JPH07318687A - Coolant purification system for reactor - Google Patents

Coolant purification system for reactor

Info

Publication number
JPH07318687A
JPH07318687A JP6108042A JP10804294A JPH07318687A JP H07318687 A JPH07318687 A JP H07318687A JP 6108042 A JP6108042 A JP 6108042A JP 10804294 A JP10804294 A JP 10804294A JP H07318687 A JPH07318687 A JP H07318687A
Authority
JP
Japan
Prior art keywords
reactor
valve
purification system
heat exchanger
regenerative heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6108042A
Other languages
Japanese (ja)
Inventor
Goro Yanase
悟郎 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6108042A priority Critical patent/JPH07318687A/en
Publication of JPH07318687A publication Critical patent/JPH07318687A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enhance the reliability and safety by backing up and diversifying the function of the purification system for a pressure suppression pool. CONSTITUTION:A pressure vessel 2 in a reactor container 1 is coupled with a valve 14 isolating the inside and outside of a suction line. A pressure suppression pool 3 installed under the reactor container 1 is coupled with an S/P water suction piping 17 through an S/P water suction/isolation valve 18. The S/P water suction piping 17 is coupled through an S/P water suction valve 19 with a regenerative heatexchanger 4 and a non-regenerative heat-exchanger 5. The isolation valve 14 is coupled, on the downstream side thereof, with the regenerative heat-exchanger 4. The non-regenerative heat-exchanger 6 is coupled, on the downstream side thereof, with a pump 6, an inlet valve 15 and a filtering/ desalting tower 7 for reactor coolant purification system, a blow-down flow regulation valve 11, the pressure suppression pool, and a collection tank for low conductivity waste liquid system. When the system is isolated due to low reactor water level and the normal function can not be expected, functions of the pump, heat-exchangers, etc., are utilized effectively to contribute to the enhancement of safety.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所に設置され
ている原子炉冷却材浄化系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor coolant purification system installed in a nuclear power plant.

【0002】[0002]

【従来の技術】沸騰水型原子力発電所には、通常一次冷
却材を浄化し、炉水の電導度を下げ、放射線源を除去す
るための原子炉冷却材浄化系が設置されている。従来の
原子炉浄化系は図3に示したような構成になっている。
すなわち、原子炉格納容器1に格納されている原子炉圧
力容器2内に保有されている一次冷却材を吸込み、再生
熱交換器4,非再生熱交換器5およびポンプ6を通して
ろ過脱塩塔7により一次冷却材を浄化する。
2. Description of the Related Art A boiling water nuclear power plant is usually equipped with a reactor coolant purification system for purifying the primary coolant, lowering the electrical conductivity of the reactor water, and removing the radiation source. The conventional nuclear reactor purification system has a structure as shown in FIG.
That is, the primary coolant held in the reactor pressure vessel 2 stored in the reactor containment vessel 1 is sucked in, and the filter desalting tower 7 is passed through the regenerative heat exchanger 4, the non-regenerative heat exchanger 5 and the pump 6. To purify the primary coolant.

【0003】そして、再生熱交換器4を通して原子炉圧
力容器1に戻すか、または再生熱交換器4を通さずに原
子炉圧力容器1に戻すか、あるいは再生熱交換器4を通
さずに圧力抑制プール3または低電導度廃液系(LC
W)収拾槽に戻している。
Then, it is returned to the reactor pressure vessel 1 through the regenerative heat exchanger 4, or returned to the reactor pressure vessel 1 without passing through the regenerative heat exchanger 4, or pressure is passed without passing through the regenerative heat exchanger 4. Suppression pool 3 or low conductivity waste liquid system (LC
W) It is returned to the collection tank.

【0004】なお、図3中符号8はろ過脱塩塔バイパス
弁、9は再生熱交換器バイパス弁(手動)、10は復水給
水系への注入弁、11はブローダウン流量調節弁、12はブ
ローラインオリフィスバイパス弁、13はブローライン圧
力抑制プール(S/P)側出口弁、14は吸込ライン内
側,外側隔離弁、15はろ過脱塩塔入口弁、16は再生熱交
換器入口弁をそれぞれ示している。
In FIG. 3, reference numeral 8 is a filter desalting tower bypass valve, 9 is a regenerative heat exchanger bypass valve (manual), 10 is an injection valve to a condensate water supply system, 11 is a blowdown flow rate control valve, and 12 Is a blow line orifice bypass valve, 13 is a blow line pressure suppression pool (S / P) side outlet valve, 14 is a suction line inside and outside isolation valve, 15 is a filter desalting tower inlet valve, 16 is a regenerative heat exchanger inlet valve Are shown respectively.

