JPS6379099A - Feedwater dissolved oxygen regulator - Google Patents

Feedwater dissolved oxygen regulator

Info

Publication number
JPS6379099A
JPS6379099A JP61224595A JP22459586A JPS6379099A JP S6379099 A JPS6379099 A JP S6379099A JP 61224595 A JP61224595 A JP 61224595A JP 22459586 A JP22459586 A JP 22459586A JP S6379099 A JPS6379099 A JP S6379099A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
feed water
drain
oxygen concentration
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61224595A
Other languages
Japanese (ja)
Inventor
勇 山本
笹室 武美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61224595A priority Critical patent/JPS6379099A/en
Publication of JPS6379099A publication Critical patent/JPS6379099A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は沸騰水形原子力発電プラントにおいて、原子炉
に送られる給水中の溶存酸素濃度を適切に保って復水管
、給水管等の内面に錆などが発生するのを防止するのに
好適な給水溶存酸素調節装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is used in a boiling water nuclear power plant to properly maintain the dissolved oxygen concentration in the feed water sent to a nuclear reactor, The present invention relates to a water supply dissolved oxygen regulating device suitable for preventing rust from forming on the inner surface of pipes, etc.

(従来の技術) 沸騰水形原子九発電プラントにおいては原子炉への給水
がおる水準以上の水質になるように水処理を行ないクラ
ッド等が原子炉に運ばれる機会を減らしたり、おるいは
脱気処理によって溶存酸素濃度が適切な値を保ち得るよ
うに多くの努力がはられれる。これはクラッド等が給水
と共に原子炉に運ばれると、そこで放射化されて作業員
等が被ばくする危険性が増すためでおり、また溶存酸素
濃度が一定の値を超える場合には原子炉内のステンレス
鋼でつくられた+14成材に応力腐食割れを生じる原因
となるためである。したがって、復水はもちろんのこと
、プラン1〜内で生じる各種のトレンも一旦復水器に集
められて脱気され、さらに復水浄化装置によって一定の
水質を保てるように水処理が施される。
(Conventional technology) In boiling water nuclear power plants, water is treated so that the quality of the water supplied to the reactor is higher than the level required to reduce the chances of crud being transported to the reactor, or to eliminate it. Many efforts are made to maintain the dissolved oxygen concentration at an appropriate value through air treatment. This is because if crud, etc. are transported to the reactor together with the water supply, it becomes radioactive there, increasing the risk of radiation exposure to workers, and if the dissolved oxygen concentration exceeds a certain value, This is because it causes stress corrosion cracking in +14 material made of stainless steel. Therefore, not only the condensate but also the various types of trains generated in Plan 1~ are once collected in the condenser and degassed, and further water treatment is performed by the condensate purification device to maintain a certain water quality. .

従来、かかる目的のために給水加熱器ドレンは復水器に
ジ′べて回収されるのが普通であったが、これに代って
タービンサイクルの効率を向上させることを目的として
給水加熱ドレンを復水系あるいは給水系にポンプを用い
て直接戻ず、いわゆる給水加熱器ドレンポンプアップ方
式にか提案され、注目されている。
In the past, feedwater heater condensate was typically collected in a condenser for this purpose, but instead, feedwater heater condensate has been collected for the purpose of improving the efficiency of the turbine cycle. Instead of directly returning the water to the condensate system or water supply system using a pump, a so-called feedwater heater drain pump-up method has been proposed and is attracting attention.

以下、この−例として高圧給水加熱ドレンを給水ポンプ
の吸込側に戻す方法を図面を参照して説明する。
Hereinafter, as an example of this method, a method of returning the high-pressure feed water heating drain to the suction side of the feed water pump will be described with reference to the drawings.

