JP2009268999A - Method and apparatus for treating water - Google Patents

Method and apparatus for treating water Download PDF

Info

Publication number
JP2009268999A
JP2009268999A JP2008123502A JP2008123502A JP2009268999A JP 2009268999 A JP2009268999 A JP 2009268999A JP 2008123502 A JP2008123502 A JP 2008123502A JP 2008123502 A JP2008123502 A JP 2008123502A JP 2009268999 A JP2009268999 A JP 2009268999A
Authority
JP
Japan
Prior art keywords
water
treated
ammonia
steam generator
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008123502A
Other languages
Japanese (ja)
Other versions
JP4982425B2 (en
Inventor
Shinobu Shigeniwa
忍 茂庭
Hideji Seki
秀司 関
Masahiko Osaki
正彦 大崎
Yoshie Akai
芳恵 赤井
Hidechika Nagayama
英睦 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008123502A priority Critical patent/JP4982425B2/en
Publication of JP2009268999A publication Critical patent/JP2009268999A/en
Application granted granted Critical
Publication of JP4982425B2 publication Critical patent/JP4982425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heat loss owing to a cooling operation of blowdown water and to suppress consumption of chemicals such as ammonia by reducing load on the desalination of impurity ions by using a desalination unit for selectively removing only impurity ions at high temperature. <P>SOLUTION: In a method for treating ammonia-containing water 12 to be treated by using the desalination unit 11 having a pair of diaphragms 14 and electrodes 17 which are arranged to be opposed to each other on the outside of the pair of diaphragms 14 and between which a DC voltage is applied, the water 12 to be treated is treated at ≥100°C to obtain the treated water from which impurity ion components are removed and in which ammonia is concentrated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アンモニアを冷却水中に含有する原子力発電プラントや火力発電プラントにおける水処理技術に係り、特に加圧水型原子力発電所の2次系や火力発電所の系統水における水処理方法及び水処理装置に関する。   TECHNICAL FIELD The present invention relates to a water treatment technique in a nuclear power plant or thermal power plant that contains ammonia in cooling water, and in particular, a water treatment method and a water treatment device in secondary water of a pressurized water nuclear power plant or system water of a thermal power plant. About.

一般に加圧水型発電所では、蒸気発生器で加圧水型原子炉1次系とその2次系とに分かれており、原子炉1次系の原子炉で発生した高温高圧水を蒸気発生器で熱交換し原子炉2次系で蒸気を発生させている。加圧水型原子炉2次系では蒸気発生器で発生した蒸気を蒸気タービンに送り、この蒸気タービンをタービン駆動させて発電をしている。   In general, in a pressurized water power plant, a steam generator is divided into a pressurized water reactor primary system and its secondary system, and the steam generator generates heat from the high-temperature high-pressure water generated in the reactor of the primary reactor. However, steam is generated in the secondary reactor system. In the pressurized water reactor secondary system, steam generated by a steam generator is sent to a steam turbine, and this steam turbine is driven by the turbine to generate electricity.

蒸気タービンを駆動して膨張した蒸気は続いて復水器に導入され、復水器内で冷却されて凝縮し復水となる。この復水は、必要に応じて復水脱塩器でイオン交換樹脂等によるイオン除去の脱塩処理を行なっており、その後、発電プラント系統のヒータで加熱されて蒸気発生器に供給される。   The steam expanded by driving the steam turbine is subsequently introduced into the condenser, where it is cooled and condensed in the condenser to become condensed water. This condensate is subjected to demineralization treatment for removing ions by an ion exchange resin or the like in a condensate demineralizer as necessary, and then heated by a heater of a power plant system and supplied to a steam generator.

蒸気発生器に供給される水は発電プラント系統の原子炉2次系系統内の構造材(配管や機器)の腐食抑制の観点から薬剤注入物質が注入される。このうち、pH調整剤としてアンモニアやアミン化合物、脱酸素剤としてヒドラジンなどが用いられる。   Water supplied to the steam generator is injected with a chemical injection material from the viewpoint of suppressing corrosion of structural materials (piping and equipment) in the reactor secondary system of the power plant system. Among these, ammonia or an amine compound is used as a pH adjuster, and hydrazine is used as an oxygen scavenger.

一方、蒸気発生器では、発電プラント系統である原子炉2次系系統内に持ち込まれたイオン等の不純物や腐食生成物が濃縮されるため、蒸気発生器内の伝熱管の腐食や伝熱性低下を起こす要因となっている。このため、蒸気発生器内の水の一部を排出(ブローダウン)する操作が行なわれている。   On the other hand, in the steam generator, impurities such as ions and corrosion products brought into the reactor secondary system, which is the power plant system, are concentrated, so corrosion of the heat transfer tubes in the steam generator and reduced heat transfer It is a factor to cause. For this reason, operation which discharges a part of water in a steam generator (blowdown) is performed.

蒸気発生器からのブローダウン水は、復水脱塩器又はブローダウン水排出経路に設けられたブローダウン水処理装置等の既設の水質浄化設備に導かれて浄化される。ブローダウン水に含まれる薬剤注入物質であるpH調整剤は、復水脱塩器の脱塩処理で除去された後、別途新しい薬剤注入物質が注入される。しかしながら、復水脱塩器でpH調整剤を除去し、別途新しい薬剤を注入することは、復水脱塩器でのイオン除去負荷を増大させ、薬剤注入コストを増加させる要因となっている。   Blowdown water from the steam generator is guided and purified by existing water purification equipment such as a condensate demineralizer or a blowdown water treatment device provided in the blowdown water discharge path. After the pH adjusting agent, which is a drug injection substance contained in the blowdown water, is removed by the desalting process of the condensate demineralizer, a new drug injection substance is separately injected. However, removing the pH adjusting agent with the condensate demineralizer and injecting a new drug separately increases the ion removal load in the condensate demineralizer and increases the drug injection cost.

そのため、蒸気発生器のブローダウン水から、pH調整剤の除去を抑制し、注入薬剤コストを軽減する方法として、必要に応じてブローダウン水を復水脱塩器(復水脱塩塔)からバイパスさせる手段が提案されている(特許文献1〜3)。   Therefore, as a method to suppress the removal of the pH adjuster from the blow-down water of the steam generator and reduce the cost of the injected medicine, the blow-down water is removed from the condensate demineralizer (condensate demineralizer) as necessary. Means for bypassing has been proposed (Patent Documents 1 to 3).

一方、ブローダウン水を復水脱塩器又はブローダウン水排出経路に設けられたブローダウン水処理装置で処理する場合、蒸気発生器からのブローダウン水は高温であるため、既設の復水脱塩器又はブローダウン水処理装置では、熱に弱いイオン効果樹脂が用いられることから、ブローダウン水を冷却し常温で処理している。このように、既存の水質浄化設備では処理前にブローダウン水を冷却操作しており、この冷却操作技術を用いないと、復水脱塩器は脱塩機能を充分に維持させることができない構造となっていた(特許文献1、4)。
特開2000−171585号公報 特開2000−258589号公報 特開2005−329314号公報 特開2006−226697号公報 特開平11−47560号公報 特開2007−90299号公報 特開2006−43580号公報、 特開2006−88004号公報、 特開2006−136846号公報 Y.Asakura他「In-Line Monitor for Electrical Conductivity of High-Temperature, Aqueous Environments」J.Electrochem.Soc.,第136巻 第11号 3309-3313頁(1989年)) 竹林良弘著「超臨界水・メタノール中での酸塩基平衡の分光測定」高圧力の科学と技術 第16巻 第2号” 105−112頁(2006年)
On the other hand, when the blowdown water is processed by the condensate demineralizer or the blowdown water treatment device provided in the blowdown water discharge path, the blowdown water from the steam generator is at a high temperature. In a salt container or blowdown water treatment apparatus, since ion effect resin weak against heat is used, blowdown water is cooled and treated at room temperature. In this way, the existing water purification equipment cools the blow-down water before treatment, and the condensate demineralizer cannot sufficiently maintain the desalting function without using this cooling operation technique. (Patent Documents 1 and 4).
JP 2000-171585 A JP 2000-258589 A JP 2005-329314 A JP 2006-226697 A JP 11-47560 A JP 2007-90299 A JP 2006-43580 A, JP 2006-88004 A, JP 2006-136846 A Y.Asakura et al. “In-Line Monitor for Electrical Conductivity of High-Temperature, Aqueous Environments” J. Electrochem. Soc., Vol. 136, No. 11, pages 3309-3313 (1989)) Yoshihiro Takebayashi, “Spectroscopic measurement of acid-base equilibrium in supercritical water / methanol” Science and Technology of High Pressure Vol.16, No.2, pp. 105-112 (2006)

