, and an inflow line 8 through which raw water flows into the desalting tank 6. And a feed line 9 for delivering the treated raw water, and the concentration tank 7 is provided with a discharge line 10 for discharging concentrated cations or anions.

このような電気透析器を用いてNaCl液を処理する際には、流入ライン8からNaCl液を脱塩槽6に導入して陽極2及び陰極3に通電し、陽イオン交換膜5を介してNaの陽イオンを取り除くと共に陰イオン交換膜4を介してClの陰イオンを取り除き、処理水(脱塩液)として送出ライン9より送出している。また脱塩槽6に隣接する濃縮槽7では、陽イオンまたは陰イオンの濃度を高めて排出ライン10より適宜排出している。 When processing the NaCl solution using such an electrodialyzer, the NaCl solution is introduced into the desalting tank 6 from the inflow line 8, energized to the anode 2 and the cathode 3, and passed through the cation exchange membrane 5. The Na + cations are removed and the Cl anions are removed through the anion exchange membrane 4, and the processed water (demineralized liquid) is sent out from the delivery line 9. Further, in the concentration tank 7 adjacent to the desalting tank 6, the concentration of cations or anions is increased and discharged appropriately from the discharge line 10.

なお、このような電気透析器に関連する先行技術文献情報としては、例えば、下記の特許文献1等が既に存在している。   In addition, as prior art document information relevant to such an electrodialyzer, the following patent document 1 etc. already exist, for example.

特開2002−263654号公報JP 2002-263654 A

しかしながら、逆浸透膜等を用いた純水製造器は高価なため、水道水を処理する給湯器や加湿器等の各機器への導入することが困難であった。また従来の電気透析器は、塩水や海水のように塩濃度が高いものを処理するものであり、水道水や井戸水のように塩濃度が数百ppm以下の場合には、電気伝導率が低下して処理効率が下がるため、硬度の高い水道水や井戸水を軟水化することができないという問題があった。更に純水製造器や電気透析器は複雑な構成になるため、製造コストが増加すると共に、補修時において陰イオン交換膜4や陽イオン交換膜5等を交換する際には装置全体を分解する必要があり、容易に補修することができないという問題があった。   However, since a pure water production apparatus using a reverse osmosis membrane or the like is expensive, it has been difficult to introduce it into various devices such as a water heater or a humidifier that treats tap water. In addition, conventional electrodialyzers treat high salt concentrations such as salt water and seawater, and electrical conductivity decreases when the salt concentration is several hundred ppm or less, such as tap water or well water. Since the treatment efficiency is lowered, tap water and well water having high hardness cannot be softened. Furthermore, since the pure water producing apparatus and the electrodialyzer have complicated configurations, the manufacturing cost increases, and the entire apparatus is disassembled when the anion exchange membrane 4 or the cation exchange membrane 5 is exchanged at the time of repair. There is a problem that it is necessary and cannot be easily repaired.

本発明は上述の実情に鑑みてなしたもので、水道水や井戸水について電気処理を適切に行う電気透析器を提供することを目的としている。   This invention is made | formed in view of the above-mentioned situation, and it aims at providing the electrodialyzer which performs an electrical treatment appropriately about a tap water and well water.

本発明は、原水を通過させるように処理空間を形成する中央部と、前記処理空間の一面側に位置する第一の電解質膜と、前記処理空間の他面側に位置する第二の電解質膜と、前記第一の電解質膜に面接触して処理空間と反対側に位置する陽極板と、前記第二の電解質膜に面接触して処理空間と反対側に位置する陰極板とを備え、
前記第一の電解質膜及び第二の電解質膜の全てに陽極板または陰極板の電極を配置する構成を備え、
前記陽極板と陰極板に通電し、処理空間の原水から陰イオンを第一の電解質膜及び陽極板を介して取り除くと共に、処理空間の原水から陽イオンを第二の電解質膜及び陰極板を介して取り除くように構成したことを特徴とする電気透析器、にかかるものである。
The present invention provides a central portion that forms a treatment space so that raw water passes therethrough, a first electrolyte membrane that is located on one surface side of the treatment space, and a second electrolyte membrane that is located on the other surface side of the treatment space. An anode plate that is in surface contact with the first electrolyte membrane and located on the opposite side of the processing space; and a cathode plate that is in surface contact with the second electrolyte membrane and located on the opposite side of the processing space;
A configuration in which electrodes of an anode plate or a cathode plate are arranged on all of the first electrolyte membrane and the second electrolyte membrane,
The anode plate and the cathode plate are energized to remove anions from the raw water in the processing space through the first electrolyte membrane and the anode plate, and cations from the raw water in the processing space through the second electrolyte membrane and the cathode plate. The electrodialyzer is characterized in that it is configured to be removed.

また本発明の電気透析器において、原水を通過させるように処理空間を形成する中央部と、前記処理空間の一面側に位置する第一の電解質膜と、前記処理空間の他面側に位置する第二の電解質膜と、前記第一の電解質膜に面接触して処理空間と反対側に位置する陽極板と、前記第二の電解質膜に面接触して処理空間と反対側に位置する陰極板とを、一基の処理モジュールとし、
前記陽極板と陰極板が交互に位置するように複数の処理モジュールを並列に組み合わせると共に、両側の処理モジュールから陰イオンまたは陽イオンが流入するように二つの処理モジュールの間に濃縮用空間を形成することが好ましい。
Moreover, in the electrodialyzer of the present invention, a central portion that forms a treatment space so that raw water passes therethrough, a first electrolyte membrane that is located on one side of the treatment space, and a second surface side of the treatment space. A second electrolyte membrane, an anode plate in surface contact with the first electrolyte membrane and positioned on the opposite side of the processing space, and a cathode in surface contact with the second electrolyte membrane and positioned on the opposite side of the processing space The board is a single processing module,
A plurality of processing modules are combined in parallel so that the anode plate and the cathode plate are alternately positioned, and a concentrating space is formed between the two processing modules so that anions or cations flow from the processing modules on both sides. It is preferable to do.

