JP2009243836A - Oxygen processing method of turbine equipment, and turbine equipment - Google Patents

Oxygen processing method of turbine equipment, and turbine equipment Download PDF

Info

Publication number
JP2009243836A
JP2009243836A JP2008093345A JP2008093345A JP2009243836A JP 2009243836 A JP2009243836 A JP 2009243836A JP 2008093345 A JP2008093345 A JP 2008093345A JP 2008093345 A JP2008093345 A JP 2008093345A JP 2009243836 A JP2009243836 A JP 2009243836A
Authority
JP
Japan
Prior art keywords
condensate
oxygen
turbine
boiler
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093345A
Other languages
Japanese (ja)
Other versions
JP5230239B2 (en
Inventor
Senichi Tsubakisaki
仙市 椿▲崎▼
Kenji Motai
憲次 馬渡
Seiji Takada
政治 高田
Shunichi Yasui
俊一 安井
Masamichi Miyajima
正道 宮島
Yoshiaki Ito
嘉章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2008093345A priority Critical patent/JP5230239B2/en
Publication of JP2009243836A publication Critical patent/JP2009243836A/en
Application granted granted Critical
Publication of JP5230239B2 publication Critical patent/JP5230239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen processing method of turbine equipment efficiently supplying oxygen into condensate in CWT, and to provide the turbine equipment. <P>SOLUTION: The turbine equipment includes: a boiler 118 for generating steam 11 by heat from a heat source; a steam turbine 12 operated by the steam 11 of the boiler 118; a steam condenser 106 for condensing exhaust from the steam turbine 12; a water feed system A for feeding the condensed water condensed by the steam condenser 106 as condensate 107-1 to the boiler 118 side; a drug filling part 30 for adjusting the pH in the condensate 107-1 of the water feed system A at an outlet of the steam condenser 106; a first oxygen content meter 32-1 for measuring the oxygen content in the condensate 107-1 at the slip stream side of a deaerator 110 for deaerating the condensate 107-1; and a second oxygen content meter 32-2 for measuring the oxygen content in boiler water at an outlet of the boiler 118, wherein oxygen is caused to leak in the condensate 107-1 by adjusting a vacuum breaker 20 of the steam condenser 106. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CWTにおいて効率的に復水中へ酸素を供給することができるタービン設備の酸素処理方法及びタービン設備に関する。   The present invention relates to a turbine equipment oxygen treatment method and turbine equipment capable of efficiently supplying oxygen into condensate in a CWT.

従来、火力及び原子力発電プラント等では、発生させた高温・高圧の蒸気をタービンに供給し、この蒸気によりタービンを駆動して発電を行っている。タービンを駆動した後の蒸気は、復水器により冷却されて水の状態に戻された後、再び加熱されてボイラ、原子炉、蒸気発生器に供給され、再使用される。   Conventionally, in thermal power and nuclear power plants, generated high-temperature and high-pressure steam is supplied to a turbine, and the turbine is driven by this steam to generate power. The steam after driving the turbine is cooled by the condenser and returned to the water state, then heated again, supplied to the boiler, the nuclear reactor, and the steam generator, and reused.

火力発電プラントにおけるタービン設備の一例としては、図7に示すような構成のものが知られている。図7に示すように、このタービン設備100は、熱源からの熱によって蒸気11を発生させるボイラ118と、該ボイラ118の蒸気11により作動する蒸気タービン12と、該蒸気タービン12からの排気を復水する復水器106と、該復水器106で凝縮された凝縮水を復水107−1とし、脱気器110を経由して給水107−2とした後に前記ボイラ118側に送給する給水系統Aと、から構成されている。前記給水系統Aでは、前記復水器106と低圧給水ヒータ109との間においては、復水ポンプ18が給水管13に介装されており、前記低圧給水ヒータ109と高圧給水ヒータ112との間においては、脱気器110、貯槽111及びボイラ給水ポンプ19が前記給水管13に介装されている。なお、符号104は補給水タンク、105は補給水、114は過熱器、115は再熱器を各々図示する。   As an example of turbine equipment in a thermal power plant, one having a configuration as shown in FIG. 7 is known. As shown in FIG. 7, the turbine equipment 100 includes a boiler 118 that generates steam 11 by heat from a heat source, a steam turbine 12 that is operated by the steam 11 of the boiler 118, and exhaust gas from the steam turbine 12. The condenser 106 to be watered and the condensed water condensed in the condenser 106 are used as the condensate 107-1, and are supplied to the boiler 118 side through the deaerator 110 as the feed water 107-2. It is comprised from the water supply system A. In the water supply system A, a condensate pump 18 is interposed in the water supply pipe 13 between the condenser 106 and the low pressure water heater 109, and between the low pressure water heater 109 and the high pressure water heater 112. The deaerator 110, the storage tank 111, and the boiler feed pump 19 are interposed in the feed pipe 13. Reference numeral 104 is a makeup water tank, 105 is makeup water, 114 is a superheater, and 115 is a reheater.