【0005】原子炉圧力容器2を流出した冷却水は再生
熱交換器4および非再生熱交換器5によって冷却され、
原子炉冷却材浄化系ポンプ6を通ってろ過脱塩塔7によ
り浄化され、再び再生熱交換器4を通って復水給水系か
ら原子炉圧力容器1に戻される。この構成では吸込ライ
ンの隔離弁14が原子炉水位の低下により閉鎖された場合
に系統は何の機能ももたない。
The cooling water flowing out of the reactor pressure vessel 2 is cooled by the regenerative heat exchanger 4 and the non-regenerative heat exchanger 5,
It is purified by the filter desalting tower 7 through the reactor coolant purification system pump 6, and is again returned from the condensate water supply system to the reactor pressure vessel 1 through the regenerative heat exchanger 4. In this configuration, the system has no function when the isolation valve 14 of the suction line is closed due to the decrease in reactor water level.

【0006】[0006]

【発明が解決しようとする課題】従来の原子炉冷却材浄
化系の運転は原子炉圧力容器2内の水位が通常の場合に
行われるもので、原子炉圧力容器2内の水位が低下(L
−2)となった場合、系統は隔離弁14によって隔離され
て全ての機能を停止している。このため、ポンプ6,熱
交換器4,5,ろ過脱塩塔7を有して除熱,浄化の機能
があるにもかかわらず、このような状況下では設備が利
用されてない課題がある。
The operation of the conventional reactor coolant purification system is performed when the water level in the reactor pressure vessel 2 is normal, and the water level in the reactor pressure vessel 2 decreases (L
In the case of -2), the system is isolated by the isolation valve 14 and all the functions are stopped. Therefore, although the pump 6, the heat exchangers 4,5, and the filter desalting tower 7 are provided and have the functions of heat removal and purification, there is a problem that the equipment is not used under such circumstances. .

【0007】沸騰水型原子炉においては原子炉圧力が低
下した時点で、原子力発電プラントの健全性維持のため
に達成されるべき機能として、炉心冷却のための炉心へ
の注水機能と、原子炉格納容器1内の雰囲気の冷却およ
び核分裂生成物除去のための原子炉格納容器1へのスプ
レイ機能と、原子炉格納容器1の破損防止および崩壊熱
除去のための圧力抑制プールの冷却機能の3種類があ
る。沸騰水型原子炉では原子炉の型式に応じて複数の系
統を用いてこれらを達成している。
In the boiling water reactor, when the reactor pressure drops, the functions to be achieved for maintaining the soundness of the nuclear power plant include the function of injecting water into the core for cooling the core and the function of the reactor. 3 functions of a spray function to the reactor containment vessel 1 for cooling the atmosphere in the containment vessel 1 and removal of fission products, and a cooling function of the pressure suppression pool for preventing damage to the containment vessel 1 and removing decay heat. There are types. In boiling water reactors, these are achieved by using multiple systems depending on the type of reactor.

【0008】また、圧力抑制プール3の浄化は放射線被
曝低減に効果があり、改良型沸騰水型原子炉および一部
の沸騰水型原子炉では圧力抑制プール浄化系またはそれ
に類する系統を必要に応じて運転して行うことにしてい
るが、その他の沸騰水型原子炉においては圧力抑制プー
ル浄化系は設置されてない。
Further, purification of the pressure suppression pool 3 is effective in reducing radiation exposure, and in the improved boiling water reactor and some of the boiling water reactors, a pressure suppression pool cleaning system or a system similar to it is necessary. However, no pressure suppression pool purification system is installed in other boiling water reactors.

【0009】本発明は上記課題を解決するためになされ
たもので、原子炉冷却材浄化系が有するポンプ,熱交換
器およびろ過脱塩塔を有効に活用し、圧力抑制プール浄
化系の機能をバックアップして多様化をはかり、信頼性
および安全性が向上する原子炉冷却材浄化系を提供する
ことにある。
The present invention has been made to solve the above problems, and effectively utilizes the pump, heat exchanger, and filter demineralization tower of the reactor coolant purification system to realize the function of the pressure suppression pool purification system. It is to provide a reactor coolant purification system with backup and diversification to improve reliability and safety.