第2図において、原子炉(図示せず)を出た熱気は高圧
タービン1に送られてそこで膨張し、低圧蒸気となって
湿分分離再熱器2に流入する。蒸気中の湿分はここで湿
分分離器により取除かれ、ざらに加熱器により加熱され
て過熱蒸気となって低圧タービン3に流れる。蒸気は低
圧タービン3で再び膨張を遂げ、さらに圧力降下して復
水器4に導かれ、ここで外部から導かれる冷却水によっ
て冷却され、凝縮して復水となる。この復水は復水ポン
プ5により抽出され、復水浄化装置6に送られる。復水
中に混入している固形物、金属イオン等はここで水処理
にかけられて取除かれ、要求される水質に浄化される。
In FIG. 2, hot air exiting a nuclear reactor (not shown) is sent to a high pressure turbine 1 where it is expanded and becomes low pressure steam which flows into a moisture separator reheater 2. Moisture in the steam is here removed by a moisture separator and roughly heated by a heater to become superheated steam that flows to the low pressure turbine 3. The steam is expanded again in the low-pressure turbine 3, further reduced in pressure, and guided to the condenser 4, where it is cooled by cooling water introduced from the outside and condensed to become condensed water. This condensate is extracted by a condensate pump 5 and sent to a condensate purifier 6. Solid matter, metal ions, etc. mixed in the condensate are removed by water treatment here, and the water is purified to the required quality.

復水は複数の低圧給水加熱器7で低圧タービン3からの
抽気で加熱され、給水ポンプ8で再び胃圧されて給水と
して高圧給水加熱器9に送られ、ここで高圧タービン1
からの抽気で加熱される。このとき、高圧給水加熱器9
を流れる給水と蒸気との間で熱交換が行なわれ、蒸気が
凝縮してドレンとなる。この高圧給水加熱器9で生じた
ドレン、つまり給水加熱器ドレンは各々ドレン回収管1
0によりドレンタンク11に集められ、ここからドレン
ポンプ12によって抽出され、ドレン注入管13を介し
て給水ポンプ8の吸込側に直接注入される。この結果、
給水加熱器ドレンが保有している熱が給水に伝えられ、
従来復水器に回収されるときに冷却水に運び去られた熱
の一部が回収される。なお、図中符号14は給水加熱器
ドレンを)す水器4を逃がすためのドレン排出管、15
はカスケードドレン管をそれぞれ示している。
The condensate is heated in a plurality of low-pressure feed water heaters 7 using extracted air from the low-pressure turbine 3, and is again compressed by the feed water pump 8 and sent as feed water to the high-pressure feed water heater 9, where it is heated by the high-pressure turbine 1.
heated by bleed air from At this time, the high pressure water heater 9
Heat exchange occurs between the feed water flowing through the drain and the steam, and the steam condenses and becomes drain. The drain generated in this high-pressure feed water heater 9, that is, the feed water heater drain, is each drained by a drain recovery pipe 1.
0 is collected in a drain tank 11, from which it is extracted by a drain pump 12, and directly injected into the suction side of the water supply pump 8 via a drain injection pipe 13. As a result,
The heat held by the feedwater heater drain is transferred to the feedwater,
A portion of the heat conventionally carried away by the cooling water when recovered in the condenser is recovered. In addition, the reference numeral 14 in the figure indicates a drain discharge pipe 15 for discharging the water heater 4 from which the feed water heater drains.
Each shows a cascade drain pipe.

(発明が解決しようとする問題点) 上述したように原子力発電プラントでは復水あるいは原
子炉へ向かう給水の溶存酸素濃度の上限が決められ、こ
れを超える値では運転を続けることはできない。給水加
熱器ドレンポンプアップ方式を採用した場合、給水加熱
器ドレン中には多聞のPIimが溶は込んでいるために
、たとえばドレンタンク11にて給水加熱器ドレンを加
熱して脱気するのが普通である。これにより溶存酸素濃
度が増加するのが抑えられ、上限を超えることなく望ま
しい値に保たれている。
(Problems to be Solved by the Invention) As described above, in a nuclear power plant, an upper limit is determined for the concentration of dissolved oxygen in condensate or feed water going to the reactor, and operation cannot be continued at a value exceeding this. When the feedwater heater drain pump-up method is adopted, since a large amount of PIim is dissolved in the feedwater heater drain, it is necessary to heat the feedwater heater drain in the drain tank 11 to degas it. It's normal. This prevents the dissolved oxygen concentration from increasing and keeps it at a desirable value without exceeding the upper limit.