加圧水型原子力発電所の2次系のブローダウン水排出経路に電気式脱塩装置等のブローダウン水処理装置を設けた従来の水処理技術においては、ブローダウン水中の不純物イオンの他、pH調整剤であるアンモニアも同時に除去されるために、復水脱塩器の負荷軽減を図ることができる一方、注入するアンモニアのコスト軽減を図ることが困難である。   In conventional water treatment technology in which a blowdown water treatment device such as an electric desalination device is provided in the secondary blowdown water discharge path of a pressurized water nuclear power plant, pH adjustment is performed in addition to impurity ions in the blowdown water. Since the ammonia that is the agent is also removed at the same time, it is possible to reduce the load on the condensate demineralizer, while it is difficult to reduce the cost of the ammonia to be injected.

このため、脱塩装置で除去したアンモニアを再利用する技術が提案されているが(特許文献5)、このリサイクル技術においては、除去されたアンモニアとともに濃縮された不純物イオンを分離精製する必要があり、装置が複雑化しコスト増につながる可能性があった。   For this reason, a technique for reusing the ammonia removed by the desalting apparatus has been proposed (Patent Document 5). In this recycling technique, it is necessary to separate and purify the impurity ions concentrated together with the removed ammonia. The device may be complicated and increase the cost.

また、耐熱性の陰イオン材を用いる電気再生式脱塩装置により、陰イオン不純物のみを高温で除去し、薬剤注入物質である陽イオン物質を透過リサイクルする技術も提案されているが(特許文献6)、この方法では薬剤陽イオンと共に不純物陽イオンも再注入してしまうおそれがあった。   In addition, a technology has been proposed in which only anionic impurities are removed at high temperatures by using an electric regeneration-type desalting apparatus using a heat-resistant anionic material, and a cationic substance that is a drug injection substance is permeated and recycled (patent document). 6) In this method, the impurity cation may be reinjected together with the drug cation.

一方、蒸気発生器から高温で排出されるブローダウン水は、イオン交換樹脂を用いる既設の脱塩技術や、イオン交換樹脂とイオン交換膜を用いる従来の電気再生式脱イオン装置では、高温に弱いイオン交換樹脂の耐熱性の観点から、イオン交換機能を維持するために、常温まで冷却されることが要求され、熱交換器等を用いた冷却設備等の余分な設備が必要となり、熱効率が悪くまたコスト上も課題があった。   On the other hand, blowdown water discharged from a steam generator at a high temperature is vulnerable to high temperatures in the existing desalination technology using an ion exchange resin and the conventional electric regenerative deionization apparatus using an ion exchange resin and an ion exchange membrane. From the viewpoint of the heat resistance of the ion exchange resin, it is required to be cooled to room temperature in order to maintain the ion exchange function, and additional equipment such as a cooling facility using a heat exchanger is required, resulting in poor thermal efficiency. There was also a problem with cost.

また、高温、高圧下で稼働することができる脱塩装置も存在するが(特許文献7〜9)、ブローダウン水から不純物イオンのみを選択的に除去できる構造とはなっていなかった。   Moreover, although there exists a desalting apparatus that can operate under high temperature and high pressure (Patent Documents 7 to 9), it has not been configured to selectively remove only impurity ions from blowdown water.

このため、高温のブローダウン水から不純物イオンのみを選択的に除去でき、不純物イオンに比べ高濃度に注入調整されるアンモニアを残存させる脱塩技術を確立させることができれば、復水脱塩器におけるイオン除去負荷を軽減させることができ、かつ、アンモニアの薬剤注入コストの軽減も図ることができ、メリットがある。   For this reason, if only the impurity ions can be selectively removed from the high-temperature blowdown water, and a desalting technique for leaving ammonia to be injected and adjusted at a higher concentration than the impurity ions can be established, The ion removal load can be reduced, and the cost of injecting the ammonia drug can be reduced, which is advantageous.

本発明は、上述した事情を考慮してなされたもので、系統水に薬剤注入を必要とする加圧水型原子炉2次系や火力発電プラントの発電システム系統の水処理方法及び水処理装置において、高温下で不純物イオンのみを選択的に除去できる脱塩処理装置を用いることにより、不純物イオン脱塩浄化負荷を軽減し、ブローダウン水の冷却操作に伴う熱損失の軽減を図るとともに、アンモニア等の薬剤消費を抑制することができる水処理技術を提供することを目的とする。   The present invention was made in consideration of the above-described circumstances, and in a water treatment method and a water treatment apparatus for a pressurized water reactor secondary system and a power generation system system of a thermal power plant that require chemical injection into the system water, By using a desalination treatment device that can selectively remove only impurity ions at high temperatures, the load for impurity ion desalting and purification can be reduced, heat loss associated with cooling operation of blowdown water can be reduced, It aims at providing the water treatment technique which can suppress chemical | medical agent consumption.

本発明に係る水処理方法は、上述した課題を解決するために、アンモニアを含有する被処理水を、一対の隔膜と前記一対の隔膜の外側に対向配置される電極に直流電圧を印加する脱塩装置により処理する水処理方法において、前記被処理水を100℃以上で処理することにより、不純物イオン成分が除去されたアンモニアが濃縮された処理水を得ることを特徴とする。   In order to solve the above-described problems, the water treatment method according to the present invention removes water to be treated containing ammonia by applying a DC voltage to a pair of diaphragms and electrodes disposed opposite to the outside of the pair of diaphragms. In the water treatment method of treating with a salt device, the treated water is treated at 100 ° C. or higher to obtain treated water enriched with ammonia from which impurity ion components have been removed.

また、本発明に係る水処理装置は、アンモニアを含有する蒸気発生器ブローダウン水からなる被処理水を、一対の隔膜と前記一対の隔膜の外側に対向配置される電極に直流電圧を印加する脱塩装置により処理し、蒸気発生器の給水源に再利用する水処理装置において、前記被処理水を100℃以上で処理することにより、不純物イオン成分が除去されたアンモニアが凝縮された処理水を得ることを特徴とする。   The water treatment apparatus according to the present invention applies a direct-current voltage to water to be treated comprising steam-generator blowdown water containing ammonia to a pair of diaphragms and electrodes disposed opposite to the outside of the pair of diaphragms. In a water treatment apparatus that is treated by a desalting apparatus and reused as a water supply source of a steam generator, the treated water is treated at 100 ° C. or higher, thereby condensing ammonia from which impurity ion components have been removed. It is characterized by obtaining.

本発明に係る水処理方法及び水処理装置によれば、高温下で不純物イオンのみを選択的に除去できる脱塩処理装置を用いることにより、不純物イオン脱塩浄化負荷を軽減し、ブローダウン水の冷却操作に伴う熱損失の軽減を図るとともに、アンモニア等の薬剤消費を抑制することができる水処理技術を提供することができる。   According to the water treatment method and the water treatment apparatus according to the present invention, by using a desalination treatment apparatus that can selectively remove only impurity ions at a high temperature, the load for impurity ion desalting and purification is reduced, and blowdown water is reduced. It is possible to provide a water treatment technique capable of reducing heat loss associated with the cooling operation and suppressing consumption of chemicals such as ammonia.