また、前記給水系統Aの給水管13の復水器106の出口側においては、pH調整剤のアンモニアと脱酸素剤のヒドラジンを注入する薬剤注入部30が設けられており、揮発性物質処理(All Volatile Treatment:AVT)している。このAVTは、所定量のヒドラジンの注入と、薬剤注入部30からはpH調整用として給水に所定量のアンモニアを注入しており、給水のpHを9.5以上とすると共にアンモニア濃度を0.5ppm以上となるようにしている。
これは、一般に、復水のpHが9.0を下回ると流れによるエロージョン・コロージョン(腐食・浸食)の発生が懸念されるので、復水107−1のpHを9.4〜9.7としている(特許文献1)。
このAVTは、給水配管等に対する鉄腐食を抑制するために、母材の表面にマグネタイト(Fe34)を形成している。
Further, on the outlet side of the condenser 106 of the water supply pipe 13 of the water supply system A, a chemical injection unit 30 for injecting ammonia as a pH adjusting agent and hydrazine as a deoxidizing agent is provided, and a volatile substance treatment ( All Volatile Treatment (AVT). In this AVT, a predetermined amount of hydrazine is injected and a predetermined amount of ammonia is injected into the feed water for pH adjustment from the drug injecting unit 30. The pH of the feed water is set to 9.5 or higher and the ammonia concentration is set to be 0.00. It is set to 5 ppm or more.
In general, when the pH of the condensate falls below 9.0, there is a concern about the occurrence of erosion / corrosion (corrosion / erosion) due to the flow, so the pH of the condensate 107-1 is set to 9.4 to 9.7. (Patent Document 1).
In this AVT, magnetite (Fe 3 O 4 ) is formed on the surface of a base material in order to suppress iron corrosion on a water supply pipe or the like.

特開2003−254503号公報JP 2003-254503 A

ところで、このようなAVTを行なっているタービン設備100において、定期点検等のプラント停止時においては、AVTから給水中に微量の酸素を溶存させる複合水処理(Combined Water Treatment:CWT)を行なっている。
これは、AVTではボイラ配管の鉄腐食防止のために、プラント停止の期間中に酸洗浄を2年に一回程度行なう必要があるからである。
よって、10年以上も酸洗浄が不要なCWTとするために、図7に示すように、CWTでは第1の酸素注入部31−1及び第2の酸素注入部31−2を設け、給水107−2中に酸素を注入し、所定量の酸素を溶存させるようにしている。
By the way, in the turbine equipment 100 that performs such AVT, when the plant is stopped during periodic inspection or the like, a combined water treatment (CWT) is performed in which a small amount of oxygen is dissolved from the AVT into the water supply. .
This is because in AVT, it is necessary to perform acid cleaning once every two years during the plant shutdown period in order to prevent iron corrosion of boiler piping.
Therefore, in order to obtain a CWT that does not require acid cleaning for more than 10 years, as shown in FIG. 7, the CWT is provided with a first oxygen injection unit 31-1 and a second oxygen injection unit 31-2 to supply water 107. -2 is injected with oxygen to dissolve a predetermined amount of oxygen.

ここで、酸素注入部を二箇所設けているのは、酸素が給水系統A内に行き亙るのに時間を要するからであり、具体的には復水器106出口側に設置した第1の酸素注入部31−1以外に、脱気器110の後流側に第2の酸素注入部31−2を設置している。
この酸素処理は、給水中の鉄成分を酸素の作用によって2価の状態(マグネタイト被膜)からより鉄の溶解度の低い3価の状態(ヘマタイト被膜)として水質管理をしている。
Here, the two oxygen injection portions are provided because it takes time for oxygen to reach the inside of the water supply system A. Specifically, the first oxygen is provided on the outlet side of the condenser 106. In addition to the injection unit 31-1, a second oxygen injection unit 31-2 is installed on the downstream side of the deaerator 110.
In this oxygen treatment, the water component is controlled from the divalent state (magnetite coating) to the trivalent state (hematite coating) having lower iron solubility by the action of oxygen.

このCWTに切替えるに際しては、迅速に酸素濃度を所定量とするために、酸素切替えにおいては、酸素濃度計32で酸素濃度を計測しながら二箇所の酸素注入部31−1、31−2から多量(200μg/L程度)の酸素を注入しているので、運転頻度の低いプラントにおいては、過剰な設備投資となる、という問題がある。
すなわち、酸素注入設備31−1、31−2は、多量の酸素ボンベ又はPSA酸素発生装置とこれらを制御する制御装置とを必要とするので設置費用が増大するからである。
When switching to this CWT, in order to quickly set the oxygen concentration to a predetermined amount, in the oxygen switching, a large amount of oxygen is injected from the two oxygen injection units 31-1 and 31-2 while measuring the oxygen concentration with the oxygen concentration meter 32. Since oxygen (about 200 μg / L) is injected, there is a problem of excessive capital investment in a plant with low operation frequency.
That is, the oxygen injection facilities 31-1 and 31-2 require a large amount of oxygen cylinders or PSA oxygen generators and a control device for controlling them, so that the installation cost increases.