しかしながら、プラントの出力が定格出力よりも少ない
値で運転される場合、つまり部分負荷で運転される場合
や手繰等のために給水加熱ドレンを給水中に注入するこ
とができない場合には、復水あるいは給水中の溶存酸素
が逆に不足してしまうことが考えられる。すなわら、給
水中に注入される給水加熱器ドレンの全給水量に占める
割合は30%程度であるが、給水中の溶存酸素濃度は給
水加熱器ドレン中の溶存酸素量に大部分依存しているた
めにほぼ全量を失なうことにもなりかねない。
However, if the plant is operated at a value lower than the rated output, that is, if it is operated at partial load or if it is not possible to inject feedwater heating condensate into the feedwater due to manual handling, etc., the condensate Alternatively, it is possible that dissolved oxygen in the water supply becomes insufficient. In other words, the proportion of the feed water heater drain injected into the feed water to the total water supply amount is about 30%, but the dissolved oxygen concentration in the feed water largely depends on the amount of dissolved oxygen in the feed water heater drain. You may end up losing almost the entire amount.

溶存酸素の減少はステンレス鋼などのように鋼種によっ
て右利に動く反面、たとえば給水を導く給水管等のよう
に炭素鋼でつくられている構成イオには材料表面に形成
される安定した酸化被膜が形成されなくなることを意味
しており、錆の発生が問題となる。
Dissolved oxygen decreases depending on the type of steel, such as stainless steel, but on the other hand, for components made of carbon steel, such as water pipes that lead water, a stable oxide film forms on the surface of the material. This means that there will be no formation of rust, which poses a problem.

給水管等に錆が発生すると、将来これがクラッドとして
原子炉に運ばれ、放射化される危険性が増大する。
If rust occurs in water supply pipes, etc., there is an increased risk that this will be transported to the nuclear reactor as crud in the future and become radioactive.

したがって、本発明の目的は給水中の溶存酸素)門度を
適切な範囲に保って、給水管等において多足のクラット
が発生するのを防止するようにした給水溶存酸素調節装
置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a water supply dissolved oxygen regulating device that maintains the dissolved oxygen concentration in the water supply within an appropriate range and prevents the occurrence of multi-legged crats in water supply pipes, etc. It is in.

し発明の構成」 (問題点を解決するための手段) 本発明の給水溶存酸素調節装置は、酸素貯蔵装置と、こ
の酸素貯蔵装置と復水浄化装置の下流側経路とを結ぶ該
素性入管に設けられた調節弁と、検出された復水の溶存
酸素濃度と、予め決められた溶存酸素)農度とを比較し
、偏差に応じて調節弁の弁開度を決定する制願信号を出
力する第1の調節手段と、検出された高圧給水加熱器の
下流側経路を流れる給水の溶存酸素濃度と、予め定めら
れた溶存酸素濃度とを比較し、偏差に応じて調節弁の弁
開度を決める制御信号を出力する第2の調節手段と、ド
レンタンクと給水ポンプの吸込側とを結ぶドレン注入管
を流れる給水加熱器ドレンの流mに基づいて調節弁の制
御信号を一方の調節手段から他方の調節手段に切換える
手段とを備えることを特徴とするものである。
1. Structure of the Invention (Means for Solving the Problems) The feed water dissolved oxygen regulating device of the present invention includes an oxygen storage device and an inlet pipe connecting the oxygen storage device and the downstream route of the condensate purification device. The installed control valve compares the detected dissolved oxygen concentration of condensate with a predetermined dissolved oxygen rate, and outputs a control signal that determines the valve opening of the control valve according to the deviation. The first adjusting means compares the detected dissolved oxygen concentration of the feed water flowing through the downstream path of the high-pressure feed water heater with a predetermined dissolved oxygen concentration, and adjusts the valve opening of the control valve according to the deviation. and a second regulating means for outputting a control signal that determines the flow rate of the control valve based on the flow m of the feed water heater drain flowing through the drain injection pipe connecting the drain tank and the suction side of the feed water pump. and means for switching from one adjustment means to the other adjustment means.

