JP2001147288A - Method and deice for lowering dissolved oxygen concentration in nuclear power plant - Google Patents

Method and deice for lowering dissolved oxygen concentration in nuclear power plant

Info

Publication number
JP2001147288A
JP2001147288A JP32939099A JP32939099A JP2001147288A JP 2001147288 A JP2001147288 A JP 2001147288A JP 32939099 A JP32939099 A JP 32939099A JP 32939099 A JP32939099 A JP 32939099A JP 2001147288 A JP2001147288 A JP 2001147288A
Authority
JP
Japan
Prior art keywords
coolant
reactor
cooling system
dissolved oxygen
reactor cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32939099A
Other languages
Japanese (ja)
Other versions
JP4022026B2 (en
Inventor
Atsushi Kumaki
淳 熊木
Kazuo Nakazumi
一男 中住
Masahiro Yoshioka
正博 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32939099A priority Critical patent/JP4022026B2/en
Publication of JP2001147288A publication Critical patent/JP2001147288A/en
Application granted granted Critical
Publication of JP4022026B2 publication Critical patent/JP4022026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten lowering operation of oxygen dissolved in coolant which is performed in startup of a nuclear power plant and realize quick startup. SOLUTION: A nuclear power plant is provided with a coolant pump 3, a reactor vessel 1 connected to the coolant pump 3 via an inlet nozzle 1a, steam generators 2 connected to the outlet nozzle 1b of the reactor vessel 1 and a pressurizer 4 provided to the pipe between the reactor vessel 1 and the steam generator 2, which constitutes reactor cooling system of closed loop by communicating the coolant outlet of the steam generator 2 to the coolant pump 3. A dissolved oxygen concentration lowering device is constituted of a purging type degassing device 10 by nitrogen gas placed in the circulation system communicating to the reactor coolant system, a vacuum pump 11 provided to the pressurizer 4 and nitrogen injection systems 18a and 18b communicated to the reactor cooling system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば加圧水型の
ような原子力発電プラントにおいて、その原子炉冷却材
中における溶存酸素濃度を、脱気装置を用いて低減する
方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing the concentration of dissolved oxygen in a reactor coolant by using a deaerator in a nuclear power plant such as a pressurized water type.

【0002】[0002]

【従来の技術】加圧水型原子力発電プラントにおいて
は、プラント起動時に原子炉冷却材温度を上昇させる前
段階で、冷却材に露出される諸機器の構成材料の腐食を
防止する観点から、原子炉冷却材中の溶存酸素を除去す
る操作が必要である。従来の除去操作を図3について説
明すれば、原子炉冷却系統を構成する原子炉容器1、蒸
気発生器2、冷却材ポンプ3及び加圧器4等を満水とし
た段階で、冷却材ポンプ3を運転しつつ、循環ポンプ5
が設けられた循環系にヒドラジンH2NNH2を添加し、
このヒドラジンの還元作用により、冷却材中の溶存酸素
を除去している。
2. Description of the Related Art In a pressurized water nuclear power plant, prior to raising the temperature of the reactor coolant at the time of plant startup, from the viewpoint of preventing corrosion of constituent materials of components exposed to the coolant, the reactor cooling system is required. An operation for removing dissolved oxygen in the material is required. The conventional removing operation will be described with reference to FIG. 3. When the reactor vessel 1, the steam generator 2, the coolant pump 3, and the pressurizer 4, which constitute the reactor cooling system, are filled with water, the coolant pump 3 is turned off. While operating, the circulation pump 5
Hydrazine H 2 NNH 2 was added to the circulation system provided with
The dissolved oxygen in the coolant is removed by the reducing action of the hydrazine.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のヒドラ
ジン添加による溶存酸素の還元だけでは、原子炉冷却系
統を構成する配管、弁等の閉塞滞留部における冷却材中
の溶存酸素が十分除去できないため、溶存酸素の目標濃
度を極低濃度として、長い時間をかけて溶存酸素除去運
転を実施している。従って、このような除去工程は、プ
ラント起動時間を長期化させる要因の一つでもある。従
って、本発明の目的は、溶存酸素除去運転時間の短縮が
可能な原子炉冷却材中の溶存酸素除去方法及び装置を提
供することである。
However, conventional reduction of dissolved oxygen by the addition of hydrazine alone cannot sufficiently remove dissolved oxygen in the coolant in the closed stagnation portion of the piping and valves constituting the reactor cooling system. The dissolved oxygen removal operation is performed over a long period of time with the target concentration of dissolved oxygen being extremely low. Therefore, such a removal step is one of the factors that prolongs the plant startup time. Accordingly, an object of the present invention is to provide a method and an apparatus for removing dissolved oxygen in a reactor coolant, which can reduce the operation time for removing dissolved oxygen.