本発明に係る水処理方法及び水処理装置の実施形態について添付図面を参照して説明する。
[第1の実施形態]
本発明の第1の実施形態は、本発明に係る水処理装置に用いられる電気脱塩装置11に関する。
電気脱塩装置11は、図1に示すように被処理水12の導入経路と、不純物脱塩処理水13の排出経路を有し、電気脱塩装置11筐体に、1対の等間隔に配置される隔膜14と、隔膜外側に配される直流印加のための電極17と、隔膜間に形成された脱塩部15と、各隔膜と各電極間に形成された濃縮部16と、から構成され、アンモニアが濃縮された被処理水12は脱塩部15に導入され、脱塩処理水13として排出し、濃縮部16からは不純物濃縮排水19として除去不純物の濃縮水が排出される。
Embodiments of a water treatment method and a water treatment apparatus according to the present invention will be described with reference to the accompanying drawings.
[First Embodiment]
1st Embodiment of this invention is related with the electrical desalination apparatus 11 used for the water treatment apparatus which concerns on this invention.
As shown in FIG. 1, the electrical desalting apparatus 11 has an introduction path for the treated water 12 and a discharge path for the impurity desalted treated water 13. A diaphragm 14 arranged, an electrode 17 for direct current application arranged on the outside of the diaphragm, a desalting part 15 formed between the diaphragms, and a concentration part 16 formed between each diaphragm and each electrode. The to-be-treated water 12 that is configured and concentrated with ammonia is introduced into the desalting unit 15 and discharged as desalted processing water 13, and the concentrated water of removed impurities is discharged from the concentrating unit 16 as impurity concentrated drainage 19.

電気脱塩装置11は、図1に示すように、電極17に直流印加を行なうことで脱塩処理が行なわれる。その際、電気脱塩装置11の筐体と電極17や、電気脱塩装置11の筐体と隔膜14、電極17と隔膜14、及び対をなす隔膜14同士はそれぞれ互いに電気的に絶縁することが望ましい。   As shown in FIG. 1, the electrical desalting apparatus 11 performs a desalting process by applying a direct current to the electrode 17. At that time, the case and the electrode 17 of the electrodeionization device 11, the case and the diaphragm 14 of the electrodeionization device 11, the electrode 17 and the membrane 14, and the paired membranes 14 are electrically insulated from each other. Is desirable.

また、電気脱塩装置11内の脱塩部15及び濃縮部16に満たされる液は、電気脱塩装置11の内部において、隔膜16以外の場所から液体が混ざり合わないことが望ましい。電極17は、脱塩時に不純物脱塩処理水13に電極17の構成成分が溶出しにくい材質で構成され、電気脱塩装置11の運用温度、電流安定域で安定に使用できる材料が選定される。   Further, it is desirable that the liquid filled in the desalting unit 15 and the concentration unit 16 in the electric desalting apparatus 11 does not mix with liquid from a place other than the diaphragm 16 inside the electric desalting apparatus 11. The electrode 17 is made of a material that does not easily elute the constituent components of the electrode 17 into the impurity demineralized water 13 during desalting, and a material that can be used stably in the operating temperature and current stable range of the electric desalting apparatus 11 is selected. .

電気脱塩装置11内の脱塩部15と濃縮部16とを仕切る隔膜14は、対を成して対向配置され、互いに等間隔に、電極17と平行に配置される。隔膜14は、金属、合金、セラミックス、あるいは耐熱性樹脂系等の素材で構成され、その構成成分が、蒸気発生器ブローダウン水である高温の被処理水であっても、脱塩処理運用環境で溶出、腐食しにくい材料が選定されて利用される。隔膜14は、例えば、平板(プレート)状の平行配置や、同心円筒状(楕円筒状、角筒状)の平行配置構成が採用される。   The diaphragms 14 that partition the desalting unit 15 and the concentration unit 16 in the electric desalting apparatus 11 are arranged to face each other in pairs, and are arranged in parallel to the electrodes 17 at equal intervals. The diaphragm 14 is made of a material such as a metal, an alloy, ceramics, or a heat-resistant resin, and even if the component is high-temperature treated water that is steam generator blowdown water, the desalination treatment operation environment The materials that are difficult to elute and corrode are selected and used. For the diaphragm 14, for example, a parallel arrangement of a flat plate (plate) shape or a parallel arrangement configuration of a concentric cylindrical shape (elliptical tube shape, rectangular tube shape) is adopted.

電気脱塩装置11において、被処理液12が脱塩部15に導入され、導入された被処理水12に含まれるイオン成分は、電気脱塩装置11の内部で電極17によって印加される電位勾配によって、脱塩部15と接する隔膜14を透過して脱塩部15の外へ電気泳動により移動する。結果として脱塩部15から不純物脱塩処理水13として電気脱塩装置11によりイオン除去された処理水が排出される。   In the electrical desalting apparatus 11, the liquid 12 to be treated is introduced into the desalting unit 15, and the ionic component contained in the introduced water 12 to be treated is a potential gradient applied by the electrode 17 inside the electrical desalting apparatus 11. As a result, the membrane 14 passes through the diaphragm 14 in contact with the desalting unit 15 and moves out of the desalting unit 15 by electrophoresis. As a result, treated water from which ions have been removed by the electrical desalting apparatus 11 is discharged from the desalting unit 15 as the impurity desalted treated water 13.

電気脱塩装置11で脱塩部15での電位勾配によって脱塩部15及び隔膜14の外に配置される濃縮室16へ移動したイオン成分は、不純物濃縮排水19として電気脱塩装置11外に排出される。   The ionic component moved to the concentration chamber 16 disposed outside the desalting unit 15 and the diaphragm 14 due to the potential gradient in the desalting unit 15 in the electric desalination unit 11 is transferred to the outside of the electric desalination unit 11 as the impurity concentration drainage 19. Discharged.

ここで、図1に示した電気脱塩装置11を用いた、アンモニア及び不純物イオンの除去性能試験結果を以下に示す。
[評価試験条件]
電気脱塩セル
電極面積 79cm2
脱塩部体積 47cm3
脱塩部幅 0.6cm
被処理水給水量 6600g/h
印加電圧 60V
不純物濃縮排水量 極微量(ほぼ0g/h)
処理時間 60分
Here, the removal performance test results of ammonia and impurity ions using the electric desalting apparatus 11 shown in FIG. 1 are shown below.
[Evaluation test conditions]
Electrodesalting cell Electrode area 79cm 2
Desalination part volume 47cm 3
Desalination width 0.6cm
Untreated water supply 6600g / h
Applied voltage 60V
Impurity-concentrated wastewater Trace amount (almost 0 g / h)
Processing time 60 minutes

[評価試験結果]
25℃下での水素イオン濃度pH9及びpH10に調整したアンモニア水にナトリウムイオン、硫酸イオンを20〜30μg/L添加し、脱塩処理した結果を図2に示す。
図2に示すように、pH9及びpH10環境下では、100℃以上の高温下では、アンモニア除去率が10%以下となった。つまり、処理水中にアンモニアが90%以上残存した処理水を得ることができた。
[Evaluation test results]
FIG. 2 shows the result of adding 20-30 μg / L of sodium ions and sulfate ions to ammonia water adjusted to pH 9 and pH 10 at 25 ° C., followed by desalting.
As shown in FIG. 2, in the environment of pH 9 and pH 10, the ammonia removal rate was 10% or less at a high temperature of 100 ° C. or higher. That is, a treated water in which 90% or more of ammonia remained in the treated water could be obtained.