(作 用) 復水、給水中の溶存酸素濃度は原子炉内構成材を中心に
考えた場合応ツノ腐食割れ感受性の高いステンレス鋼に
対する配慮として抑制する方向であるが、一方決素鋼を
用いる復水、給水系統構成材を念頭におくと、ある値以
上確保して酸化被膜が構成材の内面に形成されるように
する必要が市る。
(Function) The concentration of dissolved oxygen in condensate and feed water is expected to be suppressed when considering the components inside the reactor as a consideration for stainless steel, which is highly susceptible to horn corrosion cracking. When considering condensate water and water supply system constituent materials, it is necessary to ensure a certain value or more so that an oxide film is formed on the inner surface of the constituent materials.

本発明はこの2点の溶存酸素濃度について、各々決めら
れた値となるように溶存酸素濃度を制御するもので、給
水加熱器ドレンがドレン注入管を通して給水ポンプの吸
込側に給水中に注入されている間は高圧給水加熱器の下
流側経路で主として給水加熱器ドレン中に溶は込んでい
る酸素量をみながら、一方給水加熱器ドレンの注入が止
められているときには主として酸素の注入量をみなから
駿索を供給する調節弁の弁17n度を第1の調節手段と
第2の調節手段を用いて自動制御する。
The present invention controls the dissolved oxygen concentration at each of these two points to a predetermined value, and the feed water heater drain is injected into the feed water through the drain injection pipe to the suction side of the water pump. During this period, the amount of oxygen dissolved in the feedwater heater drain is mainly monitored in the downstream path of the high-pressure feedwater heater, while when the feedwater heater drain injection is stopped, the amount of oxygen injected is mainly monitored. The valve 17n degree of the control valve that supplies the flying line from all sides is automatically controlled using the first control means and the second control means.

そして、2個の調節手段の一方から他方への切換え、ま
たそれと反対の切換えも自動的に行なわれるようにドレ
ン注入管を通る給水加熱器ドレンの流mが調べられ、予
め決められた流量に塁づいて接点を切換える信号が発り
られる。
The flow m of the feedwater heater condensate through the condensate injection pipe is then checked and adjusted to a predetermined flow rate so that the switching of the two regulating means from one to the other and vice versa takes place automatically. A signal is issued to switch the contacts.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において、符号21は酸素供給源として構成され
る酸素貯蔵装置を示しており、この酸素貯蔵装置21と
復水浄化装置6の下流側経路とが酸素注入管22によっ
て結ばれている。この酸素注入管22の経路内には注入
酸素♀を調節するための調節弁23が設けられる。
In FIG. 1, reference numeral 21 indicates an oxygen storage device configured as an oxygen supply source, and this oxygen storage device 21 and the downstream path of the condensate purification device 6 are connected by an oxygen injection pipe 22. A control valve 23 is provided in the path of the oxygen injection pipe 22 to adjust the injection oxygen ♀.