更に本発明の電気透析器において、前記中央部の一側に位置する第一押え部と、前記中央部の他側に位置する第二押え部と、前記第一の電解質膜と陽極板を第一押え部とで挟み込む第一外枠と、前記第二の電解質膜と陰極板を第二押え部とで挟み込む第二外枠とを備えることが好ましい。   Furthermore, in the electrodialyzer according to the present invention, the first presser part located on one side of the central part, the second presser part located on the other side of the central part, the first electrolyte membrane and the anode plate It is preferable to include a first outer frame that is sandwiched between one pressing portion and a second outer frame that sandwiches the second electrolyte membrane and the cathode plate between the second pressing portion.

更にまた本発明の電気透析器において、前記第一の電解質膜と陽極板を嵌め込んで第一の電解質膜と陽極板の外周を支持する第一周囲枠と、前記第二の電解質膜と陰極板を嵌め込んで第二の電解質膜と陰極板の外周を支持する第二周囲枠とを備えることが好ましい。   Furthermore, in the electrodialyzer of the present invention, the first electrolyte membrane and the anode plate are fitted into the first peripheral frame for supporting the outer periphery of the first electrolyte membrane and the anode plate, the second electrolyte membrane and the cathode. It is preferable to include a second electrolyte membrane and a second peripheral frame that supports the outer periphery of the cathode plate by fitting the plate.

本発明の電気透析器によれば、第一の電解質膜に陽極板を面接触させると共に第二の電解質膜に陰極板を面接触させるので、通電抵抗を低減し、また第一の電解質膜及び第二の電解質膜の全てに陽極板または陰極板の電極を配置するので、通電効率を高め、よって処理空間に対する電気処理効率を上げ、水道水や井戸水のように塩濃度が数百ppm以下の場合であっても、水道水や井戸水について軟水化等の電気処理を適切に行うことができる。また全体構成を単純化し得るので、逆浸透膜等を用いた純水製造器等に比べて製造コストを低減することができ、更に電気透析器の補修時においても第一の電解質膜や第二の電解質膜を簡単に交換し、容易に補修することができるという種々の優れた効果を奏し得る。   According to the electrodialyzer of the present invention, the anode plate is brought into surface contact with the first electrolyte membrane and the cathode plate is brought into surface contact with the second electrolyte membrane, so that the energization resistance is reduced, and the first electrolyte membrane and Since the electrodes of the anode plate or cathode plate are arranged on all the second electrolyte membranes, the energization efficiency is increased, and thus the electrical treatment efficiency for the treatment space is raised, and the salt concentration is several hundred ppm or less like tap water or well water. Even if it is a case, electrical processing, such as softening, can be appropriately performed about tap water and well water. In addition, since the overall configuration can be simplified, the manufacturing cost can be reduced as compared with a pure water production device using a reverse osmosis membrane or the like, and the first electrolyte membrane or the second It is possible to obtain various excellent effects that the electrolyte membrane can be easily replaced and easily repaired.

本発明を実施する形態例を示す概念図である。It is a conceptual diagram which shows the example of an embodiment which implements this invention. 本発明を実施する形態例であって一基の処理モジュールの構成を示す分解概念図である。It is an example of an embodiment which carries out the present invention, and is an exploded conceptual diagram showing the composition of one processing module. 従来例の電気透析器を示す概念図である。It is a conceptual diagram which shows the electrodialyzer of a prior art example.

以下、本発明を実施する形態例を図1、図2を参照して説明する。   Hereinafter, an exemplary embodiment for carrying out the present invention will be described with reference to FIGS.

実施の形態例の電気透析器は、処理モジュール11を構成して配置するものであり、一基の処理モジュール11は、処理空間12を形成する枠状の中央部13と、中央部13の一側に位置する第一押え部14と、中央部13の他側に位置する第二押え部15と、第一押え部14に配置される第一の電解質膜16と、第二押え部15に配置される第二の電解質膜17と、第一の電解質膜16に面接触して処理空間12と反対側に位置する陽極板18と、第二の電解質膜17に面接触して処理空間12と反対側に位置する陰極板19と、第一の電解質膜16と陽極板18の外周を支持する第一周囲枠20と、第二の電解質膜17と陰極板19の外周を支持する第二周囲枠21と、第一の電解質膜16と陽極板18を第一周囲枠20ごと外方から押える第一外枠22と、第二の電解質膜17と陰極板19を第二周囲枠21ごと外方から押える第二外枠23とを備えている。   The electrodialyzer according to the embodiment constitutes and arranges a processing module 11, and one processing module 11 includes a frame-shaped central portion 13 that forms a processing space 12, and one central portion 13. The first presser part 14 located on the side, the second presser part 15 located on the other side of the central part 13, the first electrolyte membrane 16 disposed on the first presser part 14, and the second presser part 15 The second electrolyte membrane 17 disposed, the anode plate 18 in surface contact with the first electrolyte membrane 16 and located on the opposite side of the processing space 12, and the surface contact with the second electrolyte membrane 17 in the processing space 12. , A first peripheral frame 20 that supports the outer periphery of the first electrolyte membrane 16 and the anode plate 18, and a second that supports the outer periphery of the second electrolyte membrane 17 and the cathode plate 19. The peripheral frame 21, the first electrolyte membrane 16 and the anode plate 18 are pushed together with the first peripheral frame 20 from the outside. That the first outer frame 22, and a second outer frame 23 for pressing the second electrolyte membrane 17 and the cathode plate 19 from each outer second peripheral frame 21.