上記評価試験結果における、ナトリウムイオンと硫酸イオン除去率の、アンモニア除去率に対する除去選択の割合、すなわち対アンモニア除去効率比を図3に示す。
常温下と比べ、100℃以上の高温下では、アンモニアに対するナトリウムイオンと硫酸イオン除去選択率が高くなる結果を得た。
FIG. 3 shows the removal selection ratio of the sodium ion and sulfate ion removal rate to the ammonia removal rate, that is, the ammonia removal efficiency ratio in the evaluation test results.
Compared with normal temperature, the sodium ion and sulfate ion removal selectivity with respect to ammonia increased at a high temperature of 100 ° C. or higher.

以上の評価試験結果から、100℃以上、pH9以上では、アンモニア回収率が90%以上となり、また、アンモニア除去に対する不純物イオンの除去選択比は10以上となった。このことから、100度以上、更にpH9以上において、アンモニアと不純物イオンの選択除去比4倍以上となる。   From the above evaluation test results, at 100 ° C. or higher and pH 9 or higher, the ammonia recovery rate was 90% or higher, and the impurity ion removal selectivity to ammonia removal was 10 or higher. Therefore, the selective removal ratio of ammonia and impurity ions is 4 times or more at 100 degrees or more and further at pH 9 or more.

本除去性能評価試験におけるアンモニアのイオン化平衡は式1で表される。
NH3+H2O=NH4 ++OH- (式1)
式1において、高温になるほど水(H2O)の密度が低下し、アンモニウムイオン割合が小さくなること(非特許文献2)、及びpH上昇に伴い、高温効果同様に、アンモニウムイオン割合が小さくなり、被処理水中では大部分がアンモニアとして存在するため、電気的に除去されるアンモニウムイオン割合が小さくなり、結果としてアンモニア除去を抑制することができる。
The ionization equilibrium of ammonia in this removal performance evaluation test is expressed by Equation 1.
NH 3 + H 2 O═NH 4 + + OH (Formula 1)
In Equation 1, as the temperature increases, the density of water (H 2 O) decreases, the ammonium ion ratio decreases (Non-Patent Document 2), and the pH increases, the ammonium ion ratio decreases as well as the high temperature effect. Since most of the water to be treated exists as ammonia, the proportion of ammonium ions that are electrically removed is reduced, and as a result, ammonia removal can be suppressed.

式1で表されるアンモニアのイオン化平衡におけるイオン割合を図4に示す。
図4から、高温・高濃度になるほど、アンモニウムイオン割合は低下することと、図2に示したpH9におけるアンモニア除去率低下傾向は同様の傾向を示すことがわかる。
The ion ratio in the ionization equilibrium of ammonia represented by Formula 1 is shown in FIG.
From FIG. 4, it can be seen that the higher the temperature and the higher the concentration, the lower the ammonium ion ratio, and the tendency of the ammonia removal rate decreasing at pH 9 shown in FIG.

特に、アンモニア濃度1mg/L以上となると、アンモニアのイオン化割合は50%以下となり、高温化により、このイオン化は更に抑制されるため、本発明におけるアンモニア除去抑制効果が高まる。   In particular, when the ammonia concentration is 1 mg / L or more, the ionization ratio of ammonia becomes 50% or less, and this ionization is further suppressed by increasing the temperature, so that the ammonia removal suppressing effect in the present invention is enhanced.

一方、高温水中のイオン導電率は、高温になるほど増加することが知られているが(非特許文献1)、これは高温化によって電場中におけるイオン移動が促進することによる。これはアンモニアのイオン化割合低下と、不純物イオン移動促進の相乗効果によるもので、高温下ではアンモニアと不純物イオンの選択分離性が高まる。   On the other hand, although it is known that the ionic conductivity in high temperature water will increase, so that it becomes high temperature (nonpatent literature 1), this is because the ion movement in an electric field accelerates by high temperature. This is due to the synergistic effect of decreasing the ionization rate of ammonia and promoting the movement of impurity ions, and the selective separation of ammonia and impurity ions is enhanced at high temperatures.

第1の実施形態に示された水処理装置によれば、温度やpH、アンモニア濃度などの運用環境を適切に選定することにより、不純物イオンに対し高濃度で存在する薬剤注入物質のアンモニアの大部分を保持しつつ被処理水12から不純物イオンの除去を行うことができる。   According to the water treatment apparatus shown in the first embodiment, by appropriately selecting the operating environment such as temperature, pH, and ammonia concentration, the amount of ammonia in the drug injection substance that exists at a high concentration relative to the impurity ions can be increased. Impurity ions can be removed from the treated water 12 while retaining the portion.

[第2の実施形態]
本発明に係る水処理装置の第2の実施形態を図5を用いて説明する。
この実施形態の水処理装置を説明するにあたり、図1〜図4に示される第の1実施形態に係る水処理装置と同じ構成及び作用には、同一符号を付して重複説明を省略あるいは簡素化する。
図5は第1の実施形態における、硫酸イオン成分の除去特性を示す図である。なお、図5中に示したpHは、25℃下での水素イオン濃度である。
[Second Embodiment]
A second embodiment of the water treatment apparatus according to the present invention will be described with reference to FIG.
In the description of the water treatment apparatus of this embodiment, the same components and operations as those of the water treatment apparatus according to the first embodiment shown in FIGS. Turn into.
FIG. 5 is a diagram showing the removal characteristic of the sulfate ion component in the first embodiment. In addition, pH shown in FIG. 5 is a hydrogen ion concentration under 25 degreeC.

図2、図3に示したように、100℃以上での脱塩処理によりアンモニアを保持したイオン除去が可能となるが、図5に示した硫酸イオン成分については、200℃を超えると、除去率が低下する傾向がある。これは、式2、式3で示される硫酸成分のイオン化が、高温下では抑制される傾向にあること(非特許文献1)、式2、式3に示される硫酸のイオン化が水素イオン(H+)濃度、即ちpHに依存することに起因する。
2SO4=H++HSO4 - (式2)
HSO4 -=H++SO4 2- (式3)
このため、例えば、脱塩処理時の温度範囲を、pH9下では100℃以上200℃以下、pH10以下では100℃以上250℃以下の範囲で運用することが望ましい。
As shown in FIG. 2 and FIG. 3, it is possible to remove ions retaining ammonia by desalting at 100 ° C. or higher. However, the sulfate ion component shown in FIG. The rate tends to decrease. This is because the ionization of the sulfuric acid component represented by Formula 2 and Formula 3 tends to be suppressed at high temperatures (Non-Patent Document 1), and the ionization of sulfuric acid represented by Formula 2 and Formula 3 is a hydrogen ion (H + ) Due to concentration, ie pH dependence.
H 2 SO 4 = H + + HSO 4 (Formula 2)
HSO 4 = H + + SO 4 2− (Formula 3)
For this reason, for example, it is desirable to operate the temperature range during the desalting treatment in a range of 100 ° C. or more and 200 ° C. or less at pH 9 and 100 ° C. or more and 250 ° C. or less at pH 10 or less.