一方、酸素注入管22の結ばれる位置よりも下流側には
第1の芯素Q度、検出器24が設けられ、ここで検出さ
れ値が比較器25に送られて設定値と比較され、調節器
26に出力されるように構成されている。また、高圧給
水加熱器9の下流側には第2の酸素濃度検出器27が設
(プられ、ここで検出された値が比較器28に送られて
設定値と比較され、調節器2つに出力されろようになっ
ている。さらに調節器26.29でつくられた調節信号
はリレー30を介してそれぞれ調節弁23の駆動部(図
示しず)(ご伝えられるように構成されている。
On the other hand, a first core element Q degree detector 24 is provided downstream of the position where the oxygen injection pipe 22 is connected, and the detected value is sent to a comparator 25 and compared with a set value. The signal is configured to be output to the regulator 26. Further, a second oxygen concentration detector 27 is installed downstream of the high-pressure feed water heater 9, and the value detected here is sent to a comparator 28 and compared with a set value. Furthermore, the regulation signals generated by the regulators 26 and 29 are transmitted to the drive unit (not shown) of the regulation valve 23 via the relay 30, respectively. .

またドレン注入管13のドレンポンプ12の吐出昂を検
出してリレー30をに!Iかすための流量検出器31が
設けられている。
In addition, the discharge level of the drain pump 12 of the drain injection pipe 13 is detected and the relay 30 is activated! A flow rate detector 31 is provided for detecting I-waste.

なお、上記以外の各構成は第2図に示される構成と同様
であり、一部については図示することを省略している。
Note that each configuration other than the above is the same as the configuration shown in FIG. 2, and some are omitted from illustration.

上記1^1成において、給水加熱器ドレンが給水ポンプ
8の吸込側に注入されている間、調部弁23は第2の酸
素濃度検出器27で給水中の溶存酸素濃度を検出し、こ
の出力と設定値とが比較器28で比較され、調節器29
を介して偏差に応じた信号によりijJ御される。この
場合、給水加熱器ドレン中の溶存酸素濃度か比較的高い
ため、調節弁23の開弁度はあまり開かれず、したがっ
て酸素の注入量は殆んどないか、あっても微量である。
In the above 1^1 configuration, while the feed water heater drain is being injected into the suction side of the feed water pump 8, the regulating valve 23 detects the dissolved oxygen concentration in the feed water with the second oxygen concentration detector 27, and detects the dissolved oxygen concentration in the feed water. The output and the set value are compared by a comparator 28, and a regulator 29
ijJ is controlled by a signal corresponding to the deviation. In this case, since the dissolved oxygen concentration in the feed water heater drain is relatively high, the control valve 23 is not opened very much, and therefore the amount of oxygen injected is almost no or only a small amount.

一方、何らかの原因で給水加熱器ドレンを給水中に注入
することかできなくなると、ドレンポンプ12の運転が
停止され、ドレン注入管13を流れる給水加熱器ドレン
の流量が減少する。この流量の減少は流量検出器31で
検出され、設定値よりも下かった場合、リレー30か動
いて調節弁23の制御信号か調節器2つから出力される
信号から調節器26から出力される信号に切換えられる
On the other hand, if it becomes impossible to inject the feed water heater drain into the feed water for some reason, the operation of the drain pump 12 is stopped and the flow rate of the feed water heater drain flowing through the drain injection pipe 13 is reduced. This decrease in flow rate is detected by the flow rate detector 31, and if the flow rate is lower than the set value, the relay 30 is activated and the control signal of the control valve 23 or the signal output from the two regulators is output from the regulator 26. signal.

通常、復水器4から抽出される復水中の溶存i′!2索
は少なく、第1の酸素濃度検出器24がこれを検出して
比較器25に入力する。比較器25の設定値として溶存
酸素:1度の下限を規定しているため、調節器26を介
して調節弁23を開く信号が出力され、酸素が酸素貯蔵
装置21から酸素注入管22を通して復水中に注入され
る。これにより、復水中の溶存酸素濃度が高められ、規
定濃度に合わせられる。
Usually, dissolved i′ in the condensate extracted from the condenser 4! The number of 2 lines is small, and the first oxygen concentration detector 24 detects this and inputs it to the comparator 25. Since the lower limit of dissolved oxygen: 1 degree is specified as the setting value of the comparator 25, a signal to open the control valve 23 is outputted via the regulator 26, and oxygen is recovered from the oxygen storage device 21 through the oxygen injection pipe 22. Injected into the water. This increases the dissolved oxygen concentration in the condensate and brings it to the specified concentration.