中央部13は、所定の厚みを備えて内部に所定容積の処理空間12を形成し、中央部13の一辺(図2では上辺)には、水道水や井戸水等の原水を流入させる流入ライン24が配置されていると共に、中央部13の他辺(図2の下辺)には、処理空間12で処理した処理水を流出させる送出ライン25が配置されている。ここで流入ライン24及び送出ライン25は、図2の例に限定されるものではなく、他の配置でも良い。また中央部13の厚みは、処理空間12の通電効率を高めるように薄い厚みであることが好ましい。   The central part 13 has a predetermined thickness and forms a predetermined volume of processing space 12 inside, and an inflow line 24 through which raw water such as tap water or well water flows into one side (the upper side in FIG. 2) of the central part 13. Is disposed, and on the other side of the central portion 13 (the lower side in FIG. 2), a delivery line 25 that causes the treated water treated in the treatment space 12 to flow out is disposed. Here, the inflow line 24 and the delivery line 25 are not limited to the example of FIG. Moreover, it is preferable that the thickness of the center part 13 is thin so that the electricity supply efficiency of the process space 12 may be improved.

第一押え部14は、中央部13に一側面に固定されており、第一押え部14の中央位置には、中央部13の処理空間12に面するように、所定の大きさの第一流通孔26が形成されていると共に、第一の電解質膜16を支持する第一支持部27が形成されている。また第二押え部15は、中央部13に他側面に固定されており、第二押え部15の中央位置には、中央部13の処理空間12に面するように、所定の大きさの第二流通孔28が形成されていると共に、第二の電解質膜17を支持する第二支持部29が形成されている。ここで第一流通孔26は、第一支持部27の作用に影響を与えるものでなければ、形状や構成が特に制限されるものではない。また第二流通孔28は、同様に第二支持部29の支持作用に影響を与えるものでなければ形状や構成が特に制限されるものではない。   The first presser portion 14 is fixed to one side of the central portion 13, and the first presser portion 14 having a predetermined size is provided at the central position of the first presser portion 14 so as to face the processing space 12 of the central portion 13. A circulation hole 26 is formed, and a first support portion 27 that supports the first electrolyte membrane 16 is formed. The second presser portion 15 is fixed to the other side surface of the central portion 13, and the second presser portion 15 has a predetermined size so that the second presser portion 15 faces the processing space 12 of the central portion 13. Two flow holes 28 are formed, and a second support portion 29 that supports the second electrolyte membrane 17 is formed. Here, the first flow hole 26 is not particularly limited in shape and configuration as long as it does not affect the operation of the first support portion 27. Similarly, the shape and configuration of the second flow hole 28 are not particularly limited as long as they do not affect the support action of the second support portion 29.

第一の電解質膜16は、中央部13の一側面及び第一押え部14よりも一回り小さい大きさのシート状に形成されている。また第二の電解質膜17は、同様に中央部13の他側面及び第二押え部15よりも一回り小さい大きさのシート状に形成されている。ここで第一の電解質膜16及び第二の電解質膜17は、原水から所望の陽イオンまたは陰イオンを取り除き得るならば、材質、厚さ、透過孔に制限はなく、どのような構成でも良い。   The first electrolyte membrane 16 is formed in a sheet shape having a size slightly smaller than one side surface of the central portion 13 and the first pressing portion 14. Similarly, the second electrolyte membrane 17 is formed in a sheet shape that is slightly smaller than the other side surface of the central portion 13 and the second pressing portion 15. Here, the first electrolyte membrane 16 and the second electrolyte membrane 17 are not limited in material, thickness, and permeation hole as long as they can remove a desired cation or anion from raw water, and may have any configuration. .

陽極板18は、第一の電解質膜16とほぼ同じ大きさで形成されて第一の電解質膜16に全体に重なり、且つ面接触で密接(ゼロギャップ)の状態となっている。また陽極板18の面には、通水し得る所定の孔18aが形成され、陽極板18の一端(図2では上端)には電源へ通じる配線18bが備えられている。ここで陽極板18の素材は、導電性を有する素材ならば、ステンレス等のどのような素材でも良いが、チタン製白金めっき等の素材が好ましい。また陽極板18の形状は、通水し得るものならばパンチングメタルやエキスパンドメタル等のどのような形状でも良い。更に陽極板18と第一の電解質膜16との間にカーボンスパッタリング処理を施しても良い。   The anode plate 18 is formed to be approximately the same size as the first electrolyte membrane 16, overlaps with the entire first electrolyte membrane 16, and is in close contact (zero gap) with surface contact. Further, a predetermined hole 18a through which water can flow is formed on the surface of the anode plate 18, and a wiring 18b leading to a power source is provided at one end (the upper end in FIG. 2) of the anode plate 18. Here, the material of the anode plate 18 may be any material such as stainless steel as long as it has conductivity, but a material such as titanium platinum plating is preferable. The shape of the anode plate 18 may be any shape such as a punching metal or an expanded metal as long as it can pass water. Further, a carbon sputtering process may be performed between the anode plate 18 and the first electrolyte membrane 16.