【0004】[0004]

【課題を解決するための手段】本発明の一つの側面で
は、上記目的を達成するため、請求項1に記載のよう
に、プラント起動の際に、原子炉冷却系統の配管に連絡
する原子炉容器の入口ノズル及び出口ノズル内の中間レ
ベルまで冷却材を注入して、前記原子炉冷却系統内に液
相部及び気相部を形成し、前記液相部から窒素ガスによ
るパージ方式の脱気装置により脱気すると共に、前記気
相部から真空ポンプにより真空引きし、前記原子炉冷却
系統内に窒素を注入して前記液相部内の酸素を前記液相
部中へ持ち出してから、前記原子炉冷却系統に前記脱気
装置を介して冷却材を充満させる原子力発電プラントに
おける溶存酸素濃度低減方法を提供している。また、上
記目的を達成するため、本発明の別の側面では、請求項
2に記載のように、冷却材ポンプ、該冷却材ポンプに入
口ノズルを介して接続された原子炉容器、該原子炉容器
の出口ノズルに接続された蒸気発生器、並びに前記原子
炉容器及び前記蒸気発生器間の配管に設けられた加圧器
を備え、前記蒸気発生器の冷却材出口が前記冷却材ポン
プに連絡して閉ループの原子炉冷却系統を構成している
原子力発電プラントにおいて、前記原子炉冷却系統に連
絡する循環系に設けられた窒素ガスによるパージ方式の
脱気装置と、前記加圧器に設けられた真空ポンプと、前
記原子炉冷却系統に連通する窒素注入系とを備える溶存
酸素濃度低減装置を提供している。
According to one aspect of the present invention, in order to achieve the above object, a reactor connected to a pipe of a reactor cooling system at the time of starting a plant is provided. Coolant is injected to an intermediate level in the inlet and outlet nozzles of the vessel to form a liquid phase portion and a gas phase portion in the reactor cooling system, and a purge method of degassing with nitrogen gas from the liquid phase portion. While being degassed by the device, the vacuum is evacuated from the gas phase by a vacuum pump, nitrogen is injected into the reactor cooling system, oxygen in the liquid phase is taken out into the liquid phase, A method for reducing the concentration of dissolved oxygen in a nuclear power plant in which a furnace cooling system is filled with a coolant through the deaerator is provided. To achieve the above object, according to another aspect of the present invention, a coolant pump, a reactor vessel connected to the coolant pump via an inlet nozzle, and the reactor according to claim 2 are provided. A steam generator connected to an outlet nozzle of the vessel, and a pressurizer provided in piping between the reactor vessel and the steam generator, wherein a coolant outlet of the steam generator communicates with the coolant pump. In a nuclear power plant constituting a closed loop reactor cooling system, a purge type deaerator with nitrogen gas provided in a circulation system connected to the reactor cooling system, and a vacuum provided in the pressurizer There is provided a dissolved oxygen concentration reducing device including a pump and a nitrogen injection system communicating with the reactor cooling system.

【0005】[0005]

【発明の実施の形態】次に、添付図面を参照して、本発
明の好適な実施の形態について説明するが、図中、同一
符号は同一又は対応部分を示すものとする。また、本発
明は、以下の説明から分かるように、この実施形態に限
定されるものではなく、種々の改変が可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.