なお、この後、給水加熱器ド!ノンの給水中への注入が
再び開始されると、流山検出器31の出力信号でリレー
30が働き、調節弁23の制御信号は調節器26からの
出力信号から調節器29からの出力信号に切換えられる
In addition, after this, the water heater de! When the injection of water into the water supply starts again, the relay 30 is actuated by the output signal of the mountain flow detector 31, and the control signal of the control valve 23 changes from the output signal from the regulator 26 to the output signal from the regulator 29. Can be switched.

また、上記のドレンポンプ12の運転が停止される場合
と同様の制御は部分負荷時にも行なわれる。すなわち、
給水加熱器ドレンの給水中への注入は部分負荷時には制
限されるため、流山検出器31で検出される流[F]値
は設定値よりも小さくなり、調節弁23の開弁度は調部
器26から出力される信号により制御される。
Furthermore, the same control as when the operation of the drain pump 12 is stopped is also performed during partial load. That is,
Since the injection of the feed water heater drain into the feed water is restricted at partial load, the flow [F] value detected by the flow mountain detector 31 becomes smaller than the set value, and the opening degree of the control valve 23 is adjusted. It is controlled by a signal output from the device 26.

[発明の効果] 以上説明したように本発明によれば、原子炉に送られる
給水中の溶存酸素)農度が運転条件の変化で適切な範囲
から逸脱してしまうのを防止することが可能であり、給
水管等において多量のクラッドが生じることがなく、ク
ラッドの放射化による放射性物質の増加が抑制され、被
ばく事故の原因排除に多大の効果がある。
[Effects of the Invention] As explained above, according to the present invention, it is possible to prevent the dissolved oxygen content in the feed water sent to the nuclear reactor from deviating from the appropriate range due to changes in operating conditions. Therefore, a large amount of crud is not generated in water supply pipes, etc., and the increase in radioactive materials due to activation of crud is suppressed, which is highly effective in eliminating the causes of radiation exposure accidents.