図5の場合、例えば硫酸イオン除去50%以上となる上限温度として、被処理水pH値を一般的な熱力学的温度依存性を表す式である式5〜7に適用し、式4で求められる温度T(K)の高温度側の解を適用する。ただし、これは、本実施例における電気脱塩装置11の脱塩条件によって求めたものである。
A/T2+B/T+C=0 ; T:温度(K) (式4)
A=91416314×pH−1117340318 (式5)
B=−514858×pH+6080973 (式6)
C=698.38×pH−8021.1 (式7)
In the case of FIG. 5, for example, as an upper limit temperature at which sulfate ion removal is 50% or more, the pH value of the water to be treated is applied to Formulas 5 to 7, which are general thermodynamic temperature dependence formulas, and is obtained by Formula 4. Apply the solution on the higher temperature side of the measured temperature T (K). However, this is obtained according to the desalting conditions of the electric desalting apparatus 11 in this embodiment.
A / T 2 + B / T + C = 0; T: temperature (K) (formula 4)
A = 91416314 × pH−1117340318 (Formula 5)
B = −514858 × pH + 6080973 (Formula 6)
C = 698.38 × pH−8021.1 (Formula 7)

このように、第2の実施形態によれば、被処理水pHに応じて、処理上限温度を設定することにより、温度やpH、アンモニア濃度などの運用環境を適切に選定し、不純物イオンに対し高濃度で存在する薬剤注入物質のアンモニアの大部分を保持しつつ被処理水12から不純物イオンを除去できる。   Thus, according to the second embodiment, by setting the treatment upper limit temperature according to the treated water pH, the operating environment such as temperature, pH, ammonia concentration, etc. is appropriately selected, and the impurity ions are selected. Impurity ions can be removed from the water to be treated 12 while retaining most of the ammonia in the drug injection substance present at a high concentration.

[第3の実施形態]
本発明の第3の実施形態に係る水処理装置を図6を用いて説明する。
図6は、本発明の第3の実施形態に係る水処理装置の構成図である。
この実施形態の水処理装置を説明するに当り、図1〜図5に示される水処理方法及び装置と同じ構成及び作用には、同一符号を付して重複説明を省略あるいは簡素化する。
[Third Embodiment]
A water treatment apparatus according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a configuration diagram of a water treatment device according to the third embodiment of the present invention.
In describing the water treatment apparatus of this embodiment, the same components and operations as those of the water treatment method and apparatus shown in FIGS. 1 to 5 are denoted by the same reference numerals, and redundant description is omitted or simplified.

本第3の実施形態に係る水処理装置は、加圧水型原子力発電所に適用するもので、蒸気発生器1が発電システム系統に設けられ、系統はこの蒸気発生器1により加圧水型原子炉1次系と2次系に分けられる。   The water treatment apparatus according to the third embodiment is applied to a pressurized water nuclear power plant, and a steam generator 1 is provided in a power generation system system, and the system is connected to the pressurized water reactor primary by the steam generator 1. Divided into systems and secondary systems.

原子炉(図示せず)で発生した高温高圧水は蒸気発生器1に送られ、ここで蒸気発生器1に供給される給水と熱交換される。蒸気発生器1で発生した蒸気は高圧タービン2、湿分分離器3を経由して低圧タービン4に供給され、高圧タービン2及び低圧タービン4をタービン駆動させて発電をする。   High-temperature and high-pressure water generated in a nuclear reactor (not shown) is sent to the steam generator 1 where it is heat-exchanged with water supplied to the steam generator 1. The steam generated in the steam generator 1 is supplied to the low-pressure turbine 4 via the high-pressure turbine 2 and the moisture separator 3, and the high-pressure turbine 2 and the low-pressure turbine 4 are driven to generate power.

高圧タービン2へ供給された蒸気の一部は、高圧抽気2−1として、高圧給水加熱器9の熱源に用いたのち、蒸気発生器1の給水系統へ供給され、湿分分離器3にて蒸気から除去された水分は、蒸気発生器1の給水系統へ供給される。また、低圧タービン4から抽気された低圧抽気4−1は、低圧給水加熱器7の熱源に用いられた後に、蒸気発生器1の給水系統へ供給され、低圧タービン4から排出される主蒸気は復水器5で水になり、復水ポンプ5−1を介して、蒸気発生器1の給水系統へ導入される。   A part of the steam supplied to the high-pressure turbine 2 is used as a heat source for the high-pressure feed water heater 9 as high-pressure extraction air 2-1, and then supplied to the water supply system of the steam generator 1. The water removed from the steam is supplied to the water supply system of the steam generator 1. The low-pressure extraction 4-1 extracted from the low-pressure turbine 4 is supplied to the water supply system of the steam generator 1 after being used as a heat source for the low-pressure feed water heater 7, and the main steam discharged from the low-pressure turbine 4 is It becomes water in the condenser 5 and is introduced into the water supply system of the steam generator 1 through the condensate pump 5-1.

前記給水系統では、復水ポンプ5−1から復水脱塩器6にて水質浄化し、薬剤20を注入することにより水質調整し、低圧給水加熱器7での温度調節、脱気器8での気液分離、高圧給水加熱器9での温度調節を経て、蒸気発生器1へ給水される。   In the water supply system, the water quality is purified by the condensate demineralizer 6 from the condensate pump 5-1, the water quality is adjusted by injecting the chemical 20, the temperature is adjusted by the low-pressure feed water heater 7, and the deaerator 8 is used. After the gas-liquid separation and the temperature adjustment in the high-pressure feed water heater 9, water is supplied to the steam generator 1.

また、蒸気発生器1には、蒸気発生器1内の伝熱管の腐食や伝熱性能低下を防止するために、蒸気発生器1の水の一部を排出する蒸気発生器ブローダウン水排出経路10が配置される。このブローダウン水排出経路10は復水器5側に延び、復水器5の下流かつ復水脱塩器6上流側に接続される。ブローダウン水排出経路10の途中には、第1の実施形態で説明した電気脱塩装置11が設けられる。   Further, the steam generator 1 has a steam generator blowdown water discharge path for discharging a part of the water of the steam generator 1 in order to prevent corrosion of the heat transfer pipe in the steam generator 1 and deterioration of heat transfer performance. 10 is arranged. This blowdown water discharge path 10 extends to the condenser 5 side and is connected to the downstream side of the condenser 5 and the upstream side of the condensate demineralizer 6. In the middle of the blow-down water discharge path 10, the electric desalination apparatus 11 described in the first embodiment is provided.

なお、電気脱塩装置11には蒸気発生器1のブローダウン水がバイパスされるバイパス経路10−1が設けられる。蒸気発生器1から排出されるブローダウン水は、蒸気発生器ブローダウン水排出経路10を経て、被処理水12として電気脱塩装置11に導入され、脱塩処理水13は蒸気発生器1の給水系統へと送られる。   In addition, the electric desalination apparatus 11 is provided with a bypass path 10-1 through which blowdown water of the steam generator 1 is bypassed. The blowdown water discharged from the steam generator 1 is introduced into the electric desalination apparatus 11 as the treated water 12 through the steam generator blowdown water discharge path 10, and the desalted water 13 is supplied to the steam generator 1. Sent to the water supply system.

この蒸気発生器ブローダウン水排出経路10の経路上には、フラッシュタンクや熱交換器といった構成機器を、必要に応じて配置してもよく(図示せず)、この機器構成等については、既存の技術を用いればよい。しかし、電気脱塩装置11へ送られるブローダウン水の水量や温度の変動が少なくなるような構成・運用にすることが望ましい。   On the path of the steam generator blowdown water discharge path 10, components such as a flash tank and a heat exchanger may be arranged as necessary (not shown). This technique may be used. However, it is desirable that the configuration and operation be such that fluctuations in the amount and temperature of blowdown water sent to the electric desalting apparatus 11 are reduced.

ところで、蒸気発生器ブローダウン水排出経路10に設けられた電気脱塩装置11は、高温での不純物イオン脱塩操作が可能なため、従来の水処理装置において必要であった、蒸気発生器ブローダウン水処理時の冷却操作が不要となり、常温にするまでの冷却操作量を低減させることができる。高温高圧下で運用する脱塩装置の形態としては、図2に示すものに限定されず、種々の脱塩装置、例えば特許文献7乃至9に開示されているような脱塩装置を採用することができる。   By the way, since the electric desalination apparatus 11 provided in the steam generator blowdown water discharge path 10 can perform the impurity ion desalination operation at a high temperature, the steam generator blow required for the conventional water treatment apparatus is required. The cooling operation at the time of the down water treatment becomes unnecessary, and the amount of the cooling operation up to normal temperature can be reduced. The form of the desalting apparatus operated under high temperature and high pressure is not limited to that shown in FIG. 2, and various desalting apparatuses such as those disclosed in Patent Documents 7 to 9 are employed. Can do.