また、プラント運転時間が少ないような場合、所定濃度の酸素とするのにCWT切替時に時間がかかる(例えば2週間から6ヶ月)と共に、酸素の上限(200μg/L程度)の制御が難しく、過注入防止が必要となる、という問題がある。   In addition, when the plant operation time is short, it takes time to switch the CWT to obtain a predetermined concentration of oxygen (for example, 2 weeks to 6 months), and it is difficult to control the upper limit of oxygen (about 200 μg / L). There is a problem that it is necessary to prevent injection.

本発明は、前記問題に鑑み、CWTにおいて効率的に復水中へ酸素を供給することができるタービン設備の酸素処理方法及びタービン設備を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a turbine equipment oxygen treatment method and turbine equipment capable of efficiently supplying oxygen into condensate in a CWT.

上述した課題を解決するための本発明の第1の発明は、熱源からの熱によって蒸気を発生させるボイラと、前記ボイラの蒸気により作動する蒸気タービンと、前記蒸気タービンの排気を復水する復水器と、前記復水器で凝縮された復水をボイラ側に復水として送給する給水系統とからなるタービン設備の酸素処理方法において、前記復水器の復水真空手段の調整により復水中に溶存酸素を供給することを特徴とするタービン設備の酸素処理方法にある。   A first invention of the present invention for solving the above-mentioned problems is a boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the boiler, and a condenser that condenses the exhaust of the steam turbine. In an oxygen treatment method for turbine equipment comprising a water supply and a water supply system that supplies the condensate condensed in the condenser to the boiler side as condensate, the condensate vacuum means of the condenser is adjusted by adjusting the condensate vacuum means. The present invention resides in an oxygen treatment method for turbine equipment, wherein dissolved oxygen is supplied into water.

第2の発明は、第1の発明において、復水中に供給する溶存酸素の濃度が5〜20μg/Lであることを特徴とするタービン設備の酸素処理方法にある。   A second invention is the oxygen treatment method for turbine equipment according to the first invention, wherein the concentration of dissolved oxygen supplied to the condensate is 5 to 20 μg / L.

第3の発明は、第1又は2の発明において、タービン給水を揮発性物質処理(AVT)から酸素処理(CWT)に切り替えるに際し、AVT条件のpH9.4〜9.7の状態で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHをCWT条件の8.0〜9.3とすることを特徴とするタービン設備の酸素処理方法にある。   According to a third aspect, in the first or second aspect, when the turbine feed water is switched from the volatile substance treatment (AVT) to the oxygen treatment (CWT), oxygen is supplied in a state of pH 9.4 to 9.7 of the AVT condition. Then, the oxygen treatment method for turbine equipment is characterized in that oxygen is set to a predetermined concentration in the entire water supply system, and then the pH is set to 8.0 to 9.3 of the CWT condition.

第4の発明は、熱源からの熱によって蒸気を発生させるボイラと、前記ボイラの蒸気により作動する蒸気タービンと、前記蒸気タービンの排気を復水する復水器と、前記復水器で凝縮された復水をボイラ側に送給する給水系統とからなるタービン設備において、前記復水器からの復水を一部抜出す復水循環ラインと、前記復水循環ラインに介装され、CO2を除去した空気を供給してなる復水タンクとを具備することを特徴とするタービン設備にある。 According to a fourth aspect of the present invention, there is provided a boiler that generates steam by heat from a heat source, a steam turbine that operates by the steam of the boiler, a condenser that condenses the exhaust of the steam turbine, and the condenser that is condensed. in condensing turbine facility comprising a water supply system for feeding the boiler side, the condensate circulation line for extracting part of condensate from the condenser is interposed the condensate circulation line, removing CO 2 The turbine equipment includes a condensate tank to which the air is supplied.

本発明によれば、給水の水質管理方法をAVTからCWTに切替えるに際し、復水器の復水真空手段の調整により復水中に溶存酸素を供給させ、復水中への別途の酸素注入設備を不要とすることで、CWT運転の簡素化を図るものとなる。   According to the present invention, when the water quality control method for water supply is switched from AVT to CWT, dissolved oxygen is supplied into the condensate by adjusting the condensate vacuum means of the condenser, and no separate oxygen injection facility for the condensate is required. By doing so, the CWT operation is simplified.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例に係るタービン設備について、図面を参照して説明する。
図1は、実施例に係るタービン設備の概略図である。図中、前記図7に示した設備と同一構成には同一符号を付して重複した説明は省略する。
A turbine facility according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a turbine facility according to an embodiment. In the figure, the same components as those shown in FIG.