陰極板19は、第二の電解質膜17とほぼ同じ大きさで形成されて第二の電解質膜17に全体に重なり、且つ面接触で密接(ゼロギャップ)の状態になっている。また陰極板19の面には、通水し得る所定の孔19aが形成され、陰極板19の一端(図2では上端)には電源へ通じる配線19bが備えられている。ここで陰極板19の素材は、導電性を有する素材ならば、ステンレス等のどのような素材でも良いが、チタン製白金めっき等の素材が好ましい。また陰極板19の形状は、通水し得るものならばパンチングメタルやエキスパンドメタル等のどのような形状でも良い。更に陰極板19と第二の電解質膜17との間にカーボンスパッタリング処理を施しても良い。   The cathode plate 19 is formed to be approximately the same size as the second electrolyte membrane 17, overlaps the entire second electrolyte membrane 17, and is in close contact (zero gap) with surface contact. Further, a predetermined hole 19a through which water can flow is formed on the surface of the cathode plate 19, and one end (upper end in FIG. 2) of the cathode plate 19 is provided with a wiring 19b leading to a power source. Here, the material of the cathode plate 19 may be any material such as stainless steel as long as it has conductivity, but a material such as titanium platinum plating is preferable. The shape of the cathode plate 19 may be any shape such as a punching metal or an expanded metal as long as it can pass water. Further, a carbon sputtering process may be performed between the cathode plate 19 and the second electrolyte film 17.

第一周囲枠20は、中央部13の一側面及び第一押え部14とほぼ同じ大きさを備えると共に、内部中央に、第一の電解質膜16と陽極板18を嵌め込み得る空間30を形成している。また第二周囲枠21は、第一周囲枠20と同様に中央部13の他側面及び第二押え部15とほぼ同じ大きさを備えると共に、内部中央に、第二の電解質膜17と陰極板19を嵌め込み得る空間31を形成している。   The first peripheral frame 20 has substantially the same size as one side surface of the central portion 13 and the first pressing portion 14, and forms a space 30 into which the first electrolyte membrane 16 and the anode plate 18 can be fitted in the center of the inside. ing. Similarly to the first peripheral frame 20, the second peripheral frame 21 has substantially the same size as the other side surface of the central portion 13 and the second presser portion 15, and the second electrolyte membrane 17 and the cathode plate in the center of the inside. A space 31 into which 19 can be fitted is formed.

第一外枠22は、第一周囲枠20とほぼ同じ大きさを備えると共に、第一周囲枠20の空間30より一回り小さい流通空間32を形成し、流通空間32の周囲部分33と第一押え部14とにより第一の電解質膜16と陽極板18を挟み込むようにしている。また第二外枠23は、第二周囲枠21とほぼ同じ大きさを備えると共に、第二周囲枠21の空間31より一回り小さい流通空間34を形成し、流通空間34の周囲部分35と第二押え部15とにより第二の電解質膜17と陽極板18を挟み込むようにしている。   The first outer frame 22 has substantially the same size as the first surrounding frame 20 and forms a circulation space 32 that is slightly smaller than the space 30 of the first surrounding frame 20. The first electrolyte membrane 16 and the anode plate 18 are sandwiched by the holding portion 14. The second outer frame 23 has substantially the same size as the second peripheral frame 21 and forms a circulation space 34 that is slightly smaller than the space 31 of the second peripheral frame 21. The second electrolyte membrane 17 and the anode plate 18 are sandwiched between the two pressing portions 15.

ここで、中央部13、第一押え部14、第二押え部15、第一周囲枠20、第二周囲枠21、第一外枠22、第二外枠23の各部材は、アクリルや塩化ビニル等の非導電性部材で構成されると共に、外周にボルト孔13a,14a,15a,20a,21a,22a,23aを備え、ボルト締結により一体化し得るようになっている。ここで処理モジュール11の陽極板18と陰極板19の間隔を1.3mm以上6.3mm以下することが好ましく、また各部材の締結手段は、ボルトに制限されるものではなく、処理モジュール11を分解・組立を容易にするものならば他の締結手段や構成でも良い。   Here, each member of the center part 13, the first presser part 14, the second presser part 15, the first peripheral frame 20, the second peripheral frame 21, the first outer frame 22, and the second outer frame 23 is made of acrylic or chloride. It is composed of a non-conductive member such as vinyl, and has bolt holes 13a, 14a, 15a, 20a, 21a, 22a, 23a on the outer periphery, and can be integrated by bolt fastening. Here, the interval between the anode plate 18 and the cathode plate 19 of the processing module 11 is preferably 1.3 mm or more and 6.3 mm or less, and the fastening means of each member is not limited to bolts, and the processing module 11 is Any other fastening means or configuration may be used as long as it facilitates disassembly and assembly.