【0006】まず、図1を参照するに、符号1〜4は、
図3における従来の原子炉冷却系統を構成する原子炉容
器、蒸気発生器、冷却材ポンプ、加圧器と同様の諸機器
をそれぞれ表している。通常の原子炉運転中、配管Lに
設けられた冷却材ポンプ3から入口ノズル1aを介して
原子炉容器1内に導入された冷却材は、原子炉容器1内
の炉心を構成する図示しない燃料要素により加熱され、
高温高圧の冷却材となって出口ノズル1bを介して蒸気
発生器2の一次側にある入口ノズル2aに送られる。そ
して、入口ノズル2aから多数の伝熱管2b(1本のみ
図示)を通り、その間に伝熱管2bの外側周囲にある給
水を加熱して蒸気に変換した後、自身は冷却されて出口
ノズル2cから配管Lに流出し、冷却材ポンプ3に戻
り、この循環を繰り返す。
First, referring to FIG.
FIG. 4 shows various devices similar to a reactor vessel, a steam generator, a coolant pump, and a pressurizer constituting a conventional reactor cooling system in FIG. 3. During normal operation of the reactor, the coolant introduced into the reactor vessel 1 from the coolant pump 3 provided in the pipe L via the inlet nozzle 1a supplies fuel (not shown) constituting the reactor core in the reactor vessel 1. Heated by the element,
The high-temperature and high-pressure coolant is sent to the inlet nozzle 2a on the primary side of the steam generator 2 via the outlet nozzle 1b. After passing through a number of heat transfer tubes 2b (only one is shown) from the inlet nozzle 2a and heating and converting the feedwater around the outside of the heat transfer tubes 2b into steam during the passage, itself is cooled and then is discharged from the outlet nozzle 2c. It flows out to the pipe L, returns to the coolant pump 3, and repeats this circulation.

【0007】一方、本発明の実施形態においては、プラ
ント起動に先立って、原子炉冷却系統へ冷却材を注入し
ていき、冷却材水位が図示のように原子炉容器1のノズ
ル1a,1bのほぼ中心若しくは途中にある状態で、原
子炉の余熱除去ポンプ8及び余熱除去冷却器9を有する
冷却系La(循環系)に設けた後述の脱気装置10によ
り原子炉冷却材中の溶存酸素を除去する。この酸素除去
と並行して、加圧器4の気相部に設けた真空ポンプ11
により加圧器4を介して原子炉冷却系統内を真空引きし
た後、蒸気発生器2の出口ノズル2c側中に窒素ガスを
注入して系内を窒素雰囲気とする操作を数回繰り返す。
更に同時に、冷却材ポンプ3の入口側配管の滞留水中の
水張り過程では、水張り用水タンク12より水張りポン
プ13にて取水した水を、弁15及び17を開き、弁1
6を閉じて脱気装置10へ通水し、脱酸素した水を原子
炉冷却系統へ水張りする。
On the other hand, in the embodiment of the present invention, the coolant is injected into the reactor cooling system before the plant is started, and the coolant level of the nozzles 1a and 1b of the reactor vessel 1 is increased as shown in the figure. In a state substantially at the center or in the middle, dissolved oxygen in the reactor coolant is removed by a degassing device 10 described later provided in a cooling system La (circulation system) having a residual heat removal pump 8 and a residual heat removal cooler 9 of the reactor. Remove. In parallel with this oxygen removal, a vacuum pump 11 provided in the gas phase of the pressurizer 4
After the inside of the reactor cooling system is evacuated via the pressurizer 4, the operation of injecting nitrogen gas into the outlet nozzle 2c side of the steam generator 2 to make the inside of the system a nitrogen atmosphere is repeated several times.
At the same time, in the process of filling the stagnant water in the inlet-side pipe of the coolant pump 3, the water taken from the filling water tank 12 by the water filling pump 13 is opened by the valves 15 and 17, and the valve 1 is opened.
6 is closed, water is passed to the deaerator 10, and the deoxygenated water is filled with water to the reactor cooling system.