電気脱塩装置11では、電気脱塩装置11内の脱塩部15で蒸気発生器ブローダウン水中の不純物が除去され、pH調整剤であるアンモニアの多くを保持した不純物脱塩処理水13が被処理水12が持つ熱量を保有したまま排出される。   In the electrical desalting apparatus 11, impurities in the steam generator blowdown water are removed by the desalting unit 15 in the electrical desalting apparatus 11, and the impurity desalinized treated water 13 that retains much of the ammonia as a pH adjuster is covered. It is discharged while retaining the heat quantity of the treated water 12.

この不純物脱塩処理水13は、給水系の例えば脱気器8下流側に戻され、蒸気発生器1に還流される。還流された処理水13は蒸気発生器1で原子炉からの高温高圧水と熱交換されて蒸気化され、高圧タービン2、低圧タービン4に供給される。   The impurity demineralized treated water 13 is returned to, for example, the downstream side of the deaerator 8 of the water supply system and is returned to the steam generator 1. The treated water 13 that has been refluxed is heat-exchanged with the high-temperature high-pressure water from the nuclear reactor in the steam generator 1 to be vaporized and supplied to the high-pressure turbine 2 and the low-pressure turbine 4.

その際、電気脱塩装置11で処理された不純物脱塩処理水13の供給箇所は、電気脱塩装置11に供給される被処理水温度に応じて選定すればよいが、不純物脱塩処理水13が、特に、高温で脱塩処理した処理水である場合は、高温での運用可能な箇所を選定することが望ましい。不純物脱塩処理水13の給水系への供給には、供給先の温度圧力等を考慮し、任意にポンプ等の機器を設置して接続される。   At that time, the supply location of the impurity demineralized water 13 treated by the electric desalting apparatus 11 may be selected according to the temperature of the water to be treated supplied to the electric desalting apparatus 11. In particular, when 13 is treated water that has been desalted at a high temperature, it is desirable to select a location that can be operated at a high temperature. The supply of the impurity desalted treated water 13 to the water supply system is connected by arbitrarily installing equipment such as a pump in consideration of the temperature and pressure of the supply destination.

また、高圧タービン2からのタービン抽気(高圧蒸気)を熱源として用いる高圧給水加熱器9のドレン水をPWR2次系へ供給するドレン系統が配置されている場合、このドレン系統へ不純物脱塩処理水13を供給してもよい。   Moreover, when the drain system which supplies the drain water of the high voltage | pressure feed water heater 9 which uses the turbine extraction (high pressure steam) from the high pressure turbine 2 as a heat source to the PWR secondary system is arrange | positioned, impurity desalination treated water is supplied to this drain system. 13 may be supplied.

さらに、電気脱塩装置11は、同一形態の装置を複数台配置し、蒸気発生器1のブローダウン水の連続浄化を実施することも可能であり、その際、水質浄化と電気脱塩装置11内の洗浄操作を切り替えて実施してもよい。このように、電気脱塩装置11を複数台配置することにより、PWR2次系系統水の浄化を常時安定して実施することができる。   Furthermore, the electric desalination apparatus 11 can arrange a plurality of apparatuses of the same form and can carry out continuous purification of blow-down water of the steam generator 1. At that time, water purification and the electric desalination apparatus 11 can be performed. The cleaning operation may be switched. In this way, by disposing a plurality of the electrical desalting apparatuses 11, it is possible to always stably purify the PWR secondary system water.

本第3の実施形態によれば、電気脱塩装置11の高温での脱塩操作によって、蒸気発生器ブローダウン水が持つ熱量を保持し、かつ、アンモニア量を低減させることがないので、蒸気発生器1へ供給する熱及びアンモニアのリサイクルと、不純物イオン浄化を可能とするとともに、薬剤量の低減により低コスト化を図ることができる。   According to the third embodiment, the desalting operation of the electric desalting apparatus 11 at a high temperature maintains the heat amount of the steam generator blowdown water and does not reduce the ammonia amount. Recycling of heat and ammonia supplied to the generator 1 and purification of impurity ions are possible, and the cost can be reduced by reducing the amount of chemicals.

このように、高温でアンモニアと不純物イオンの選択分離が可能となるため、不純物処理水13は、アンモニアを残存した状態で、被処理水12の給水源へ返送することで、不純物の浄化、アンモニアのリサイクルが可能となる。さらに、高温で処理することにより、蒸気発生器給水系統での熱利用を大幅に改善することができる。   Since ammonia and impurity ions can be selectively separated at a high temperature in this manner, the impurity-treated water 13 is returned to the water supply source of the water to be treated 12 in a state where ammonia remains, thereby purifying the impurities and ammonia. Can be recycled. Furthermore, heat treatment in the steam generator water supply system can be greatly improved by processing at a high temperature.

[第4の実施形態]
本発明の第4の実施形態に係る水処理装置を図7を用いて説明する。
図7は、本発明の第4の実施形態に係る水処理装置の構成図である。
この実施形態の水処理装置を説明するに当り、図1〜図6に示される水処理装置と同じ構成及びその機能には、同一符号を付して重複説明を省略あるいは簡素化する。
[Fourth Embodiment]
A water treatment apparatus according to a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a configuration diagram of a water treatment device according to the fourth embodiment of the present invention.
In the description of the water treatment apparatus of this embodiment, the same components and functions as those of the water treatment apparatus shown in FIGS. 1 to 6 are denoted by the same reference numerals, and redundant description is omitted or simplified.

第4の実施形態に示された水処理装置は、第3の実施形態と同様に加圧水型原子力発電所の2次系に適用されるが、第3の実施形態と異なる点は、2次系の蒸気発生器ブローダウン水排出経路10に設けられた電気脱塩装置11より排出される不純物濃縮排水18を、既設の復水浄化設備である復水脱塩器6に供給するものである。   The water treatment apparatus shown in the fourth embodiment is applied to the secondary system of the pressurized water nuclear power plant as in the third embodiment, but the point different from the third embodiment is the secondary system. Impurities-concentrated waste water 18 discharged from the electric desalination apparatus 11 provided in the steam generator blowdown water discharge path 10 is supplied to the condensate demineralizer 6 which is an existing condensate purification facility.

この供給経路18−1上には、必要に応じて熱交換機器等の熱回収装置30が配置される。この熱回収装置30については、既存のものを用いればよく、特にその形態等は限定しないが、熱回収装置30で回収された熱は、加圧水型原子力発電所の2次系で再利用されることが好ましい。   A heat recovery device 30 such as a heat exchange device is disposed on the supply path 18-1 as necessary. The heat recovery device 30 may be an existing one, and its form and the like are not particularly limited, but the heat recovered by the heat recovery device 30 is reused in the secondary system of the pressurized water nuclear power plant. It is preferable.

ここで、復水脱塩器6は、復水脱塩器6の内部に充填されるイオン交換樹脂のメンテナンス等のため、複数台並列配置され、供給経路を切り替えることが可能な形態をとっている。   Here, the condensate demineralizer 6 has a configuration in which a plurality of condensate demineralizers 6 are arranged in parallel and the supply path can be switched for maintenance of the ion exchange resin filled in the condensate demineralizer 6. Yes.