また中央部13等を組み立て構成される処理モジュール11は、図1に示す如く収納容器や収納フレーム等のモジュールハウジング36内に着脱可能に配置されており、モジュールハウジング36には、複数の処理モジュール11(図1では2基)を所定の間隔で並列に配置し、処理モジュール11の両側の隙間を濃縮用空間37としている。また複数の処理モジュール11は、一基の処理モジュール11の第一外枠22と、隣接する他の処理モジュール11の第二外枠23とが濃縮用空間37で対向すると共に、一基の処理モジュール11の陽極板18と、隣接する他の処理モジュール11の陰極板19とが交互に位置するようにしている。更に濃縮用空間37には、濃縮した陽イオンまたは陰イオンを排出する排出ライン38が備えられている。ここでモジュールハウジング36に配置される処理モジュール11の個数は特に制限されるものではなく、三基以上でも良いし、一基の処理モジュール11でも良い。   The processing module 11 constructed by assembling the central portion 13 and the like is detachably disposed in a module housing 36 such as a storage container or a storage frame as shown in FIG. 1, and the module housing 36 includes a plurality of processing modules. 11 (two in FIG. 1) are arranged in parallel at a predetermined interval, and a gap on both sides of the processing module 11 is used as a concentrating space 37. In addition, the plurality of processing modules 11 includes the first outer frame 22 of one processing module 11 and the second outer frame 23 of another adjacent processing module 11 facing each other in the concentration space 37, and one processing The anode plates 18 of the modules 11 and the cathode plates 19 of other adjacent processing modules 11 are alternately positioned. Further, the concentration space 37 is provided with a discharge line 38 for discharging concentrated cations or anions. Here, the number of the processing modules 11 arranged in the module housing 36 is not particularly limited, and may be three or more or one processing module 11.

以下本発明を実施する形態例の作用を説明する。   The operation of the embodiment for carrying out the present invention will be described below.

水道水や井戸水等の原水を処理する際には、流入ライン24から原水を処理空間12に導入して陽極板18及び陰極板19に通電し、第一の電解質膜16及び陽極板18により処理空間12からHCO ,Cl,SO 2−の陰イオンを濃縮用空間37へ移動させると共に、第二の電解質膜17及び陰極板19により処理空間12からMg2+,Na,Ca2+の陽イオンを濃縮用空間37へ移動させる。その後、原水から陰イオン及び陽イオンを取り除いた処理空間12の軟水の処理水は電気伝導率10μS/cm以上20μS/cm以下となって送出ライン25より送出される。また陽イオンまたは/及び陰イオンの流入により濃度を高めた濃縮用空間37の排水は排出ライン38より適宜排出される。 When raw water such as tap water or well water is treated, the raw water is introduced into the treatment space 12 from the inflow line 24, the anode plate 18 and the cathode plate 19 are energized, and treated by the first electrolyte membrane 16 and the anode plate 18. The anions of HCO 3 , Cl and SO 4 2− are moved from the space 12 to the concentration space 37, and Mg 2+ , Na + and Ca 2+ are moved from the processing space 12 by the second electrolyte membrane 17 and the cathode plate 19. Are moved to the concentration space 37. Thereafter, the treated water of the soft water in the treatment space 12 from which the anions and cations are removed from the raw water has an electrical conductivity of 10 μS / cm or more and 20 μS / cm or less and is sent out from the delivery line 25. Further, the waste water in the concentration space 37 whose concentration is increased by the inflow of cations or / and anions is appropriately discharged from the discharge line 38.

ここで原水は、水道水や井戸水に限定されるものではなく、塩濃度が14ppm以上600ppm以下(電気伝導度で20μS/cm以上860μS/cm以下)のものならば特に制限されるものではない。また原水を処理する際には、通電量を48V/1A以下にし、処理空間12への流速を80ml/min以上120ml/min以下にすることが好ましい。   Here, the raw water is not limited to tap water or well water, and is not particularly limited as long as the salt concentration is 14 ppm or more and 600 ppm or less (electric conductivity is 20 μS / cm or more and 860 μS / cm or less). Moreover, when processing raw | natural water, it is preferable that the amount of electricity supply shall be 48V / 1A or less, and the flow rate to the process space 12 shall be 80 ml / min or more and 120 ml / min or less.

以下、処理モジュール11の1基を用いて原水を処理し、その作用効果を試験した。   In the following, raw water was treated using one of the treatment modules 11 and the effects were tested.

[試験1]
試験1は、試験条件として、処理モジュール11の陽極板18と陰極板との間隔を6.3mmにし、原水として水道水を用い、通電量を48Vとし、処理空間12への流速を71.3ml/minとし、表1の結果を得た。
[Test 1]
Test 1 is conducted under test conditions in which the distance between the anode plate 18 and the cathode plate of the processing module 11 is 6.3 mm, tap water is used as raw water, the energization amount is 48 V, and the flow rate to the processing space 12 is 71.3 ml. / Min, and the results shown in Table 1 were obtained.

[表1]

Figure 2012121003


[Table 1]
Figure 2012121003


このことから処理水の電気伝導度が18μS/cmと市販蒸留水(1〜10μS/cm)に近い値になり、Caイオンの濃度が0.5mg/minとなり、原水の軟水化等の電気処理が適切に行われることが明らかとなった。   From this, the electrical conductivity of the treated water is 18 μS / cm, which is close to commercially available distilled water (1 to 10 μS / cm), the Ca ion concentration is 0.5 mg / min, and the electrical treatment such as softening of the raw water is performed. It has become clear that this is done properly.