【0010】[0010]

【課題を解決するための手段】本発明は原子炉圧力容器
の再循環系配管から分岐し原子炉格納容器を貫通して再
生熱交換器に吸込ライン内側,外側隔離弁を介して吸込
ラインが接続し、この再生熱交換器の下流側に非再生熱
交換器,原子炉冷却材浄化系ポンプ,ろ過脱塩塔が接続
されてなる原子炉冷却材浄化系において、前記原子炉格
納容器に設けられた圧力抑制プールの下部に隔離弁を介
して吸込配管を接続し、この吸込配管を吸込弁を介して
前記再生熱交換器と非再生熱交換器との間の接続配管に
接続してなることを特徴とする。
According to the present invention, a recirculation system pipe of a reactor pressure vessel is branched and penetrates a reactor containment vessel to a regenerative heat exchanger, and a suction line is provided inside a suction line and through an outer isolation valve. In a reactor coolant purifying system, which is connected to the non-regenerating heat exchanger, a reactor coolant purifying system pump, and a filter desalting tower, is provided on the reactor containment vessel on the downstream side of the regenerative heat exchanger. A suction pipe is connected to the lower portion of the pressure suppression pool via an isolation valve, and this suction pipe is connected to the connection pipe between the regenerative heat exchanger and the non-regenerative heat exchanger via the suction valve. It is characterized by

【0011】[0011]

【作用】原子炉冷却材浄化系に圧力抑制プールからの吸
込配管を設置し、圧力抑制プールを水源とし、原子炉圧
力容器への注水および圧力抑制プールに戻すことができ
る。これにより、注水機能をもつ系統の多様化および圧
力抑制プールの冷却,浄化機能のもつ系統の多様化に寄
与する。
[Function] A suction pipe from the pressure suppression pool can be installed in the reactor coolant purification system, and the pressure suppression pool can be used as a water source to inject water into the reactor pressure vessel and return to the pressure suppression pool. This will contribute to the diversification of the system having the water injection function and the system having the cooling and purification functions of the pressure suppression pool.

【0012】また、従来、原子炉冷却材浄化系が機能し
ていなかった条件下でも除熱および浄化を行うことによ
り、それらの機能の多様性を原子炉冷却材浄化系に付加
し、ひいては原子力発電所の信頼性および安全性の向上
を実現する。
[0012] Further, by removing heat and purifying even under the condition that the reactor coolant purification system has not been functioning in the past, the versatility of these functions is added to the reactor coolant purification system, and by extension, nuclear power Achieve improved reliability and safety of the power plant.

【0013】[0013]

【実施例】図1を参照しながら本発明に係る原子炉冷却
材浄化系の第1の実施例を説明する。図1において、原
子炉格納容器1内に格納された原子炉圧力容器2は吸込
ライン内側,外側隔離弁14に接続している。この隔離弁
14は再生熱交換器4に接続し、再生熱交換器4は非再生
熱交換器5に接続している。
EXAMPLE A first example of the reactor coolant purification system according to the present invention will be described with reference to FIG. In FIG. 1, the reactor pressure vessel 2 stored in the reactor containment vessel 1 is connected to the suction line inside / outside isolation valve 14. This isolation valve
14 is connected to the regenerated heat exchanger 4, and the regenerated heat exchanger 4 is connected to the non-regenerated heat exchanger 5.

【0014】原子炉格納容器1の下部に設置された圧力
抑制プール3内にはフィルタ20が設けられ、圧力抑制プ
ール3の下面にはS/P吸込配管17がS/P水吸込隔離
弁18を介して接続されている。
A filter 20 is provided in the pressure suppression pool 3 installed below the reactor containment vessel 1, and an S / P suction pipe 17 is provided on the lower surface of the pressure suppression pool 3 with an S / P water suction isolation valve 18. Connected through.