【0008】次に図2を参照するに、脱気装置10は、
脱気塔10a、返送ポンプ10b及び弁10c,10d
等により構成されている。弁10cを介して脱気塔10
aに注入される原子炉冷却材は、弁10cが設けられた
配管に流体連通するスプレイノズル10eにより、蒸留
装置等において一般的に用いられている塔内部の充填層
10fに均一に散布される。充填層10fの下部からは
符号Nで示すように窒素ガスが注入され、スプレー部及
び充填層内部で気液接触して、原子炉冷却材中の溶存酸
素が除去される。除去された酸素は、窒素ガスと共に排
気される。
Referring now to FIG. 2, the deaerator 10 comprises:
Deaeration tower 10a, return pump 10b and valves 10c, 10d
And the like. Degassing tower 10 via valve 10c
The reactor coolant injected into a is sprayed uniformly to a packed bed 10f inside a column generally used in a distillation apparatus or the like by a spray nozzle 10e which is in fluid communication with a pipe provided with a valve 10c. . Nitrogen gas is injected from the lower part of the packed bed 10f as indicated by reference numeral N, and gas-liquid contact is made between the spray part and the inside of the packed bed to remove dissolved oxygen in the reactor coolant. The removed oxygen is exhausted together with the nitrogen gas.

【0009】原子炉冷却材を脱気する際には、良く知ら
れているように、原子炉の運転に伴い冷却材中に溶存し
ている放射性希ガスの処理に注意する必要がある。プラ
ント運転後の停止時に脱気する場合には、冷却材中に大
量の放射性希ガスが含まれていることから、窒素ガスに
よるパージ方式よりも真空加熱脱気方式として放射性希
ガスが含まれた排気ガス量を低減する必要があるが、装
置も大型化される。しかし、本発明の実施形態では、プ
ラント起動時の放射性希ガスが殆ど溶存していない原子
炉冷却材を脱気するため、上述したように窒素ガスによ
るパージ方式としても排気ガス中の放射性希ガス濃度は
十分低く、装置の小型化が図られている。
As is well known, when degassing the reactor coolant, it is necessary to pay attention to the treatment of the radioactive rare gas dissolved in the coolant during the operation of the reactor. When degassing during shutdown after plant operation, the radioactive rare gas was included as a vacuum heating degassing method rather than a nitrogen gas purge method because a large amount of radioactive rare gas was contained in the coolant. Although it is necessary to reduce the amount of exhaust gas, the size of the apparatus is also increased. However, in the embodiment of the present invention, since the reactor coolant in which the radioactive rare gas is hardly dissolved at the time of starting the plant is degassed, the radioactive rare gas in the exhaust gas is also used as the purge method using the nitrogen gas as described above. The concentration is sufficiently low, and the size of the device is reduced.

【0010】再び図1を参照するに、原子炉冷却系統の
冷却材水位が原子炉容器1の入口ノズルノズル1a及び
出口ノズル1b(これらは同じ高さ位置にある)のほぼ
中心の高さにある状態で、原子炉の余熱除去ポンプ8及
び余熱除去冷却器9を有する冷却系に設けた脱気装置1
0を運転する。このとき、弁15は閉じ、弁16、17
は閉じ、余熱除去ポンプ8により吐出された冷却材は、
余熱除去冷却器9と脱気装置10を分かれて流れ、原子
炉冷却系統に戻される。脱気装置10内の作用は前述の
通りである。1プラントの試験例では、約30時間運転
することで、原子炉冷却系統における液相部の平均溶存
酸素濃度を大気圧飽和の8ppmから約50ppbまで
低減することができた。加圧器4より真空ポンプ11に
て系内を真空引きした後、蒸気発生器2の出口ノズル2
c側に接続された窒素注入系18bより窒素を注入して
系内を窒素雰囲気とする操作を4回程度繰り返すことに
より、原子炉冷却系統における気相部の平均酸素濃度を
空気の約21%から約0.3%まで低減することができ
る。この操作は、原子炉冷却系統の気相部で袋小路状の
閉塞空気滞留部の酸素濃度低減にも寄与することが確認
できた。
Referring again to FIG. 1, the coolant level of the reactor cooling system is set to approximately the center of the inlet nozzle nozzle 1 a and the outlet nozzle 1 b of the reactor vessel 1 (they are located at the same height). In a certain state, the deaerator 1 provided in a cooling system having a residual heat removal pump 8 and a residual heat removal cooler 9 of a nuclear reactor
Drive 0. At this time, the valve 15 is closed and the valves 16 and 17 are closed.
Is closed, and the coolant discharged by the residual heat removal pump 8 is
The residual heat removal cooler 9 and the deaerator 10 flow separately and return to the reactor cooling system. The operation in the deaerator 10 is as described above. In the test example of one plant, by operating for about 30 hours, the average dissolved oxygen concentration in the liquid phase in the reactor cooling system could be reduced from 8 ppm at atmospheric pressure saturation to about 50 ppb. After the system is evacuated by the vacuum pump 11 from the pressurizer 4, the outlet nozzle 2 of the steam generator 2
By repeating the operation of injecting nitrogen from the nitrogen injection system 18b connected to the c side to make the inside of the system a nitrogen atmosphere about four times, the average oxygen concentration of the gas phase in the reactor cooling system is reduced to about 21% of the air. To about 0.3%. It was confirmed that this operation also contributed to the reduction of the oxygen concentration in the closed air stagnation section in the gas-phase section of the reactor cooling system.