而して、このように実施の形態例によれば、第一の電解質膜16に陽極板18を面接触させると共に第二の電解質膜17に陰極板19を面接触させるので、通電抵抗を低減し、また第一の電解質膜16及び第二の電解質膜17の全てに陽極板18または陰極板19の電極を配置するので、通電効率を高め、よって処理空間12に対する電気処理効率を上げ、水道水や井戸水のように塩濃度が数百ppm以下の場合であっても、水道水や井戸水について軟水化等の電気処理を適切に行うことができる。   Thus, according to the embodiment, the anode plate 18 is brought into surface contact with the first electrolyte membrane 16 and the cathode plate 19 is brought into surface contact with the second electrolyte membrane 17, so that the conduction resistance is reduced. In addition, since the electrodes of the anode plate 18 or the cathode plate 19 are arranged on all of the first electrolyte membrane 16 and the second electrolyte membrane 17, the energization efficiency is increased, and thus the electrical processing efficiency for the processing space 12 is increased, and the water supply Even when the salt concentration is several hundred ppm or less like water and well water, electrical treatment such as softening can be appropriately performed on tap water and well water.

また全体構成を単純化し得るので、逆浸透膜等を用いた純水製造器等に比べて製造コストを低減し、よって水道水を処理する給湯器や加湿器等の各機器へ容易に導入することができる。更に電気透析器の補修時においても第一の電解質膜16や第二の電解質膜17を簡単に交換し、容易に補修することができる。   In addition, since the overall configuration can be simplified, the manufacturing cost is reduced as compared with a pure water production device using a reverse osmosis membrane, etc., and thus it can be easily introduced into each device such as a water heater or a humidifier for treating tap water. be able to. Further, even when the electrodialyzer is repaired, the first electrolyte membrane 16 and the second electrolyte membrane 17 can be easily replaced and repaired easily.

実施の形態例において、原水を通過させるように処理空間12を形成する中央部13と、処理空間12の一面側に位置する第一の電解質膜16と、処理空間12の他面側に位置する第二の電解質膜17と、第一の電解質膜16に面接触して処理空間12と反対側に位置する陽極板18と、第二の電解質膜17に面接触して処理空間12と反対側に位置する陰極板19とを、一基の処理モジュール11とし、陽極板18と陰極板19が交互に位置するように複数の処理モジュール11を並列に組み合わせると共に、両側の処理モジュール11から陰イオンまたは陽イオンが流入するように二つの処理モジュール11の間に濃縮用空間37を形成すると、複数の処理空間12によって原水の処理量を増やし、軟水化等の電気処理を好適に行うことができる。また複数の処理モジュール11を並列に配して、両側の処理モジュール11から濃縮用空間37へ陽イオン及び陰イオンが流入するように構成するので、濃縮用空間37の排水を中性のpHもしくは所定のpHの範囲として排水処理し、陽イオン等からのスケールの発生を抑制して好適な長期運転を期待することができる。更に複数の処理モジュール11を配置する構成のうち一基の処理モジュール11を補修する際には、修理する処理モジュール11を新たな処理モジュール11に容易に交換し得るので、好適に補修することができる。   In the embodiment, the central portion 13 that forms the treatment space 12 so as to allow the raw water to pass through, the first electrolyte membrane 16 that is located on one surface side of the treatment space 12, and the other surface side of the treatment space 12. The second electrolyte membrane 17, the anode plate 18 in surface contact with the first electrolyte membrane 16 and located on the opposite side of the processing space 12, and the surface contact with the second electrolyte membrane 17 on the opposite side of the processing space 12 The cathode plate 19 positioned at the same position is used as a single processing module 11, and a plurality of processing modules 11 are combined in parallel so that the anode plates 18 and the cathode plates 19 are alternately positioned. Alternatively, if the concentrating space 37 is formed between the two processing modules 11 so that cations can flow in, the amount of raw water is increased by the plurality of processing spaces 12, and electrical processing such as softening is suitably performed. It can be. In addition, since a plurality of processing modules 11 are arranged in parallel so that cations and anions flow into the concentration space 37 from the processing modules 11 on both sides, the waste water in the concentration space 37 is neutral pH or It is possible to expect a suitable long-term operation by performing wastewater treatment within a predetermined pH range and suppressing the generation of scale from cations and the like. Furthermore, when repairing one processing module 11 in a configuration in which a plurality of processing modules 11 are arranged, the processing module 11 to be repaired can be easily replaced with a new processing module 11, so that it can be suitably repaired. it can.

実施の形態例において、中央部13の一側に位置する第一押え部14と、中央部13の他側に位置する第二押え部15と、第一の電解質膜16と陽極板18を第一押え部14とで挟み込む第一外枠22と、第二の電解質膜17と陰極板19を第二押え部15とで挟み込む第二外枠23とを備えると、第一の電解質膜16と陽極板18との面接触、及び第二の電解質膜17と陰極板19との面接触を夫々適切に為し得るので、処理空間12に対する電気処理効率を上げ、水道水や井戸水のように塩濃度が数百ppm以下の場合であっても、水道水や井戸水について軟水化等の電気処理を好適に行うことができる。   In the embodiment, the first presser part 14 located on one side of the central part 13, the second presser part 15 located on the other side of the central part 13, the first electrolyte membrane 16 and the anode plate 18 are connected to the first presser part 14. When the first outer frame 22 sandwiched between the one holding portion 14 and the second outer frame 23 sandwiching the second electrolyte membrane 17 and the cathode plate 19 between the second holding portion 15 are provided, the first electrolyte membrane 16 Since the surface contact with the anode plate 18 and the surface contact between the second electrolyte membrane 17 and the cathode plate 19 can be appropriately performed, the electrical processing efficiency for the processing space 12 is increased, and salt such as tap water or well water is increased. Even when the concentration is several hundred ppm or less, tap water and well water can be suitably subjected to electrical treatment such as water softening.