【0015】このS/P水吸込配管17の下流側はS/P
水吸込弁19を介して再生熱交換器4と非再生熱交換器5
との間の配管に接続している。非再生熱交換器5は原子
炉冷却材浄化系ポンプ6に接続している。このポンプ6
の吐出側はろ過脱塩等入口弁15を介して原子炉冷却材浄
化系ろ過脱塩塔7に接続している。
The downstream side of this S / P water suction pipe 17 is S / P
Regeneration heat exchanger 4 and non-regeneration heat exchanger 5 via water suction valve 19
It is connected to the pipe between. The non-regenerated heat exchanger 5 is connected to the reactor coolant purification system pump 6. This pump 6
The discharge side is connected to the reactor coolant purification system filter desalting tower 7 through a filter desalting inlet valve 15.

【0016】このろ過脱塩塔7の出口側には再生熱交換
器バイパス弁(電動)9,再生熱交換器入口弁(電動)
16およびブローダウン流量調節弁11が接続する。ブロー
ダウン流量調節弁11の下流側は低電導度廃液収集槽とブ
ローラインS/P側出口弁13を介して圧力抑制プールへ
接続する。
On the outlet side of this filtration desalination tower 7, a regenerative heat exchanger bypass valve (electric) 9 and a regenerative heat exchanger inlet valve (electric)
16 and the blowdown flow control valve 11 are connected. The downstream side of the blowdown flow rate control valve 11 is connected to a pressure suppression pool via a low conductivity waste liquid collection tank and a blow line S / P side outlet valve 13.

【0017】再生熱交換器バイパス弁11の下流側は注入
弁10を介して復水給水系と、原子炉圧力容器2の頂部に
接続した配管に弁を介して接続する。なお、図中符号8
はろ過脱塩塔バイパス弁であり、12はブローラインオリ
フィスバイパス弁である。
The downstream side of the regenerative heat exchanger bypass valve 11 is connected via the injection valve 10 to the condensate water supply system and the pipe connected to the top of the reactor pressure vessel 2 via the valve. In the figure, reference numeral 8
Is a filtration desalting tower bypass valve, and 12 is a blow line orifice bypass valve.

【0018】しかして、上記実施例において、通常運転
時は図示したように従来の原子炉冷却材浄化系と同様の
構成で運転を行う。原子炉の水位が低下して吸込ライン
内側,外側隔離弁14が閉鎖された場合にはS/P水吸込
配管17上のS/P水吸込隔離弁18およびS/P水吸込弁
19を開き、圧力抑制プール3からの吸込みを可能とす
る。吐出配管の圧力損失を小さくするために再生熱交換
器バイパス弁9および再生熱交換器入口弁16を電動とし
て遠隔操作を可能にする。
However, in the above-described embodiment, during normal operation, the operation is performed with the same configuration as the conventional reactor coolant purification system as shown in the figure. When the water level in the reactor is lowered and the inner and outer isolation valves 14 are closed, the S / P water suction isolation valve 18 and the S / P water suction valve on the S / P water suction pipe 17 are closed.
Open 19 to allow suction from the pressure suppression pool 3. In order to reduce the pressure loss in the discharge pipe, the regenerative heat exchanger bypass valve 9 and the regenerative heat exchanger inlet valve 16 are electrically operated to enable remote operation.

【0019】本発明では圧力抑制プール3からの吸込を
可能にしたことにより、原子炉圧力容器1への圧力抑制
プール水の注入、圧力抑制プール3の冷却、圧力抑制プ
ール3の浄化を可能とした。
In the present invention, since the suction from the pressure suppression pool 3 is possible, it is possible to inject the pressure suppression pool water into the reactor pressure vessel 1, cool the pressure suppression pool 3, and purify the pressure suppression pool 3. did.

【0020】原子炉圧力容器1へ圧力抑制プール水を注
入する運転においては、吸込ライン隔離弁14を全閉した
後にろ過脱塩塔入口弁15および再生熱交換器入口弁16を
全閉とする。その後、S/P水吸込隔離弁18,S/P水
吸込弁19,ろ過脱塩塔バイパス弁8,再生熱交換器バイ
パス弁9を全開として圧力抑制プール3から復水給水系
を通して原子炉圧力容器1へ注水を行う。
In the operation of injecting the pressure suppression pool water into the reactor pressure vessel 1, the suction line isolation valve 14 is fully closed and then the filter desalting tower inlet valve 15 and the regenerative heat exchanger inlet valve 16 are fully closed. . After that, the S / P water suction isolation valve 18, the S / P water suction valve 19, the filter desalting tower bypass valve 8 and the regenerative heat exchanger bypass valve 9 are fully opened, and the reactor pressure is passed from the pressure suppression pool 3 through the condensate water supply system. Water is poured into the container 1.