【0011】また、冷却材ポンプ3のU字形入口側配管
3aの滞留水中及び蒸気発生器2の冷却材出口側にそれ
ぞれ窒素注入系18a(ループドレーン箇所)、18b
(SG流量計箇所)から同時的に窒素を注入すると、窒
素の気泡によるバブリング効果により平均溶存酸素濃度
を大気圧飽和の約8ppmから約90ppbまで約10
時間で低減することができた。その後の原子炉冷却系統
の水張り過程では、水張り用水タンク12より水張りポ
ンプ13にて取水した水を脱気装置10で処理して、約
50ppbの水を原子炉冷却系統へ水張りする。これに
より、原子炉冷却系統を構成する配管、弁等の閉塞滞留
部にも脱気された水が張り込まれる。
Further, nitrogen injection systems 18a (loop drain portions) and 18b are respectively provided in the stagnant water of the U-shaped inlet side pipe 3a of the coolant pump 3 and the coolant outlet side of the steam generator 2.
When nitrogen is simultaneously injected from the (SG flow meter point), the average dissolved oxygen concentration is reduced from about 8 ppm of the atmospheric pressure saturation to about 90 ppb by the bubbling effect of nitrogen bubbles.
It could be reduced in time. In the subsequent water filling process of the reactor cooling system, the water taken from the water filling water tank 12 by the water filling pump 13 is treated by the deaerator 10, and about 50 ppb of water is filled into the reactor cooling system. As a result, the degassed water enters the closed stagnant portions of the pipes, valves, and the like that constitute the reactor cooling system.

【0012】これら各脱気操作を総合すると、最終的に
原子炉冷却系統が満水となった時点での原子炉冷却材中
の平均溶存酸素濃度は、閉塞滞留部も含めて約50pp
bが期待でき、プラント起動のための原子炉冷却材温度
を上昇させた段階での構成材料の腐食を防止することが
できる。また、従来のヒドラジンを添加する方式は不要
となり、プラント起動時間を約8時間短縮することが期
待できる。
When these deaeration operations are combined, the average dissolved oxygen concentration in the reactor coolant at the time when the reactor cooling system is finally filled with water is about 50 pp including the clogging stagnation portion.
b can be expected, and corrosion of the constituent materials at the stage when the temperature of the reactor coolant for starting the plant is increased can be prevented. Further, the conventional method of adding hydrazine becomes unnecessary, and it can be expected that the plant startup time can be reduced by about 8 hours.