実施の形態例において、第一の電解質膜16と陽極板18を嵌め込んで第一の電解質膜16と陽極板18の外周を支持する第一周囲枠20と、第二の電解質膜17と陰極板19を嵌め込んで第二の電解質膜17と陰極板19の外周を支持する第二周囲枠21とを備えると、第一周囲枠20により第一の電解質膜16と陽極板18とを適切に保持して面接触させ、且つ第二周囲枠21により第二の電解質膜17と陰極板19とを適切に保持して面接触させるので、処理空間12に対する電気処理効率を上げ、水道水や井戸水のように塩濃度が数百ppm以下の場合であっても、水道水や井戸水について軟水化等の電気処理を好適に行うことができる。   In the embodiment, a first peripheral frame 20 that fits the first electrolyte membrane 16 and the anode plate 18 to support the outer periphery of the first electrolyte membrane 16 and the anode plate 18, the second electrolyte membrane 17, and the cathode. When the second electrolyte membrane 17 and the second peripheral frame 21 supporting the outer periphery of the cathode plate 19 are provided by fitting the plate 19, the first electrolyte membrane 16 and the anode plate 18 are appropriately connected by the first peripheral frame 20. The second electrolyte membrane 17 and the cathode plate 19 are appropriately held and brought into surface contact with each other by the second peripheral frame 21, so that the electrical processing efficiency for the treatment space 12 is increased, and tap water or Even when the salt concentration is several hundred ppm or less as in well water, electrical treatment such as softening can be suitably performed on tap water and well water.

尚、本発明の電気透析器は、上述の形態例にのみ限定されるものではなく、第一の電解質膜と陽極板との面接触、及び第二の電解質膜と陰極板との面接触を為し得るならば、他の部材の構成を変更しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the electrodialyzer of the present invention is not limited to the above-described embodiment, and the surface contact between the first electrolyte membrane and the anode plate and the surface contact between the second electrolyte membrane and the cathode plate are not limited. If possible, the configuration of other members may be changed, and various changes may be made without departing from the scope of the present invention.

11 処理モジュール
12 処理空間
13 中央部
14 第一押え部
15 第二押え部
16 電解質膜
17 電解質膜
18 陽極板
19 陰極板
20 第一周囲枠
21 第二周囲枠
22 第一外枠
23 第二外枠
37 濃縮用空間
DESCRIPTION OF SYMBOLS 11 Processing module 12 Processing space 13 Center part 14 1st press part 15 2nd press part 16 Electrolyte film 17 Electrolyte film 18 Anode plate 19 Cathode plate 20 1st surrounding frame 21 2nd surrounding frame 22 1st outer frame 23 2nd outside Frame 37 Space for concentration

Claims (4)

原水を通過させるように処理空間を形成する中央部と、前記処理空間の一面側に位置する第一の電解質膜と、前記処理空間の他面側に位置する第二の電解質膜と、前記第一の電解質膜に面接触して処理空間と反対側に位置する陽極板と、前記第二の電解質膜に面接触して処理空間と反対側に位置する陰極板とを備え、
前記第一の電解質膜及び第二の電解質膜の全てに陽極板または陰極板の電極を配置する構成を備え、
前記陽極板と陰極板に通電し、処理空間の原水から陰イオンを第一の電解質膜及び陽極板を介して取り除くと共に、処理空間の原水から陽イオンを第二の電解質膜及び陰極板を介して取り除くように構成したことを特徴とする電気透析器。
A central portion that forms a treatment space so as to allow the raw water to pass through; a first electrolyte membrane that is located on one surface side of the treatment space; a second electrolyte membrane that is located on the other surface side of the treatment space; An anode plate that is in surface contact with one electrolyte membrane and located on the opposite side of the processing space; and a cathode plate that is in surface contact with the second electrolyte membrane and located on the opposite side of the processing space;
A configuration in which electrodes of an anode plate or a cathode plate are arranged on all of the first electrolyte membrane and the second electrolyte membrane,
The anode plate and the cathode plate are energized to remove anions from the raw water in the processing space through the first electrolyte membrane and the anode plate, and cations from the raw water in the processing space through the second electrolyte membrane and the cathode plate. An electrodialyzer characterized by being configured to be removed.
原水を通過させるように処理空間を形成する中央部と、前記処理空間の一面側に位置する第一の電解質膜と、前記処理空間の他面側に位置する第二の電解質膜と、前記第一の電解質膜に面接触して処理空間と反対側に位置する陽極板と、前記第二の電解質膜に面接触して処理空間と反対側に位置する陰極板とを、一基の処理モジュールとし、
前記陽極板と陰極板が交互に位置するように複数の処理モジュールを並列に組み合わせると共に、両側の処理モジュールから陰イオンまたは陽イオンが流入するように二つの処理モジュールの間に濃縮用空間を形成したことを特徴とする請求項1に記載の電気透析器。
A central portion that forms a treatment space so as to allow the raw water to pass through; a first electrolyte membrane that is located on one surface side of the treatment space; a second electrolyte membrane that is located on the other surface side of the treatment space; A processing module comprising an anode plate in surface contact with one electrolyte membrane and positioned on the opposite side of the processing space, and a cathode plate in surface contact with the second electrolyte membrane and positioned on the opposite side of the processing space. age,
A plurality of processing modules are combined in parallel so that the anode plate and the cathode plate are alternately positioned, and a concentrating space is formed between the two processing modules so that anions or cations flow from the processing modules on both sides. The electrodialyzer according to claim 1.
前記中央部の一側に位置する第一押え部と、前記中央部の他側に位置する第二押え部と、前記第一の電解質膜と陽極板を第一押え部とで挟み込む第一外枠と、前記第二の電解質膜と陰極板を第二押え部とで挟み込む第二外枠とを備えたことを特徴とする請求項1または2に記載の電気透析器。   A first presser part positioned on one side of the central part, a second presser part positioned on the other side of the central part, and a first outer part sandwiching the first electrolyte membrane and the anode plate with the first presser part. The electrodialyzer according to claim 1 or 2, further comprising a frame, and a second outer frame that sandwiches the second electrolyte membrane and the cathode plate with the second pressing portion. 前記第一の電解質膜と陽極板を嵌め込んで第一の電解質膜と陽極板の外周を支持する第一周囲枠と、前記第二の電解質膜と陰極板を嵌め込んで第二の電解質膜と陰極板の外周を支持する第二周囲枠とを備えたことを特徴とする請求項1〜3のいずれかに記載の電気透析器。   A first peripheral frame that fits the first electrolyte membrane and the anode plate to support the outer periphery of the first electrolyte membrane and the anode plate; and a second electrolyte membrane that fits the second electrolyte membrane and the cathode plate. The electrodialyzer according to claim 1, further comprising a second peripheral frame that supports the outer periphery of the cathode plate.
JP2010275651A 2010-12-10 2010-12-10 Electrodialyzer Pending JP2012121003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010275651A JP2012121003A (en) 2010-12-10 2010-12-10 Electrodialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010275651A JP2012121003A (en) 2010-12-10 2010-12-10 Electrodialyzer