図1に示すように、本実施例にかかるタービン設備10は、熱源からの熱によって蒸気11を発生させるボイラ118と、該ボイラ118の蒸気11により作動する蒸気タービン12と、該蒸気タービン12からの排気を復水する復水器106と、該復水器106で凝縮された復水107−1を前記ボイラ118側に送給する給水系統Aと、前記復水器106の出口側で給水系統Aの復水107−1中のpHを調整する薬剤注入部30と、前記復水107−1を脱気する脱気器110の後流側で給水107−2中の酸素濃度を計測する第1の酸素濃度計32−1と、前記ボイラ118の出口側でボイラ水中の酸素濃度を計測する第2の酸素濃度計32−2とを具備すると共に、前記復水器106の真空破壊調整弁20の調整により、前記復水107−1中に酸素をリーク(溶存)させることで復水中に溶存酸素を供給する。
また、過熱器114の出側においてボイラ水中の酸素濃度を計測する第3の酸素濃度計32−3を設けるようにしてもよい。
As shown in FIG. 1, a turbine facility 10 according to the present embodiment includes a boiler 118 that generates steam 11 by heat from a heat source, a steam turbine 12 that operates with the steam 11 of the boiler 118, and the steam turbine 12. The condenser 106 for condensing the exhaust gas of the boiler, the water supply system A for supplying the condensate 107-1 condensed in the condenser 106 to the boiler 118 side, and the water supply at the outlet side of the condenser 106 The oxygen concentration in the feed water 107-2 is measured on the downstream side of the chemical injection unit 30 that adjusts the pH in the condensate 107-1 of the system A and the deaerator 110 that degass the condensate 107-1. A first oxygen concentration meter 32-1 and a second oxygen concentration meter 32-2 that measures the oxygen concentration in the boiler water on the outlet side of the boiler 118, and the vacuum break adjustment of the condenser 106 are provided. The condensate is adjusted by adjusting the valve 20. Supplying dissolved oxygen to the condensate water with oxygen that is leaking (dissolved) in 07-1.
Moreover, you may make it provide the 3rd oxygen concentration meter 32-3 which measures the oxygen concentration in boiler water in the exit side of the superheater 114.

図2は復水器真空ポンプ及び真空破壊弁を備えた復水器の構成の概略図である。
図2に示すように、復水器106は真空破壊調整弁20と復水器真空ポンプ21とを具備すると共に、真空破壊調整弁20でリークさせる空気中の炭酸ガス(CO2)を除去するCO2除去部22を有している。これは、炭酸ガス(CO2)が復水107−1中では陰イオンとなり、復水107−1中の電気伝導率の上昇となるので、これを防止するためである。
FIG. 2 is a schematic view of the configuration of a condenser having a condenser vacuum pump and a vacuum breaker valve.
As shown in FIG. 2, the condenser 106 includes a vacuum break adjustment valve 20 and a condenser vacuum pump 21, and removes carbon dioxide (CO 2 ) in the air leaked by the vacuum break adjustment valve 20. A CO 2 removal unit 22 is provided. This is because carbon dioxide gas (CO 2 ) becomes an anion in the condensate 107-1, and the electrical conductivity in the condensate 107-1 increases, and this is prevented.

ここで、JIS基準ではCWTの溶存酸素濃度は20〜200μg/Lであるが、図4に示すように、少なくとも5μg/L以上(より好ましくは5〜20μg/L)あれば、CWT運用のヘマタイト被膜の形成が可能となるので、より少ない空気リーク量で復水107−1へ酸素を供給することができ、好ましいものとなる。
この結果、従来のような酸素注入設備が不要となり、多大な設備投資が不要となる。
Here, the dissolved oxygen concentration of CWT is 20 to 200 μg / L according to JIS standards, but as shown in FIG. 4, if it is at least 5 μg / L or more (more preferably 5 to 20 μg / L), hematite for CWT operation is used. Since a film can be formed, oxygen can be supplied to the condensate 107-1 with a smaller amount of air leakage, which is preferable.
As a result, a conventional oxygen injection facility is not required, and a large capital investment is not required.

また、他の態様を示す図3に示すように、復水107−1の一部を循環する復水タンク23を介装してなる復水循環ライン24を設けてなり、該復水タンク23内の貯蔵水に空気を溶存させるようにしてもよい。ここで、前記復水タンク23内に導入する空気は、CO2除去部22によりCO2を除去するようにしている。なお、図3中、符号26は真空破壊弁(通常は閉)を図示する。
ここで、復水2500t/hに対して、5t/hの復水を供給(10mg/L→10,000μg/L)循環させるとすると、酸素濃度は2μg/L上昇する。
Further, as shown in FIG. 3 showing another embodiment, a condensate circulation line 24 is provided, which is provided with a condensate tank 23 that circulates a part of the condensate 107-1. Air may be dissolved in the stored water. Here, air is introduced into said condensate water tank 23, followed by removal of CO 2 by CO 2 removal unit 22. In FIG. 3, reference numeral 26 denotes a vacuum break valve (normally closed).
Here, if 5 t / h of condensate is supplied (10 mg / L → 10,000 μg / L) and circulated with respect to 2500 t / h of condensate, the oxygen concentration increases by 2 μg / L.