電気脱塩装置11から排出される不純物イオンを濃縮した不純物濃縮排水18は、複数配置する復水脱塩器6のうち、復水を浄化運転中の復水脱塩器以外の脱塩器へ導入し、濃縮した不純物イオンを浄化する。   The impurity-concentrated waste water 18 that concentrates the impurity ions discharged from the electric desalting apparatus 11 is supplied to a desalinator other than the condensate demineralizer during the purification operation among a plurality of condensate demineralizers 6 arranged. Purify impurity ions introduced and concentrated.

復水と不純物濃縮排水18を区別して、復水脱塩器6で浄化することは、復水脱塩器6にて浄化する被処理水の量ならびに質を区別することにより、復水脱塩器6に充填されているイオン交換樹脂の性能や、復水脱塩器6から排出され蒸気発生器1へ供給する原水質を維持するために有効である。また、電気脱塩装置11から排出される不純物濃縮排水18中の不純物を浄化し、水の再利用を行うことによって、加圧水型原子力発電所の2次系系統水の補給水量を削減することができる。   Differentiating the condensate and the impurity-concentrated waste water 18 and purifying them with the condensate demineralizer 6 means that the condensate demineralization is performed by distinguishing the quantity and quality of the water to be treated that is purified by the condensate demineralizer 6 This is effective for maintaining the performance of the ion exchange resin filled in the vessel 6 and the quality of the raw water discharged from the condensate demineralizer 6 and supplied to the steam generator 1. Moreover, the amount of supplementary water in the secondary system water of the pressurized water nuclear power plant can be reduced by purifying impurities in the impurity-concentrated waste water 18 discharged from the electric desalination apparatus 11 and reusing the water. it can.

本第4の実施形態に係る水処理装置によれば、濃縮不純物排水18を覆水脱塩器6に供給することにより、蒸気発生器1のブローダウン水中に含まれる不純物イオンの浄化時に電気脱塩装置11から排出される濃縮不純物排水18を安定に浄化しつつ給水系の水質維持を可能とする。その結果、不純物イオンに対し高濃度で存在するアンモニアの大部分を保持・リサイクルしつつ不純物の除去を行うことができる。   According to the water treatment apparatus according to the fourth embodiment, by supplying the concentrated impurity waste water 18 to the dewatering desalinator 6, electric desalination is performed when purifying impurity ions contained in the blow-down water of the steam generator 1. It is possible to maintain the water quality of the water supply system while stably purifying the concentrated impurity waste water 18 discharged from the apparatus 11. As a result, impurities can be removed while retaining and recycling most of the ammonia present at a high concentration relative to the impurity ions.

さらに、高温下での脱塩処理であっても、不純物イオン脱塩浄化負荷やアンモニア消費、及び熱損失が少ない水処理を実現でき、原子力プラントを効率よく適切に運用することができる。   Furthermore, even in the desalting treatment at high temperature, it is possible to realize water treatment with less impurity ion desalting and purification load, ammonia consumption, and less heat loss, and the nuclear power plant can be efficiently and appropriately operated.

本発明の第1の実施形態に係る脱塩装置の模式図。The schematic diagram of the desalination apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るアンモニア除去率の温度依存性を示す図。The figure which shows the temperature dependence of the ammonia removal rate which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るアンモニア除去に対する不純物イオン除去の選択比の温度依存性を示す図。The figure which shows the temperature dependence of the selection ratio of impurity ion removal with respect to ammonia removal which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るアンモニアイオン化割合の温度依存性を示す図。The figure which shows the temperature dependence of the ammonia ionization ratio which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る硫酸イオン除去率の温度依存性を示す図。The figure which shows the temperature dependence of the sulfate ion removal rate which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る水処理装置の構成図。The block diagram of the water treatment apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る水処理装置の構成図。The block diagram of the water treatment apparatus which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1…蒸気発生器、2…高圧タービン(蒸気タービン)、2−1…高圧抽気、3…湿分分離器、4…低圧タービン(蒸気タービン)、4−1…低圧抽気、5…復水器、5−1…復水ポンプ、6…復水脱塩器、7…低圧給水加熱器(低圧ヒータ)、8…脱気器、9…高圧給水加熱器(高圧ヒータ)、10…蒸気発生器ブローダウン水排出経路、10−1…蒸気発生器ブローダウン水バイパス経路、11…脱塩装置、12…被処理水、13…不純物脱塩処理水、14…隔膜、15…脱塩部、16…濃縮部、17…電極、18…不純物濃縮排水、18−1…供給経路、20…薬剤、30…熱回収装置。   DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... High pressure turbine (steam turbine), 2-1 ... High pressure extraction, 3 ... Moisture separator, 4 ... Low pressure turbine (steam turbine), 4-1 ... Low pressure extraction, 5 ... Condenser 5-1 ... Condensate pump, 6 ... Condensate demineralizer, 7 ... Low pressure feed water heater (low pressure heater), 8 ... Deaerator, 9 ... High pressure feed water heater (high pressure heater), 10 ... Steam generator Blowdown water discharge path, 10-1 ... Steam generator blowdown water bypass path, 11 ... Desalination device, 12 ... Water to be treated, 13 ... Impurity desalted water, 14 ... Separator, 15 ... Desalination section, 16 DESCRIPTION OF SYMBOLS ... Concentration part, 17 ... Electrode, 18 ... Impurity concentration drainage, 18-1 ... Supply path, 20 ... Drug, 30 ... Heat recovery apparatus.

Claims (8)

アンモニアを含有する被処理水を、一対の隔膜と前記一対の隔膜の外側に対向配置される電極に直流電圧を印加する脱塩装置により処理する水処理方法において、前記被処理水を100℃以上で処理することにより、不純物イオン成分が除去されたアンモニアが濃縮された処理水を得ることを特徴とする水処理方法。   In a water treatment method for treating water to be treated containing ammonia by a desalting apparatus that applies a DC voltage to a pair of diaphragms and electrodes disposed opposite to the outside of the pair of diaphragms, the water to be treated is 100 ° C. or higher. The water treatment method characterized by obtaining the treated water in which the ammonia from which the impurity ion component was removed was concentrated by processing by this. 前記被処理水がpH9以上である請求項1記載の水処理方法。   The water treatment method according to claim 1, wherein the water to be treated has a pH of 9 or more. 前記被処理水中のアンモニア濃度が1mg/L以上である請求項1記載の水処理方法。   The water treatment method according to claim 1, wherein the ammonia concentration in the water to be treated is 1 mg / L or more. 前記被処理水の処理温度を前記被処理水のpHによって決定することを特徴とする請求項1乃至3いずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein a treatment temperature of the water to be treated is determined by a pH of the water to be treated. 被処理水が発電システムの蒸気発生器のブローダウン水であることを特徴とする、請求項1乃至4いずれか1項に記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the water to be treated is blowdown water of a steam generator of a power generation system. 前記発電システムが、加圧水型原子力発電プラントであることを特徴とする請求項5記載の水処理方法。   The water treatment method according to claim 5, wherein the power generation system is a pressurized water nuclear power plant. 前記脱塩装置から排出された処理水を前記蒸気発生器の給水系統に返送することを特徴とする、請求項5又は6記載の水処理方法。   The water treatment method according to claim 5 or 6, wherein the treated water discharged from the desalination apparatus is returned to a water supply system of the steam generator. アンモニアを含有する蒸気発生器ブローダウン水からなる被処理水を、一対の隔膜と前記一対の隔膜の外側に対向配置される電極に直流電圧を印加する脱塩装置により処理し、蒸気発生器の給水源に再利用する水処理装置において、前記被処理水を100℃以上で処理することにより、不純物イオン成分が除去されたアンモニアが濃縮された処理水を得ることを特徴とする水処理装置。   Water to be treated comprising steam generator blowdown water containing ammonia is treated by a desalting apparatus that applies a DC voltage to a pair of diaphragms and electrodes disposed opposite to the outside of the pair of diaphragms, In the water treatment apparatus to be reused as a water supply source, the water to be treated is obtained by treating the water to be treated at 100 ° C. or higher to obtain the treated water in which the ammonia from which the impurity ion component has been removed is concentrated.
JP2008123502A 2008-05-09 2008-05-09 Water treatment method and water treatment apparatus Expired - Fee Related JP4982425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123502A JP4982425B2 (en) 2008-05-09 2008-05-09 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123502A JP4982425B2 (en) 2008-05-09 2008-05-09 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2009268999A true JP2009268999A (en) 2009-11-19
JP4982425B2 JP4982425B2 (en) 2012-07-25