【0013】[0013]

【発明の効果】以上のように、請求項1記載の本発明に
よれば、原子力発電プラントにおける溶存酸素濃度低減
方法は、プラント起動の際に、原子炉冷却系統の配管に
連絡する原子炉容器の入口ノズル及び出口ノズルの中間
レベルまで冷却材を注入して、前記原子炉冷却系統内に
液相部及び気相部を形成し、前記液相部から窒素ガスに
よるパージ方式の脱気装置により脱気すると共に、前記
気相部から真空ポンプにより真空引きし、前記原子炉冷
却系統内に窒素を注入して前記液相部内の酸素を前記液
相部中へ持ち出してから、前記原子炉冷却系統に前記脱
気装置を介して冷却材を充満させるので、また、請求項
2記載の本発明によれば、原子力発電プラントにおける
溶存酸素濃度低減装置は、原子炉冷却系統に連絡する循
環系に設けられた窒素ガスによるパージ方式の脱気装置
と、加圧器に設けられた真空ポンプと、原子炉冷却系統
に連通する窒素注入系とを備えるので、即ち真空引き、
窒素注入、脱気装置、窒素バブリングの各作用を総合す
ることにより、原子炉冷却材、特に原子炉冷却系統を構
成する配管、弁等の閉塞滞留部における原子炉冷却材の
溶存酸素濃度を低減することが可能であり、従来のヒド
ラジンを添加する方式は不要となり、プラント起動時間
の短縮が期待できる。
As described above, according to the first aspect of the present invention, the method for reducing the concentration of dissolved oxygen in a nuclear power plant is described as follows. The coolant is injected to an intermediate level between the inlet nozzle and the outlet nozzle of the reactor to form a liquid phase portion and a gas phase portion in the reactor cooling system. While degassing, evacuating the gaseous phase section with a vacuum pump, injecting nitrogen into the reactor cooling system to bring oxygen in the liquid phase section into the liquid phase section, Since the system is filled with the coolant through the deaerator, according to the present invention as set forth in claim 2, the apparatus for reducing the dissolved oxygen concentration in the nuclear power plant is connected to the circulation system communicating with the reactor cooling system. Provided Because comprising a degassing device of the purge system by hydrogen gas, and a vacuum pump provided in the pressurizer, a nitrogen injection system in communication with the reactor cooling system, i.e. vacuum,
Reduce the dissolved oxygen concentration in the reactor coolant, especially in the clogging and stagnant areas of the piping and valves that make up the reactor cooling system, by integrating the functions of nitrogen injection, degassing, and nitrogen bubbling. Therefore, the conventional method of adding hydrazine becomes unnecessary, and a reduction in plant startup time can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による溶存酸素濃度低減装置が接続され
た原子力発電プラントの原子炉冷却系統を示す概略系統
図である。
FIG. 1 is a schematic system diagram showing a reactor cooling system of a nuclear power plant to which a dissolved oxygen concentration reducing device according to the present invention is connected.

【図2】図1の溶存酸素濃度低減装置における脱気装置
の系統図である。
FIG. 2 is a system diagram of a deaerator in the dissolved oxygen concentration reducing device of FIG.

【図3】従来の溶存酸素濃度低減方法について説明する
ための原子炉冷却系統の系統図である。
FIG. 3 is a system diagram of a reactor cooling system for describing a conventional dissolved oxygen concentration reduction method.

【符号の説明】[Explanation of symbols]