【0021】この運転は原子炉圧力が十分に低いときお
よび定期検査時に行うことが可能であり、特に原子炉停
止時に注水可能な系統を付加して多様性をもたせたこと
により停止時の信頼性と安全性の向上が達成される。
This operation can be performed when the reactor pressure is sufficiently low and at the time of periodical inspection. Especially, by adding a system capable of injecting water when the reactor is stopped, the reliability at the time of shutdown can be improved. And improved safety is achieved.

【0022】圧力抑制プール3を冷却する運転において
は、吸込ライン隔離弁14を全閉した後、ろ過脱塩塔入口
弁15および再生熱交換器入口弁16を全閉し、S/P水吸
込隔離弁18,S/P水吸込弁19,ろ過脱塩塔バイパス弁
8,ブローダウン流量調整弁11,ブローラインオリフィ
スバイパス弁12,ブローラインS/P側出口弁13を全開
として圧力抑制プール3を循環するラインを形成して、
非再生熱交換器5によって圧力抑制プール水を冷却す
る。
In the operation of cooling the pressure suppression pool 3, the suction line isolation valve 14 is fully closed, and then the filter desalting tower inlet valve 15 and the regenerative heat exchanger inlet valve 16 are fully closed to suck the S / P water. Isolation valve 18, S / P water suction valve 19, Filtration desalting tower bypass valve 8, Blowdown flow rate adjusting valve 11, Blowline orifice bypass valve 12, Blowline S / P side outlet valve 13 are fully opened and pressure suppression pool 3 Form a line that circulates
The non-regenerated heat exchanger 5 cools the pressure suppression pool water.

【0023】これにより残留熱除去系の圧力抑制プール
冷却機能をバックアップすることで冷却システムの多様
化が図られて信頼性および安全性の向上が達成される。
Thus, by backing up the pressure suppression pool cooling function of the residual heat removal system, the cooling system is diversified and the reliability and safety are improved.

【0024】圧力抑制プール3を浄化する運転において
は、吸込ライン隔離弁14を全閉した後、ろ過脱塩塔入口
弁15および再生熱交換器入口弁16を全閉し、S/P水吸
込隔離弁18,S/P水吸込弁19,ブローダウン流量調整
弁11,ブローラインオリフィスバイパス弁12,ブローラ
インS/P側出口弁13を全開し圧力抑制プール3を循環
するラインを形成してろ過脱塩塔7によって圧力制御プ
ール水を浄化する。
In the operation for purifying the pressure suppression pool 3, the suction line isolation valve 14 is fully closed, and then the filter desalting tower inlet valve 15 and the regenerative heat exchanger inlet valve 16 are fully closed to suck the S / P water. Isolation valve 18, S / P water suction valve 19, blowdown flow rate adjusting valve 11, blowline orifice bypass valve 12, blowline S / P side outlet valve 13 are fully opened to form a line for circulating the pressure suppression pool 3. The pressure control pool water is purified by the filter desalting tower 7.

【0025】この第1の実施例によれば、圧力抑制プー
ル浄化系の機能をバックアップすることで多様化が図ら
れて信頼性および安全性の向上が達成される。
According to the first embodiment, by backing up the function of the pressure suppression pool purification system, diversification is achieved and improvement in reliability and safety is achieved.

【0026】つぎに、図2により本発明に係る原子炉冷
却材浄化系の第2の実施例を説明する。なお、図2中、
図1と同一部分には同一符号を付して重複する部分の説
明は省略する。
Next, a second embodiment of the reactor coolant purification system according to the present invention will be described with reference to FIG. In addition, in FIG.
The same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the overlapping parts will be omitted.

【0027】図2中符号21は復水貯蔵槽で、この復水貯
蔵槽21と圧力抑制プール3とを結んでポンプ22を介して
復水供給管23が接続されている。この復水供給管23から
分岐し吸込弁25を介して吸込配管24が接続し、この吸込
配管24は吸込配管17に接続している。
Reference numeral 21 in FIG. 2 denotes a condensate storage tank, which connects the condensate storage tank 21 and the pressure suppression pool 3 to a condensate supply pipe 23 via a pump 22. A suction pipe 24 is branched from the condensate supply pipe 23 and connected via a suction valve 25, and the suction pipe 24 is connected to the suction pipe 17.