これにより、復水循環ライン24を空気ボンベでシールした復水タンク23を経由させることにより、復水107−1の酸素濃度を上昇させることができる。   Thereby, the oxygen concentration of the condensate 107-1 can be raised by passing the condensate circulation line 24 through the condensate tank 23 sealed with the air cylinder.

すなわち、0.1MPaに加圧すると+4μg/L(大気圧の2倍)の溶存酸素濃度となる。また、0.15MPaに加圧すると+5μg/L(大気圧の2.5倍)の溶存酸素濃度となる。なお、前記復水循環ライン24には、圧力調整弁25を介装し、所望の圧力となるように調整している。   That is, when the pressure is increased to 0.1 MPa, the dissolved oxygen concentration becomes +4 μg / L (twice the atmospheric pressure). Further, when the pressure is increased to 0.15 MPa, the dissolved oxygen concentration becomes +5 μg / L (2.5 times the atmospheric pressure). The condensate circulation line 24 is provided with a pressure regulating valve 25 so as to be adjusted to a desired pressure.

よって、前記真空破壊調整弁26は、本来の用途である復水器106の真空調整に用い、別途復水循環ライン24で復水107−1の一部を循環させることで、溶存酸素量を増大させ、CWT条件とさせることができる。   Therefore, the vacuum break adjustment valve 26 is used for the vacuum adjustment of the condenser 106, which is the original application, and separately circulates a part of the condensate 107-1 in the condensate circulation line 24, thereby increasing the amount of dissolved oxygen. And CWT conditions.

さらに、タービン給水の水質処理である揮発性物質処理(AVT)から酸素処理(CWT)に最初に切替えるに際し、pH9.4〜9.7の状態(例えばpH9.5)で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHを8.0〜9.3(例えばpH9.0)とする。   Furthermore, when switching from volatile substance treatment (AVT), which is a water quality treatment of turbine feed water, to oxygen treatment (CWT) for the first time, oxygen is supplied in a state of pH 9.4 to 9.7 (for example, pH 9.5), The oxygen is set to a predetermined concentration throughout the water supply system, and then the pH is set to 8.0 to 9.3 (for example, pH 9.0).

ここで、本発明でAVTからCWTに最初に切替える際とは、水質管理条件としてAVTを行なっているタービン設備において、第1回目の定期点検等のプラント停止時或いは、AVT水質管理条件で試運転を行なっており、その試運転終了後に、最初にCWTに切替える際のことをいう。   Here, when switching from AVT to CWT for the first time in the present invention, the turbine equipment that is performing AVT as the water quality management condition is when the plant is shut down at the first periodic inspection or the test operation is performed under the AVT water quality management condition. It means that when switching to CWT for the first time after the trial run is completed.

前記給水107−2中の酸素濃度の確認は、脱気器110の出口側に第1の酸素濃度計32−1を設けると共に、前記ボイラ118と過熱器114との間のボイラ水中の酸素濃度を第2の酸素濃度計32−2で計測し、この第2の酸素濃度計32−2での酸素が所定濃度に達したことを確認してから、薬剤注入部30で供給するpH調整剤(例えばアンモニア)の注入量を変化させて、CWTのpH条件とするようにしている。又は過熱器114の出口側において設けられた第3の酸素濃度計32−3により給水107−2中の酸素濃度を測定してpHを調整するようにしてもよい。   The oxygen concentration in the feed water 107-2 is confirmed by providing the first oxygen concentration meter 32-1 on the outlet side of the deaerator 110 and the oxygen concentration in the boiler water between the boiler 118 and the superheater 114. Is measured by the second oxygen concentration meter 32-2, and after confirming that the oxygen in the second oxygen concentration meter 32-2 has reached a predetermined concentration, the pH adjusting agent supplied by the drug injecting unit 30 By changing the injection amount of (for example, ammonia), the pH condition of CWT is set. Or you may make it adjust pH by measuring the oxygen concentration in the feed water 107-2 with the 3rd oxygen concentration meter 32-3 provided in the exit side of the superheater 114. FIG.

この結果、タービン設備において、AVTからCWTに切替える際に、pHを9.4〜9.7の状態(例えば9.5)から8.0〜9.3(例えば9.0)に変化させることによる、鉄溶解度の上昇を抑制することができる。   As a result, when switching from AVT to CWT in a turbine facility, the pH is changed from a state of 9.4 to 9.7 (for example, 9.5) to 8.0 to 9.3 (for example, 9.0). Can suppress an increase in iron solubility.