【図面の簡単な説明】 第1図は本発明による給水溶存酸素調節装置の一実施例
を示す構成図、第2図は従来技術による原子力発電プラ
ントの主要な機器とこれに付帯する給水加熱器ドレン系
続を示す系統図である。 4・・・・・・・・・復水器 6・・・・・・・・・復水浄化装置 8・・・・・・・・・給水ポンプ 9・・・・・・・・・高圧給水加熱器 11・・・・・・・・・ドレンタンク 12・・・・・・・・・ドレンポンプ 13・・・・・・・・・ドレン注入管 21・・・・・・・・・酸素貯蔵装置 22・・・・・・・・・酸素注入管 23・・・・・・・・・調節弁 24・・・・・・・・・第1の酸素濃度検出器25.2
8・・・・・・比較器 26.29・・・・・・調節器 27・・・・・・・・・第2の酸素濃度検出器30・・
・・・・・・・リレー 31・・・・・・・・・流量検出器 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the feedwater dissolved oxygen regulating device according to the present invention, and Fig. 2 is a diagram showing the main equipment of a nuclear power plant and its accompanying feedwater heater according to the prior art. It is a system diagram showing drain system connection. 4...Condenser 6...Condensate purification device 8...Water pump 9...High pressure Feed water heater 11...Drain tank 12...Drain pump 13...Drain injection pipe 21... Oxygen storage device 22... Oxygen injection pipe 23... Control valve 24... First oxygen concentration detector 25.2
8...Comparator 26.29...Adjuster 27...Second oxygen concentration detector 30...
......Relay 31...Flow rate detector Applicant Toshiba Corporation Representative Patent attorney Sasu Suyama - Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)酸素貯蔵装置と、この酸素貯蔵装置と復水浄化装
置の下流側経路とを結ぶ酸素注入管に設けられた調節弁
と、検出された復水の溶存酸素濃度と、予め決められた
溶存酸素濃度とを比較し、偏差に応じて前記調節弁の弁
開度を決定する制御信号を出力する第1の調節手段と、
検出された高圧給水加熱器の下流側経路を流れる給水の
溶存酸素濃度と、予め定められた溶存酸素濃度とを比較
し、偏差に応じて前記調節弁の弁開度を決める制御信号
を出力する第2の調節手段と、ドレンタンクと給水ポン
プの吸入側とを結ぶドレン注入管を流れる給水加熱器ド
レンの流量に基づいて前記調節弁の制御信号を前記一方
の調節手段から他方の調節手段に切換える手段とを具備
してなる給水溶存酸素調節装置。
(1) An oxygen storage device, a control valve installed in an oxygen injection pipe connecting this oxygen storage device and the downstream route of the condensate purification device, and a predetermined control valve that controls the detected dissolved oxygen concentration in the condensate. a first regulating means that compares the dissolved oxygen concentration with the dissolved oxygen concentration and outputs a control signal that determines the valve opening of the regulating valve according to the deviation;
The detected dissolved oxygen concentration of the feed water flowing through the downstream path of the high-pressure feed water heater is compared with a predetermined dissolved oxygen concentration, and a control signal is output that determines the valve opening degree of the control valve according to the deviation. a second regulating means; and a control signal for the regulating valve is transmitted from the one regulating means to the other regulating means based on the flow rate of the feed water heater drain flowing through the drain injection pipe connecting the drain tank and the suction side of the feed water pump. A water supply dissolved oxygen regulating device comprising switching means.
JP61224595A 1986-09-22 1986-09-22 Feedwater dissolved oxygen regulator Pending JPS6379099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224595A JPS6379099A (en) 1986-09-22 1986-09-22 Feedwater dissolved oxygen regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224595A JPS6379099A (en) 1986-09-22 1986-09-22 Feedwater dissolved oxygen regulator

Publications (1)

Publication Number Publication Date
JPS6379099A true JPS6379099A (en) 1988-04-09

Family

ID=16816187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224595A Pending JPS6379099A (en) 1986-09-22 1986-09-22 Feedwater dissolved oxygen regulator

Country Status (1)

Country Link
JP (1) JPS6379099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201885A (en) * 1993-06-30 1994-07-22 Hitachi Ltd Operating condition monitoring system of plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201885A (en) * 1993-06-30 1994-07-22 Hitachi Ltd Operating condition monitoring system of plant

Similar Documents

Publication Publication Date Title
KR890001170B1 (en) Sliding pressure flash tank for control system
KR880002362B1 (en) Deaerator level control apparatus
JPS6379099A (en) Feedwater dissolved oxygen regulator
JPS6179905A (en) Drain recovery system
CA1237203A (en) Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor
JP2597594B2 (en) Feed water heater drain injection device
JPS582794A (en) Drain processing method of atomic power plant
JPS61262509A (en) Flow controller for drain filter of feedwater heater
JP2927860B2 (en) Feed water heater for reactor
JPS604439B2 (en) How to operate a nuclear reactor plant
JPH0477879B2 (en)
JPS59110811A (en) Steam turbine plant
JPS6235033B2 (en)
JPS6338804A (en) Condensate device
JPH0423161B2 (en)
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JP2679980B2 (en) Control device for water supply drain pump up system
JPS6017079B2 (en) Dissolved oxygen conservation device in hotwell water of turbine main condenser in nuclear power plant
JPS63251703A (en) Feedwater-heater drain system oxygen-concentration controller
JPS58224201A (en) Waste-heat recovery device
JPH04270995A (en) Purification system of nuclear reactor coolant
JPS6010597B2 (en) Reactor coolant purification system
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPS63315803A (en) Feedwater-heater drain controller
JPH0425798A (en) Condensate purification system