Publications (1)

Publication Number Publication Date
JP2012121003A true JP2012121003A (en) 2012-06-28

Family

ID=46503046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275651A Pending JP2012121003A (en) 2010-12-10 2010-12-10 Electrodialyzer

Country Status (1)

Country Link
JP (1) JP2012121003A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514956A (en) * 1997-08-18 2001-09-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method for converting amine salts of hydrogen halide to free amines
JP2001286868A (en) * 2000-04-11 2001-10-16 First Ocean Kk Method of producing electrolytic water and electrolytic water
JP2002011477A (en) * 2000-06-30 2002-01-15 Kurita Water Ind Ltd Electric deionization apparatus
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP2010517746A (en) * 2007-02-01 2010-05-27 ゼネラル・エレクトリック・カンパニイ Desalination method and apparatus including supercapacitor electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514956A (en) * 1997-08-18 2001-09-18 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Method for converting amine salts of hydrogen halide to free amines
JP2001286868A (en) * 2000-04-11 2001-10-16 First Ocean Kk Method of producing electrolytic water and electrolytic water
JP2002011477A (en) * 2000-06-30 2002-01-15 Kurita Water Ind Ltd Electric deionization apparatus
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP2010517746A (en) * 2007-02-01 2010-05-27 ゼネラル・エレクトリック・カンパニイ Desalination method and apparatus including supercapacitor electrode

Similar Documents

Publication Publication Date Title
Al-Amshawee et al. Electrodialysis desalination for water and wastewater: A review
US20220380235A1 (en) Electrochemical separation systems and methods
JP6078074B2 (en) Desalination system and method
Qiu et al. Sustainable recovery of high-saline papermaking wastewater: Optimized separation for salts and organics via membrane-hybrid process
TW201238910A (en) Water treatment using a bipolar membrane
JP2015174060A (en) Electric water generator and method for producing the same
KR20090036596A (en) Electrodeionizer
WO2009016982A1 (en) Pure water production apparatus and pure water production method
Du et al. Treatment of brackish water RO brine via bipolar membrane electrodialysis
JP2017070947A (en) Electric purifier and method for manufacturing electric purifier
JP5282201B2 (en) Electrolyzed water generator
KR101433125B1 (en) A Unit for creating sterilized water of easy combination with base member and bathtub for foot using the same
Yu et al. Membrane deposition electrodialysis for cooling water treatment: Ion step removal and stable membrane regeneration
JP6148675B2 (en) Desalination system and method
JP2012121003A (en) Electrodialyzer
JP4897022B2 (en) Water treatment method for producing purified water
JP5415966B2 (en) Electric deionized water production apparatus and deionized water production method
CN212403584U (en) Electric deionization water purification device and household water purification device
KR20140036609A (en) Desalination method and system
KR20140047373A (en) Unit for creating sterilized water having electrode plate support bar for maintaining distance between electrode plates
Allat et al. Mitigation of an anion exchange membrane fouling by coupling electrodialysis to anodic oxidation
JP2001259645A (en) Deionized water production method
US20190345051A1 (en) Method for providing ultrapure water
JP4185829B2 (en) Electrolyzed water generator
CN219815859U (en) Stable titanium anode for electrodialysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507