すなわち、本発明では、前記ボイラ118出口に設置した第2の酸素濃度計32−2又は第3の酸素濃度計32−3のいずれかにおいて、給水107−2中の酸素が所定濃度(例えば20μg/L)に達していることを確認してから、pHを8.0〜9.3(例えばpH9.0)と下げるようにすることで、前記復水107−1中の鉄溶解を抑制することができるので、復水中の鉄濃度の上昇の抑制を図ることができる。   That is, in the present invention, in either the second oxygen concentration meter 32-2 or the third oxygen concentration meter 32-3 installed at the outlet of the boiler 118, the oxygen in the feed water 107-2 has a predetermined concentration (for example, 20 μg). / L), the iron dissolution in the condensate 107-1 is suppressed by lowering the pH to 8.0 to 9.3 (for example, pH 9.0). Therefore, it is possible to suppress an increase in the iron concentration in the condensate.

この結果、従来では図7に示すように、給水系統Aにおいて、第1の酸素注入部31−1と第2の酸素注入部31−2との二箇所から酸素を注入することを廃止することで、プラント設備の削減を図ることができると共に、酸素が給水系統内に十分に行き亙ってからpHを低下させるので、給水中への鉄の溶解を防止することできる。   As a result, conventionally, as shown in FIG. 7, in the water supply system A, the injection of oxygen from the two locations of the first oxygen injection section 31-1 and the second oxygen injection section 31-2 is abolished. Thus, the plant facilities can be reduced and the pH is lowered after oxygen has sufficiently spread within the water supply system, so that the dissolution of iron into the water supply can be prevented.

<試験例>
次に、本発明と従来技術におけるAVTからCWTへの切替えの際のpHの変化、第1及び第2の酸素濃度計での酸素濃度の変化、給水中の鉄濃度の変化についての試験結果を図5及び図6に示す。
<Test example>
Next, the test results on the change in pH at the time of switching from AVT to CWT in the present invention and the prior art, the change in oxygen concentration in the first and second oximeters, and the change in iron concentration in the water supply are shown. It shows in FIG.5 and FIG.6.

本発明である実施例においては、AVTからCWTの切替えを復水中の酸素濃度が所定濃度(50μg/L)となったことを確認してから行なった。この結果、復水107−1中の鉄濃度は殆ど変化しなかった。   In the embodiment of the present invention, switching from AVT to CWT was performed after confirming that the oxygen concentration in the condensate reached a predetermined concentration (50 μg / L). As a result, the iron concentration in the condensate 107-1 hardly changed.

これに対し、従来技術である比較例においては、AVTからCWTの切替えを酸素注入と同時にpHを9.0としていると共に、迅速に復水中の酸素濃度を所定濃度(50μg/L)とするために、最初は200μg/Lの酸素を供給しているので、酸素濃度が上昇すると共に、鉄溶解量が一時的に大幅に増大していた。   On the other hand, in the comparative example which is the prior art, the pH is set to 9.0 simultaneously with the oxygen injection when switching from AVT to CWT, and the oxygen concentration in the condensate is quickly set to a predetermined concentration (50 μg / L). In addition, since 200 μg / L of oxygen was initially supplied, the oxygen concentration increased and the amount of dissolved iron temporarily increased significantly.

以上の結果より、AVTからCWTに切替える場合において、切替え初期においてはpHをAVTの状態で推移し、ボイラ118出口における酸素濃度が所定濃度となったことを確認した後に、pHをCWTの条件とするようにすることで、復水中への鉄の溶解を抑制することができることとなった。   From the above results, in the case of switching from AVT to CWT, in the initial stage of switching, the pH was changed to the AVT state, and after confirming that the oxygen concentration at the boiler 118 outlet became a predetermined concentration, the pH was changed to the CWT condition. By doing so, the dissolution of iron in the condensate can be suppressed.

以上のように、本発明に係るタービン設備の酸素処理方法及びタービン設備は、復水器の復水真空手段の調整により復水中に溶存酸素供給させ、復水中への別途の酸素注入設備を不要とすることで、CWT運転の簡素化を図ることができる。   As described above, the oxygen treatment method for turbine equipment and the turbine equipment according to the present invention supply dissolved oxygen in the condensate by adjusting the condensate vacuum means of the condenser, and no separate oxygen injection equipment for the condensate is required. By doing so, simplification of CWT operation can be achieved.