1 原子炉容器 1a 入口ノズル 1b 出口ノズル 2 蒸気発生器 2a 入口ノズル 2c 出口ノズル 3 冷却材ポンプ 3a 入口側配管 4 加圧器 10 脱気装置 11 真空ポンプ 18a、18b 窒素注入系 L 配管 La 冷却系(循環系) Reference Signs List 1 reactor vessel 1a inlet nozzle 1b outlet nozzle 2 steam generator 2a inlet nozzle 2c outlet nozzle 3 coolant pump 3a inlet side pipe 4 pressurizer 10 deaerator 11 vacuum pump 18a, 18b nitrogen injection system L pipe La cooling system ( Circulatory system)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21D 1/00 G21D 3/08 G 1/02 G21C 19/30 GDPE 3/08 G21D 1/00 W (72)発明者 吉岡 正博 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 4D011 AA15 AA16 AB01 AB03 AD02 AD03 4D037 AA08 AB11 BA23 BB05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G21D 1/00 G21D 3/08 G 1/02 G21C 19/30 GDPE 3/08 G21D 1/00 W (72 Inventor Masahiro Yoshioka 1-1-1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo F-term in Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (reference) 4D011 AA15 AA16 AB01 AB03 AD02 AD03 4D037 AA08 AB11 BA23 BB05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラント起動の際に、原子炉冷却系統の
配管に連絡する原子炉容器の入口ノズル及び出口ノズル
内の中間レベルまで冷却材を注入して、前記原子炉冷却
系統内に液相部及び気相部を形成し、前記液相部から窒
素ガスによるパージ方式の脱気装置により脱気すると共
に、前記気相部から真空ポンプにより真空引きし、前記
原子炉冷却系統内に窒素を注入して前記液相部内の酸素
を前記液相部中へ持ち出してから、前記原子炉冷却系統
に前記脱気装置を介して冷却材を充満させる原子力発電
プラントにおける溶存酸素濃度低減方法。
At the start of a plant, a coolant is injected to an intermediate level in an inlet nozzle and an outlet nozzle of a reactor vessel connected to a pipe of a reactor cooling system, and a liquid phase is introduced into the reactor cooling system. Part and a gaseous phase part, and while degassing from the liquid phase part by a degassing device of a purge system using nitrogen gas, evacuating the gaseous phase part with a vacuum pump, and introducing nitrogen into the reactor cooling system. A method for reducing the concentration of dissolved oxygen in a nuclear power plant, comprising: injecting oxygen in the liquid phase portion into the liquid phase portion, and then filling the reactor cooling system with a coolant through the deaerator.
【請求項2】 冷却材ポンプ、該冷却材ポンプに入口ノ
ズルを介して接続された原子炉容器、該原子炉容器の出
口ノズルに接続された蒸気発生器、並びに前記原子炉容
器及び前記蒸気発生器間の配管に設けられた加圧器を備
え、前記蒸気発生器の冷却材出口が前記冷却材ポンプに
連絡して閉ループの原子炉冷却系統を構成している原子
力発電プラントにおいて、前記原子炉冷却系統に連絡す
る循環系に設けられた窒素ガスによるパージ方式の脱気
装置と、前記加圧器に設けられた真空ポンプと、前記原
子炉冷却系統に連通する窒素注入系とを備える溶存酸素
濃度低減装置。
2. A coolant pump, a reactor vessel connected to the coolant pump via an inlet nozzle, a steam generator connected to an outlet nozzle of the reactor vessel, and the reactor vessel and the steam generation A nuclear power plant comprising a pressurizer provided in a pipe between the reactors, wherein a coolant outlet of the steam generator communicates with the coolant pump to form a closed loop reactor cooling system; A nitrogen gas purge system degassing device provided in a circulation system connected to a system, a vacuum pump provided in the pressurizer, and a nitrogen injection system communicating with the reactor cooling system, for reducing the dissolved oxygen concentration. apparatus.
JP32939099A 1999-11-19 1999-11-19 Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant Expired - Lifetime JP4022026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32939099A JP4022026B2 (en) 1999-11-19 1999-11-19 Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32939099A JP4022026B2 (en) 1999-11-19 1999-11-19 Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant

Publications (2)

Publication Number Publication Date
JP2001147288A true JP2001147288A (en) 2001-05-29
JP4022026B2 JP4022026B2 (en) 2007-12-12

Family

ID=18220910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32939099A Expired - Lifetime JP4022026B2 (en) 1999-11-19 1999-11-19 Method and apparatus for reducing dissolved oxygen concentration in nuclear power plant

Country Status (1)