Family

ID=41436017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123502A Expired - Fee Related JP4982425B2 (en) 2008-05-09 2008-05-09 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP4982425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052354A (en) * 2011-09-05 2013-03-21 Toshiba Corp Plant water treatment apparatus, method of controlling electrical desalting apparatus, and steam turbine plant
JP2013113653A (en) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd Pressurized-water reactor and method for removing reactor core decay heat
JP2014231935A (en) * 2013-05-28 2014-12-11 三菱重工業株式会社 Boiler water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191070B2 (en) 2012-05-25 2017-09-06 三菱重工環境・化学エンジニアリング株式会社 Ammonia treatment system

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581782A (en) * 1978-12-18 1980-06-20 Mitsubishi Heavy Ind Ltd Treatment method for flue gas desulfurization waste water
JPH09110570A (en) * 1995-10-17 1997-04-28 Comson Corp Production of organic fertilizer and apparatus therefor
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JPH1164575A (en) * 1997-08-27 1999-03-05 Japan Organo Co Ltd Secondary system line water treatment device for pressurized-water nuclear power plant
JPH1172459A (en) * 1997-08-28 1999-03-16 Central Res Inst Of Electric Power Ind Method for at-site-monitoring for corrosion environment in boiling heat-transfer interstice
JP2000171585A (en) * 1998-12-02 2000-06-23 Japan Organo Co Ltd Condensate processing system and condensate processing method
JP2000258589A (en) * 1999-03-11 2000-09-22 Japan Organo Co Ltd Condensate treatment system and method
JP2001079552A (en) * 1999-09-14 2001-03-27 Japan Organo Co Ltd Electric deionizing device
JP2004091224A (en) * 2002-08-29 2004-03-25 Kurita Water Ind Ltd Recovery apparatus of fluorine aqueous solution or hydrofluoric acid aqueous solution, its recovery method, and circulating and using system of the same
JP2005329314A (en) * 2004-05-19 2005-12-02 Kansai Electric Power Co Inc:The Apparatus for demineralizing condensate and its operation method
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method
JP2006226697A (en) * 2005-02-15 2006-08-31 Mitsubishi Heavy Ind Ltd Cooling controller, cooling control method and plant using cooling controller
JP2007054767A (en) * 2005-08-26 2007-03-08 Miyama Kk Recovery method of ammonia, and using method of ammonia
JP2007090299A (en) * 2005-09-30 2007-04-12 Japan Organo Co Ltd Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP2008178826A (en) * 2007-01-25 2008-08-07 Toshiba Corp Water treatment apparatus
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581782A (en) * 1978-12-18 1980-06-20 Mitsubishi Heavy Ind Ltd Treatment method for flue gas desulfurization waste water
JPH09110570A (en) * 1995-10-17 1997-04-28 Comson Corp Production of organic fertilizer and apparatus therefor
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JPH1164575A (en) * 1997-08-27 1999-03-05 Japan Organo Co Ltd Secondary system line water treatment device for pressurized-water nuclear power plant
JPH1172459A (en) * 1997-08-28 1999-03-16 Central Res Inst Of Electric Power Ind Method for at-site-monitoring for corrosion environment in boiling heat-transfer interstice
JP2000171585A (en) * 1998-12-02 2000-06-23 Japan Organo Co Ltd Condensate processing system and condensate processing method
JP2000258589A (en) * 1999-03-11 2000-09-22 Japan Organo Co Ltd Condensate treatment system and method
JP2001079552A (en) * 1999-09-14 2001-03-27 Japan Organo Co Ltd Electric deionizing device
JP2004091224A (en) * 2002-08-29 2004-03-25 Kurita Water Ind Ltd Recovery apparatus of fluorine aqueous solution or hydrofluoric acid aqueous solution, its recovery method, and circulating and using system of the same
JP2005329314A (en) * 2004-05-19 2005-12-02 Kansai Electric Power Co Inc:The Apparatus for demineralizing condensate and its operation method
JP2006043580A (en) * 2004-08-04 2006-02-16 Toshiba Corp Impurity removal apparatus and impurity removal method
JP2006088004A (en) * 2004-09-22 2006-04-06 Toshiba Corp Desalinating apparatus
JP2006136846A (en) * 2004-11-15 2006-06-01 Toshiba Corp Electric demineralizer and demineralization method
JP2006226697A (en) * 2005-02-15 2006-08-31 Mitsubishi Heavy Ind Ltd Cooling controller, cooling control method and plant using cooling controller
JP2007054767A (en) * 2005-08-26 2007-03-08 Miyama Kk Recovery method of ammonia, and using method of ammonia
JP2007090299A (en) * 2005-09-30 2007-04-12 Japan Organo Co Ltd Electric deionization apparatus and secondary system line water treating apparatus of pressurized water type nuclear power plant using the same
JP2007130548A (en) * 2005-11-09 2007-05-31 Toshiba Corp Desalinating apparatus
JP2008178826A (en) * 2007-01-25 2008-08-07 Toshiba Corp Water treatment apparatus
JP2009216495A (en) * 2008-03-10 2009-09-24 Toshiba Corp Water treatment device and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052354A (en) * 2011-09-05 2013-03-21 Toshiba Corp Plant water treatment apparatus, method of controlling electrical desalting apparatus, and steam turbine plant
JP2013113653A (en) * 2011-11-28 2013-06-10 Mitsubishi Heavy Ind Ltd Pressurized-water reactor and method for removing reactor core decay heat
JP2014231935A (en) * 2013-05-28 2014-12-11 三菱重工業株式会社 Boiler water supply system

Also Published As

Publication number Publication date
JP4982425B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN104379512B (en) ammonia treatment system
US5980716A (en) Water treatment apparatus for a fuel cell system
JP4855068B2 (en) Electric deionized water production apparatus and deionized water production method
JP4982425B2 (en) Water treatment method and water treatment apparatus
WO2011065222A1 (en) Device and method for treating nitrogen compound-containing acidic solutions
JP3760033B2 (en) Secondary water treatment system for pressurized water nuclear power plant
JP2001079358A (en) Electrically deionizing device
JP4970064B2 (en) Water treatment equipment
JP5738722B2 (en) Plant water treatment device, control method for electric desalination device, and steam turbine plant
CN113015702B (en) Pure water production apparatus and method for operating same
JPH1164575A (en) Secondary system line water treatment device for pressurized-water nuclear power plant
JP2007147453A (en) Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer
JP4724194B2 (en) Water treatment apparatus and water treatment method
JP4936454B2 (en) Hydrogen production apparatus and hydrogen production method
JP5353034B2 (en) Fuel cell power generator
JP4673808B2 (en) Reactor coolant purification equipment
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP4662277B2 (en) Electrodeionization equipment
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP2001079552A (en) Electric deionizing device
JP5039569B2 (en) Makeup water supply facility for pressurized water nuclear power plant
JP2013245833A (en) Power generating plant
JP2019098206A (en) Ammonia concentration method and device
JP3707940B2 (en) Condensate treatment system and condensate treatment method
JP2007245120A (en) Electrically operated apparatus for producing deionized water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees