JPH0479438B2 - - Google Patents
Info
- Publication number
- JPH0479438B2 JPH0479438B2 JP58059662A JP5966283A JPH0479438B2 JP H0479438 B2 JPH0479438 B2 JP H0479438B2 JP 58059662 A JP58059662 A JP 58059662A JP 5966283 A JP5966283 A JP 5966283A JP H0479438 B2 JPH0479438 B2 JP H0479438B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- cooling system
- cuw
- heat removal
- residual heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000002826 coolant Substances 0.000 claims description 13
- 238000002955 isolation Methods 0.000 claims description 8
- 238000000746 purification Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000010612 desalination reaction Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 101000825432 Homo sapiens SHC-transforming protein 4 Proteins 0.000 description 1
- 102100022333 SHC-transforming protein 4 Human genes 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Description
〔発明の利用分野〕
本発明は、原子炉冷却系統設備の運転方法、特
に、再循環系(以下、PLRと称する)、残留熱除
去系(以下、RHRと称する)、冷却材浄化系(以
下CUWと称する)、給水系(以下、FDWと称す
る)及び隔離時冷却系(以下RCICと称する)を
有する原子炉冷却系統設備に関するものである。
〔従来技術〕
第1図は従来の原子炉冷却系統設備の系統を示
すもので、1は原子炉圧力容器、2はPLR、3
はRHR、4及び5はそれぞれRHR3の一部であ
る停止時冷却系(以下、SHCと称する)、低圧注
水系(以下、LPCIと称する)、6はCUW、7は
FDW、8はRCICである。
PLR2は原子炉圧力容器1、原子炉圧力容器
1内の冷却材を強制循環させるPLRポンプ9、
PLRポンプ入口ライン10及びPLRポンプ出口
ライン11より構成されている。
RHR3は、PLRポンプ入口ライン10より分
岐し、ポンプ12及び熱交換器13の1次側を通
り冷却された原子炉圧力容器1内の冷却材が熱交
換器出口ライン14からSHC戻りライン15を
通りPLR・SHC配管接合部16を介してPLRポ
ンプ出口ライン11に接続するSHCと、熱交換
器13の一次側を通り冷却された冷却材が熱交換
器出口ライン14から弁17を介して直接原子炉
圧力容器1に戻るLPCI5から構成されている。
CUW6は、PLRポンプ入口ライン10より分
岐し、CUWポンプ18及びCUW再生熱交換器1
9の1次側を通り、フイルター脱塩装置20によ
り浄化された原子炉圧力容器1内の冷却材が
CUW戻りライン21から弁22を介してFDW・
CUW配管接合部23を介してFDW7のFDWラ
イン24に接続する構成となつている。
RCIC8は、RCICポンプ25及び吐出ライン2
6を介して原子炉圧力容器1と接続する構成とな
つている。
このような構成を有する従来の原子炉冷却系統
設備において、SHC4においては、通常運転時、
PLRポンプ出口ライン11及びSHC戻りライン
15の内部流体温度は、それぞれ約177℃及び72
℃となり、両者の温度差は約105℃となる。従つ
て、この温度差を持つ二流体が通常運転時に継続
的にPLR・SHC配管接合部16にて合流するた
めに、熱疲労による配管の損傷が発生する危険性
が高かつた。
また、CUW6においては、PLRポンプ入口ラ
イン10より分岐しCUWポンプ18を介して
CUW再生熱交換器19の1次側を通り、フイル
ター脱塩装置20により浄化され、CUWポンプ
18によりFDW・CUW配管接合部23を介して
FDWライン24に入る原子炉冷却材は、原子炉
起動、停止、高温待機時には、CUW戻りライン
21及びFDWライン24の内部流体温度は、そ
れぞれ40℃以下、220℃以下となり、両者の温度
差は180℃以上となる。従つて、プラント寿命中
に、FDW・CUW配管接合部23における温度差
による熱疲労で、配管の損傷が発生する危険性が
高かつた。
〔発明の目的〕
本発明は、PLR・SHC配管接合部及びFDW・
CUW配管接合部における熱疲労による損傷発生
の防止可能な原子炉冷却系統設備の運転方法を提
供することを目的とするものである。
〔発明の構成〕
本発明は、再循環系、残留熱除去系、冷却材浄
化系、給水系、隔離時冷却系を有する原子炉冷却
系統設備の運転方法において、前記残留熱除去系
の戻りラインを、前記残留熱除去系の低圧注水及
び前記隔離時冷却系の少なくとも一方を介して原
子炉に連通させる流路を形成する工程と、前記冷
却材浄化系の戻りラインを、原子炉の起動時、停
止時及び高温待機時に、前記残留熱除去系の低圧
注水系及び前記隔離時冷却系の少なくとも一方を
介して原子炉に連通させる流路を形成する工程と
のうち、少なくとも一方の工程を有し、前記再循
環系と前記残留熱除去系の停止時冷却系との接合
部及び前記給水系と前記冷却材浄化系との接合部
のうち、少なくとも一方の接合部の熱疲労による
配管の損傷を防止することを特徴とするものであ
る。
すなわち、残留熱除去系の戻りライン及び原子
炉の起動時、停止時及び高温待機時における冷却
材浄化系の戻りラインが、残留熱除去系の低圧注
水系及び隔離時冷却系の少なくとも一方を介して
原子炉に連通する流路が形成できるように構成す
ることによつて、SHC戻り水をRHRの一部であ
るLPCI又はRCICを介して原子炉へ戻し、二流体
の混合するのを防ぎ、またFDWとCUWとの温度
差の大なる例えば原子炉起動時に、CUW戻り水
をRHUの一部又はRCICを介して原子炉圧力容器
へと戻し、二流体の混合するのを防ぐことができ
るため、PLR・SHC接合部及びFDW・CUW接
合部の熱疲労による配管損傷のポテンシヤルを大
幅に低減し、信頼性が高く、かつSHC戻り配管
の除去によつて原子炉格納容器貫通部や配管の物
量を低減した合理的で従業員の被曝低減可能な原
子炉冷却系統設備の運転方法を提供することを可
能とするものである。
〔発明の実施例〕
第2〜第7図は本発明のそれぞれ異なる実施例
で用いる原子炉冷却系統設備の系統を示すもの
で、第1図と同一分には同一符号が付してある。
第2図の原子炉冷却系統設備においては、
CUWフイルター脱塩装置20の出口であるCUW
戻りライン21とRHR3の熱交換器出口ライン
14との間に、遠隔操作弁27及び逆止弁28が
設けられている配管29からなるタイラインが設
けられている。
この実施例では、原子炉起動、停止、高温待機
時等には、CUW戻りライン21に設けられてい
る弁22を閉とし、遠隔操作弁27とLPCI5の
弁17を開とすることによつて、CUW戻り水を
FDW7に戻さず、LPCI5を介して原子炉圧力容
器1へ戻す。このようにすることによつて、
FDW・CUW配管接合部23における温度差大な
る二流体の流体混合を回避することができる。第
1表は、原子炉起動時、停止時及び高温待機時に
おける二系統の温度及びFDWの流量の概略値を
示すもので、前述の説明及び第1表から明らかな
ように、起動、停止、高温待機時のFDWと
[Field of Application of the Invention] The present invention relates to a method of operating a nuclear reactor cooling system, in particular a recirculation system (hereinafter referred to as PLR), a residual heat removal system (hereinafter referred to as RHR), and a coolant purification system (hereinafter referred to as RHR). The reactor cooling system equipment includes a water supply system (hereinafter referred to as FDW), a water supply system (hereinafter referred to as FDW), and an isolation cooling system (hereinafter referred to as RCIC). [Prior Art] Figure 1 shows the system of conventional reactor cooling system equipment, where 1 is the reactor pressure vessel, 2 is the PLR, and 3 is the reactor pressure vessel.
is RHR, 4 and 5 are the shutdown cooling system (hereinafter referred to as SHC) and low pressure water injection system (hereinafter referred to as LPCI), which are part of RHR3, 6 is CUW, and 7 is
FDW, 8 is RCIC. PLR 2 includes a reactor pressure vessel 1, a PLR pump 9 that forcibly circulates coolant in the reactor pressure vessel 1,
It consists of a PLR pump inlet line 10 and a PLR pump outlet line 11. The RHR 3 branches from the PLR pump inlet line 10, and the coolant in the reactor pressure vessel 1 that has passed through the primary side of the pump 12 and the heat exchanger 13 and is cooled flows from the heat exchanger outlet line 14 to the SHC return line 15. The SHC is connected to the PLR pump outlet line 11 via the PLR/SHC piping joint 16, and the coolant cooled through the primary side of the heat exchanger 13 is directly connected to the PLR pump outlet line 11 from the heat exchanger outlet line 14 via the valve 17. It consists of an LPCI 5 that returns to the reactor pressure vessel 1. The CUW 6 branches from the PLR pump inlet line 10, and is connected to the CUW pump 18 and the CUW regenerative heat exchanger 1.
The coolant inside the reactor pressure vessel 1, which has been purified by the filter desalination device 20, passes through the primary side of the reactor pressure vessel 1.
FDW from the CUW return line 21 via the valve 22.
It is configured to be connected to the FDW line 24 of the FDW 7 via the CUW piping joint 23. RCIC8 is the RCIC pump 25 and discharge line 2
It is configured to be connected to the reactor pressure vessel 1 via 6. In conventional reactor cooling system equipment with such a configuration, in SHC4, during normal operation,
The internal fluid temperatures of the PLR pump outlet line 11 and the SHC return line 15 are approximately 177°C and 72°C, respectively.
℃, and the temperature difference between the two is approximately 105℃. Therefore, since the two fluids having this temperature difference continuously merge at the PLR/SHC piping junction 16 during normal operation, there was a high risk of damage to the piping due to thermal fatigue. In addition, in the CUW 6, it branches from the PLR pump inlet line 10 and passes through the CUW pump 18.
It passes through the primary side of the CUW regenerative heat exchanger 19, is purified by the filter desalination device 20, and is passed through the FDW/CUW piping joint 23 by the CUW pump 18.
During reactor startup, shutdown, and high-temperature standby, the reactor coolant entering the FDW line 24 has internal fluid temperatures of 40°C or lower and 220°C or lower, respectively, in the CUW return line 21 and FDW line 24, and the temperature difference between the two is The temperature will be 180℃ or higher. Therefore, there was a high risk that the piping would be damaged due to thermal fatigue due to the temperature difference at the FDW/CUW piping joint 23 during the life of the plant. [Object of the invention] The present invention is directed to PLR/SHC piping joints and FDW/
The purpose of this study is to provide a method of operating nuclear reactor cooling system equipment that can prevent damage caused by thermal fatigue at CUW piping joints. [Structure of the Invention] The present invention provides a method for operating a nuclear reactor cooling system equipment having a recirculation system, a residual heat removal system, a coolant purification system, a water supply system, and an isolation cooling system, in which a return line of the residual heat removal system is provided. forming a flow path communicating with the reactor through at least one of the low-pressure water injection of the residual heat removal system and the isolation cooling system, and connecting the return line of the coolant purification system to the reactor during startup of the reactor. , forming a flow path that communicates with the reactor through at least one of the low-pressure water injection system of the residual heat removal system and the isolation cooling system during shutdown and high-temperature standby. and damage to piping due to thermal fatigue of at least one of the joints between the recirculation system and the cooling system during shutdown of the residual heat removal system and the joint between the water supply system and the coolant purification system. It is characterized by preventing. In other words, the return line of the residual heat removal system and the return line of the coolant purification system during reactor startup, shutdown, and high-temperature standby are connected via at least one of the low-pressure water injection system of the residual heat removal system and the isolation cooling system. By configuring it so that a flow path communicating with the reactor can be formed, the SHC return water is returned to the reactor via the LPCI or RCIC, which is a part of the RHR, and mixing of the two fluids is prevented. Also, when there is a large temperature difference between the FDW and CUW, for example at reactor startup, the CUW return water can be returned to the reactor pressure vessel via a part of the RHU or the RCIC to prevent the two fluids from mixing. , the potential for piping damage due to thermal fatigue at PLR/SHC joints and FDW/CUW joints is significantly reduced, reliability is high, and by removing SHC return piping, the volume of reactor containment vessel penetrations and piping can be reduced. This makes it possible to provide a rational method of operating nuclear reactor cooling system equipment that reduces radiation exposure to employees. [Embodiments of the Invention] FIGS. 2 to 7 show systems of reactor cooling system equipment used in different embodiments of the present invention, and the same parts as in FIG. 1 are given the same reference numerals. In the reactor cooling system equipment shown in Figure 2,
CUW which is the outlet of the CUW filter desalination device 20
Between the return line 21 and the heat exchanger outlet line 14 of the RHR 3 there is provided a tie line consisting of a pipe 29 in which a remote control valve 27 and a check valve 28 are provided. In this embodiment, during reactor startup, shutdown, high temperature standby, etc., the valve 22 provided in the CUW return line 21 is closed, and the remote control valve 27 and the valve 17 of the LPCI 5 are opened. , CUW return water
Instead of returning to FDW 7, it is returned to reactor pressure vessel 1 via LPCI 5. By doing this,
Mixing of two fluids with a large temperature difference at the FDW/CUW piping junction 23 can be avoided. Table 1 shows approximate values of the temperature and FDW flow rate of the two systems during reactor startup, shutdown, and high-temperature standby.As is clear from the above explanation and Table 1, FDW during high temperature standby
本発明は、PLR・SHC配管接合部及びFDW・
CUW配管接合部における熱疲による損傷発生の
防止可能な原子炉冷却系統設備の運転方法を提供
可能とするもので、産業上の効果の大なるもので
ある。
The present invention features PLR/SHC piping joints and FDW/
This method makes it possible to provide a method of operating nuclear reactor cooling system equipment that can prevent damage caused by thermal fatigue at CUW piping joints, and has great industrial effects.
第1図は従来の原子炉冷却系統設備の系統図、
第2図〜第11図は本発明のそれぞれ異なる実施
例で用いる原子炉冷却系統設備の系統図である。
1……原子炉圧力容器、2……PLR、3……
RHR、4……SHC、5……LPCI、6……CUW、
7……FDW、8……RCIC、10……PLRポン
プ入口ライン、11……PLRポンプ出口ライン、
13……熱交換器、14……熱交換器出口ライ
ン、15……SCR戻りライン、16……PLR・
SHC配管接合部、17……弁、20……フイル
ター脱塩装置、21……CUW戻りライン、22
……弁、23……CUW・FDW配管接合部、26
……吐出ライン、27,30,33……遠隔操作
弁、28,31,34……逆止弁、29,32,
35……配管、36……PCV、37……遠隔操
作弁、38……配管、39,40,42……遠隔
操作弁、43……逆止弁、41,44……配管。
Figure 1 is a system diagram of conventional reactor cooling system equipment.
2 to 11 are system diagrams of reactor cooling system equipment used in different embodiments of the present invention. 1...Reactor pressure vessel, 2...PLR, 3...
RHR, 4...SHC, 5...LPCI, 6...CUW,
7...FDW, 8...RCIC, 10...PLR pump inlet line, 11...PLR pump outlet line,
13...Heat exchanger, 14...Heat exchanger outlet line, 15...SCR return line, 16...PLR・
SHC piping joint, 17... Valve, 20... Filter desalination device, 21... CUW return line, 22
...Valve, 23...CUW/FDW piping joint, 26
...Discharge line, 27,30,33...Remote control valve, 28,31,34...Check valve, 29,32,
35... Piping, 36... PCV, 37... Remote control valve, 38... Piping, 39, 40, 42... Remote control valve, 43... Check valve, 41, 44... Piping.
Claims (1)
水系及び隔離時冷却系を有する原子炉冷却系統設
備の運転方法において、前記残留熱除去系の戻り
ラインを、前記残留熱除去系の低圧注水系及び前
記隔離時冷却系の少なくとも一方を介して原子炉
に連通させる流路を形成する工程と、前記冷却材
浄化系の戻りラインを、原子炉の起動時、停止時
及び高温待機時に、前記残留熱除去系の低圧注水
系及び前記隔離時冷却系の少なくとも一方を介し
て原子炉に連通させる流路を形成する工程とのう
ち、少なくとも一方の工程を有し、前記再循環系
と前記残留熱除去系の停止時冷却系との接合部及
び前記給水系と前記冷却材浄化系との接合部のう
ち、少なくとも一方の接合部の熱疲労による配管
の損傷を防止することを特徴とする原子炉冷却系
統設備の運転方法。1. In a method for operating a reactor cooling system facility having a recirculation system, a residual heat removal system, a coolant purification system, a water supply system, and an isolation cooling system, the return line of the residual heat removal system is connected to the return line of the residual heat removal system. A step of forming a flow path communicating with the reactor through at least one of the low-pressure water injection system and the isolation cooling system, and a step of connecting the return line of the coolant purification system during startup, shutdown, and high-temperature standby of the reactor. , forming a flow path that communicates with the reactor through at least one of the low-pressure water injection system and the isolation cooling system of the residual heat removal system, and the recirculation system and Damage to piping due to thermal fatigue of at least one of the joint between the residual heat removal system and the cooling system during shutdown and the joint between the water supply system and the coolant purification system is prevented. How to operate nuclear reactor cooling system equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059662A JPS59184890A (en) | 1983-04-04 | 1983-04-04 | Reactor cooling system facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58059662A JPS59184890A (en) | 1983-04-04 | 1983-04-04 | Reactor cooling system facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59184890A JPS59184890A (en) | 1984-10-20 |
JPH0479438B2 true JPH0479438B2 (en) | 1992-12-15 |
Family
ID=13119629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58059662A Granted JPS59184890A (en) | 1983-04-04 | 1983-04-04 | Reactor cooling system facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59184890A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62197795A (en) * | 1986-02-26 | 1987-09-01 | 株式会社日立製作所 | Removing device for residual heat in nuclear reactor |
JP6348855B2 (en) * | 2015-02-06 | 2018-06-27 | 日立Geニュークリア・エナジー株式会社 | Emergency core cooling system for nuclear power plants |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368398A (en) * | 1976-12-01 | 1978-06-17 | Hitachi Ltd | Purifying/cooling system for reactor coolant |
JPS53113993A (en) * | 1977-03-17 | 1978-10-04 | Toshiba Corp | Coolant purification device of reactor |
-
1983
- 1983-04-04 JP JP58059662A patent/JPS59184890A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5368398A (en) * | 1976-12-01 | 1978-06-17 | Hitachi Ltd | Purifying/cooling system for reactor coolant |
JPS53113993A (en) * | 1977-03-17 | 1978-10-04 | Toshiba Corp | Coolant purification device of reactor |
Also Published As
Publication number | Publication date |
---|---|
JPS59184890A (en) | 1984-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210202121A1 (en) | Flow Mixing T-Unit of Reactor Volume Control System | |
US4587079A (en) | System for the emergency cooling of a pressurized water nuclear reactor core | |
JPS6138308A (en) | Recirculator for secondary cooling material fo steam generator | |
JPH0479438B2 (en) | ||
US4043864A (en) | Nuclear power plant having a pressurized-water reactor | |
EP0238079B2 (en) | Emergency core cooling apparatus | |
US4216057A (en) | Purifying plant for water to be vaporized in a steam generator of a nuclear reactor | |
JPS5941155B2 (en) | Reactor shutdown cooling system | |
KR100448876B1 (en) | Emergency feed water system in nuclear power plant | |
KR102718588B1 (en) | System for long term cooling of nuclear power plant and Method for long term cooling using the same | |
JPH08146184A (en) | Nuclear reactor container | |
JPS62215894A (en) | Purification system of coolant for nuclear reactor | |
JPH0755977A (en) | Water injection system for reactor container | |
JPS62197795A (en) | Removing device for residual heat in nuclear reactor | |
JPH05203788A (en) | System for purifying reactor water and fuel pool water | |
JPH01245194A (en) | At-reactor isolation cooler | |
KR20230112395A (en) | System for long term cooling of nuclear power plant and Method for long term cooling using the same | |
JPH0531955B2 (en) | ||
JPS62280689A (en) | Nuclear reactor coolant purifying system | |
JPH03237395A (en) | Nuclear furnace accessory cooling facility | |
JPS61266995A (en) | Pressurized water type nuclear power plant | |
JPS61231489A (en) | Nuclear reactor system facility | |
JPH0659074A (en) | Cooling system of heat exchanger for auxiliary machinery | |
JPS62284293A (en) | Emergency core cooling device for nuclear reactor | |
JPH07318687A (en) | Coolant purification system for reactor |