本発明の実施例に係るタービン設備の概略図である。It is the schematic of the turbine installation which concerns on the Example of this invention. 本実施例に係る復水器の概略図である。It is the schematic of the condenser which concerns on a present Example. 本実施例に係る他の復水器の概略図である。It is the schematic of the other condenser which concerns on a present Example. 溶存酸素と腐食電位との関係図である。It is a related figure of dissolved oxygen and a corrosion potential. 実施例に係るpH、酸素濃度及び鉄濃度と時間との関係図である。FIG. 4 is a relationship diagram of pH, oxygen concentration, iron concentration and time according to an example. 比較例に係るpH、酸素濃度及び鉄濃度と時間との関係図である。It is a related figure of pH, oxygen concentration and iron concentration, and time concerning a comparative example. 従来の発電プラントにおけるタービン設備の構成を示す説明図である。It is explanatory drawing which shows the structure of the turbine installation in the conventional power plant.

符号の説明Explanation of symbols

10 タービン設備
11 蒸気
118 ボイラ
106 復水器
107−1 復水
107−2給水
A 給水系統
20 真空破壊弁
21 復水器真空ポンプ
22 CO2除去部
23 復水タンク
24 復水循環ライン
25 圧力調整弁
30 薬剤注入部
32−1 第1の酸素濃度計
32−2 第2の酸素濃度計
32−3 第3の酸素濃度計
10 turbine equipment 11 vapor 118 boiler 106 condenser 107-1 condensate 107-2 Water A Water System 20 vacuum breaker 21 condenser vacuum pump 22 CO 2 removal unit 23 condensate tank 24 the condensate circulation line 25 pressure regulating valve 30 medicine injection part 32-1 1st oxygen concentration meter 32-2 2nd oxygen concentration meter 32-3 3rd oxygen concentration meter

Claims (4)

熱源からの熱によって蒸気を発生させるボイラと、
前記ボイラの蒸気により作動する蒸気タービンと、
前記蒸気タービンの排気を復水する復水器と、
前記復水器で凝縮された復水をボイラ側に給水として送給する給水系統とからなるタービン設備の酸素処理方法において、
前記復水器の復水真空手段の調整により復水中に溶存酸素を供給することを特徴とするタービン設備の酸素処理方法。
A boiler that generates steam by heat from a heat source;
A steam turbine operated by steam of the boiler;
A condenser for condensing the exhaust of the steam turbine;
In the oxygen treatment method of a turbine facility comprising a water supply system for supplying the condensate condensed in the condenser as feed water to the boiler side,
An oxygen treatment method for turbine equipment, wherein dissolved oxygen is supplied into the condensate by adjusting a condensate vacuum means of the condenser.
請求項1において、
復水中に供給する溶存酸素の濃度が5〜20μg/Lであることを特徴とするタービン設備の酸素処理方法。
In claim 1,
The oxygen treatment method for turbine equipment, wherein the concentration of dissolved oxygen supplied into the condensate is 5 to 20 µg / L.
請求項1又は2において、
タービン給水を揮発性物質処理(AVT)から酸素処理(CWT)に切り替えるに際し、
AVT条件のpH9.4〜9.7の状態で酸素を供給して、給水系統全体に酸素を所定濃度とし、その後pHをCWT条件の8.0〜9.3とすることを特徴とするタービン設備の酸素処理方法。
In claim 1 or 2,
When switching turbine feed water from volatile material treatment (AVT) to oxygen treatment (CWT),
A turbine characterized in that oxygen is supplied in a state of pH 9.4 to 9.7 under the AVT condition, oxygen is brought to a predetermined concentration throughout the water supply system, and then the pH is adjusted to 8.0 to 9.3 under the CWT condition. Equipment oxygen treatment method.
熱源からの熱によって蒸気を発生させるボイラと、
前記ボイラの蒸気により作動する蒸気タービンと、
前記蒸気タービンの排気を復水する復水器と、
前記復水器で凝縮された復水をボイラ側に送給する給水系統とからなるタービン設備において、
前記復水器からの復水を一部抜出す復水循環ラインと、
前記復水循環ラインに介装され、CO2を除去した空気を供給してなる復水タンクとを具備することを特徴とするタービン設備。
A boiler that generates steam by heat from a heat source;
A steam turbine operated by steam of the boiler;
A condenser for condensing the exhaust of the steam turbine;
In the turbine equipment consisting of a water supply system that feeds the condensate condensed in the condenser to the boiler side,
A condensate circulation line for partially extracting condensate from the condenser;
A turbine facility comprising: a condensate tank provided in the condensate circulation line and configured to supply air from which CO 2 has been removed.
JP2008093345A 2008-03-31 2008-03-31 Combined water treatment method for turbine equipment Active JP5230239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093345A JP5230239B2 (en) 2008-03-31 2008-03-31 Combined water treatment method for turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093345A JP5230239B2 (en) 2008-03-31 2008-03-31 Combined water treatment method for turbine equipment

Publications (2)

Publication Number Publication Date
JP2009243836A true JP2009243836A (en) 2009-10-22
JP5230239B2 JP5230239B2 (en) 2013-07-10

Family

ID=41305937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093345A Active JP5230239B2 (en) 2008-03-31 2008-03-31 Combined water treatment method for turbine equipment