Country Link
JP (1) JP4022026B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495291A (en) * 2013-09-29 2014-01-08 中广核工程有限公司 Degassing device for separating gas impurities from circulating cooling agent of nuclear power station
CN107661643A (en) * 2016-07-28 2018-02-06 北京化工大学 A kind of system and device of liquid deoxidation and application
CN109205762A (en) * 2017-06-30 2019-01-15 上海轻工业研究所有限公司 Recirculating cooling water system and its self-draining arrangement
CN110749778A (en) * 2019-10-21 2020-02-04 马鞍山钢铁股份有限公司 On-line measuring method and measuring device for pure water degassing hydrogen conductivity
CN111180095A (en) * 2020-02-21 2020-05-19 三门核电有限公司 Primary loop physical pre-deoxygenation method for pressurized water reactor nuclear power plant
CN111180097A (en) * 2020-02-21 2020-05-19 三门核电有限公司 Chemical deoxygenation method for primary loop of pressurized water reactor nuclear power plant
CN112233827A (en) * 2020-09-10 2021-01-15 福建福清核电有限公司 Method for controlling content of dissolved hydrogen before oxidation shutdown of reactor coolant system of nuclear power station
CN112466486A (en) * 2020-12-03 2021-03-09 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103495291A (en) * 2013-09-29 2014-01-08 中广核工程有限公司 Degassing device for separating gas impurities from circulating cooling agent of nuclear power station
CN103495291B (en) * 2013-09-29 2015-11-04 中广核工程有限公司 The depassing unit of divided gas flow impurity from nuclear power station circulating coolant
CN107661643A (en) * 2016-07-28 2018-02-06 北京化工大学 A kind of system and device of liquid deoxidation and application
CN109205762A (en) * 2017-06-30 2019-01-15 上海轻工业研究所有限公司 Recirculating cooling water system and its self-draining arrangement
CN110749778A (en) * 2019-10-21 2020-02-04 马鞍山钢铁股份有限公司 On-line measuring method and measuring device for pure water degassing hydrogen conductivity
CN111180095A (en) * 2020-02-21 2020-05-19 三门核电有限公司 Primary loop physical pre-deoxygenation method for pressurized water reactor nuclear power plant
CN111180097A (en) * 2020-02-21 2020-05-19 三门核电有限公司 Chemical deoxygenation method for primary loop of pressurized water reactor nuclear power plant
CN112233827A (en) * 2020-09-10 2021-01-15 福建福清核电有限公司 Method for controlling content of dissolved hydrogen before oxidation shutdown of reactor coolant system of nuclear power station
CN112233827B (en) * 2020-09-10 2023-06-13 福建福清核电有限公司 Method for controlling content of dissolved hydrogen before oxidation shutdown of nuclear power station reactor coolant system
CN112466486A (en) * 2020-12-03 2021-03-09 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system
CN112466486B (en) * 2020-12-03 2022-09-06 中广核工程有限公司 Deoxygenation method for connecting waste heat discharge system to reactor coolant system

Also Published As

Publication number Publication date
JP4022026B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
EP0150981B1 (en) Method of vacuum degassing and refilling a reactor coolant system
JP5091727B2 (en) Chemical decontamination method
JP2011032551A (en) Method of inhibiting corrosion of carbon steel member
ZA200602629B (en) Method and device for venting the primary circuit of a nuclear reactor
JP2001147288A (en) Method and deice for lowering dissolved oxygen concentration in nuclear power plant
KR20170113616A (en) Apparatus for degassing a reactor coolant system
JP3048270B2 (en) Method and apparatus for chemical decontamination of primary reactor system
JP2009243836A (en) Oxygen processing method of turbine equipment, and turbine equipment
JP4167920B2 (en) Chemical decontamination method
JP2011038891A (en) Nuclear power plant with boiling water reactor and leak and hydrostatic test method for reactor pressure vessel
JPH1090485A (en) System and method for controlling dissolved oxygen concentration in reactor water
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP2010054499A (en) Method to protect bwr reactor from corrosion during start-up
JP4945487B2 (en) Method and apparatus for forming ferrite film on carbon steel member
JP2010266131A (en) Steam generator scale adhesion suppressing method
JPS6346397B2 (en)
JP7232702B2 (en) Pressurized water nuclear plant and method of operating pressurized water nuclear plant
JP2003290639A (en) Oxygen injection device
KR101014751B1 (en) Chemistry washing method of steam generator
JPS59143996A (en) Method of operating early oxydation of atomic power plant
JPH1130695A (en) Dissolved oxygen eliminating method
JPH07155743A (en) Deaeration device
JP2003035796A (en) Boiling water reactor power plant, method for deaerating reactor pressure vessel in the plant and method for inspecting pressure resistance and leakage
JP2003222305A (en) Clean-up operating device of power generation plant and operating method
JP5912886B2 (en) Chemical decontamination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4022026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term