Country Status (1)

Country Link
JP (1) JP5230239B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094849A (en) * 2009-10-28 2011-05-12 Babcock Hitachi Kk Thermal power generation plant and operation method for the same
JP2013076520A (en) * 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd Method of eliminating iron component in heater drain water in power generating plant
WO2014102978A1 (en) * 2012-12-27 2014-07-03 三菱重工業株式会社 Method for removing iron components from heater drain water in power-generating plant
JP6235687B1 (en) * 2016-12-07 2017-11-22 日機装株式会社 Leak detection device
JP2018054259A (en) * 2016-09-30 2018-04-05 三菱日立パワーシステムズ株式会社 Power plant operation method, power plant control device and power plant mounted with the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198027B (en) * 2015-10-27 2018-06-12 广州珠江电力有限公司 A kind of 300 MW fired power generating units rotation film deaerating type of cycles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174305A (en) * 1993-12-20 1995-07-14 Toshiba Corp Scale adherence preventing method for water supply system of power plant
JP2003254503A (en) * 2002-02-27 2003-09-10 Mitsubishi Heavy Ind Ltd Supply water quality monitoring method and supply water quality monitoring device of power generation plant
JP2003290639A (en) * 2002-04-01 2003-10-14 Babcock Hitachi Kk Oxygen injection device
JP2007224820A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Turbine facilities, heat recovery steam generator and water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174305A (en) * 1993-12-20 1995-07-14 Toshiba Corp Scale adherence preventing method for water supply system of power plant
JP2003254503A (en) * 2002-02-27 2003-09-10 Mitsubishi Heavy Ind Ltd Supply water quality monitoring method and supply water quality monitoring device of power generation plant
JP2003290639A (en) * 2002-04-01 2003-10-14 Babcock Hitachi Kk Oxygen injection device
JP2007224820A (en) * 2006-02-23 2007-09-06 Mitsubishi Heavy Ind Ltd Turbine facilities, heat recovery steam generator and water treatment method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094849A (en) * 2009-10-28 2011-05-12 Babcock Hitachi Kk Thermal power generation plant and operation method for the same
JP2013076520A (en) * 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd Method of eliminating iron component in heater drain water in power generating plant
WO2014102978A1 (en) * 2012-12-27 2014-07-03 三菱重工業株式会社 Method for removing iron components from heater drain water in power-generating plant
CN104520643A (en) * 2012-12-27 2015-04-15 三菱日立电力系统株式会社 Method for removing iron components from heater drain water in power-generating plant
CN104520643B (en) * 2012-12-27 2016-08-24 三菱日立电力系统株式会社 The minimizing technology of the ferrous components in water discharged by the heater of generating equipment
JP2018054259A (en) * 2016-09-30 2018-04-05 三菱日立パワーシステムズ株式会社 Power plant operation method, power plant control device and power plant mounted with the same
JP6235687B1 (en) * 2016-12-07 2017-11-22 日機装株式会社 Leak detection device
JP2018091815A (en) * 2016-12-07 2018-06-14 日機装株式会社 Leak detection device

Also Published As

Publication number Publication date
JP5230239B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5230239B2 (en) Combined water treatment method for turbine equipment
JP6420729B2 (en) Thermal power generation facility for recovering moisture from exhaust gas and method for treating recovered water of the thermal power generation facility
JP2007182604A (en) Method for inhibiting corrosion of carbon steel, and apparatus therefor
US8266909B2 (en) Air vent in main steam duct of steam turbine
JP5721888B1 (en) Chemical cleaning method and chemical cleaning apparatus
JP4745990B2 (en) Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JP5806766B2 (en) Physicochemical cleaning method for sediment sludge
JP2008156700A (en) Condensed water treatment agent
JP2010216730A (en) Power generation unit and method of starting power generation unit
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
JP4167920B2 (en) Chemical decontamination method
US8069667B2 (en) Deaerator apparatus in a superatmospheric condenser system
JP6021739B2 (en) Boiler water supply system
JP2001147288A (en) Method and deice for lowering dissolved oxygen concentration in nuclear power plant
JPH1090485A (en) System and method for controlling dissolved oxygen concentration in reactor water
JP2003097801A (en) Water treating device and water treating method for power generating plant
JP2011094849A (en) Thermal power generation plant and operation method for the same
JP2004198006A (en) Iron ion crystallization restricting system and superheated steam plant
JPWO2020031667A1 (en) Acid electrical conductivity measuring device and method and steam turbine plant
JP2010216762A (en) Method of preventing corrosion of water supply line and condensate line of high-pressure boiler system
JP5878223B1 (en) Low pressure cleanup method
JP2003290639A (en) Oxygen injection device
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant
JP3691019B2 (en) Power plant cleanup operation device and operation method
JPH0921504A (en) Oxygen-injecting water treatment method in thermal power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350