【0028】この第2の実施例によれば、原子炉冷却材
浄化系において復水貯蔵槽21からの吸込配管24をポンプ
22の上流側に設置しているため、水源の多様化を図るこ
とができ、圧力抑制プール3内のプール水の水位低下を
避けることができる。
According to this second embodiment, the suction pipe 24 from the condensate storage tank 21 is pumped in the reactor coolant purification system.
Since it is installed on the upstream side of 22, it is possible to diversify the water source and avoid lowering the water level of the pool water in the pressure suppression pool 3.

【0029】[0029]

【発明の効果】本発明によれば、原子炉圧力容器内の炉
水位低により系統が隔離され、通常の機能を期待できな
くなった場合、ポンプ,熱交換器等の機器を有効に利用
し、原子力発電所の信頼性および安全性の向上をはかる
ことができる。
According to the present invention, when the system is isolated due to the low reactor water level in the reactor pressure vessel and normal functions cannot be expected, pumps, heat exchangers and other devices are effectively used, The reliability and safety of nuclear power plants can be improved.

【0030】また、水源から原子炉圧力容器への注水能
力を持つことで原子炉圧力容器内が減圧された場合の注
水系の多様化をはかることができ、さらに、圧力抑制プ
ールからの吸込み、圧力抑制プールに戻すことで非再生
熱交換器により圧力抑制プール水の冷却が可能となる。
Further, by having the capability of injecting water from the water source into the reactor pressure vessel, it is possible to diversify the water injection system when the pressure inside the reactor pressure vessel is reduced, and further, suction from the pressure suppression pool, By returning to the pressure suppression pool, the pressure suppression pool water can be cooled by the non-regeneration heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る原子炉冷却材浄化系の第1の実施
例を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of a reactor coolant purification system according to the present invention.

【図2】本発明に係る原子炉冷却材浄化系の第2の実施
例を示す系統図。
FIG. 2 is a system diagram showing a second embodiment of a reactor coolant purification system according to the present invention.

【図3】従来の原子炉冷却材浄化系を示す系統図。FIG. 3 is a system diagram showing a conventional reactor coolant purification system.

【符号の説明】 1…原子炉格納容器、2…原子炉圧力容器、3…圧力抑
制プール、4…再生熱交換器、5…非再生熱交換器、6
…原子炉冷却材浄化系ポンプ、7…ろ過脱塩塔、8…ろ
過脱塩塔バイパス弁、9…再生熱交換器バイパス弁(電
動)、10…注入弁、11…ブローダウン流量調節弁、12…
ブローラインオリフィスバイパス弁、13…ブローライン
S/P側出口弁、14…吸込ライン内側,外側隔離弁、15
…ろ過脱塩塔入口弁、16…再生熱交換器入口弁(電
動)、17…S/P水吸込配管、18…S/P水吸込隔離
弁、19…S/P水吸込弁、20…フィルタ、21…復水貯蔵
槽、22…復水貯蔵槽ポンプ、23…復水供給配管、24…復
水用吸込配管、25…吸込弁。
[Explanation of Codes] 1 ... Reactor containment vessel, 2 ... Reactor pressure vessel, 3 ... Pressure suppression pool, 4 ... Regenerative heat exchanger, 5 ... Non-regenerative heat exchanger, 6
... Reactor coolant purification system pump, 7 ... Filtration desalting tower, 8 ... Filtration desalting tower bypass valve, 9 ... Regenerative heat exchanger bypass valve (electric), 10 ... Injection valve, 11 ... Blowdown flow control valve, 12 ...
Blow line orifice bypass valve, 13 ... Blow line S / P side outlet valve, 14 ... Suction line inside / outside isolation valve, 15
... Filter desalting tower inlet valve, 16 ... Regenerative heat exchanger inlet valve (electric), 17 ... S / P water suction pipe, 18 ... S / P water suction isolation valve, 19 ... S / P water suction valve, 20 ... Filter, 21 ... Condensate storage tank, 22 ... Condensate storage tank pump, 23 ... Condensate supply pipe, 24 ... Condensate suction pipe, 25 ... Suction valve.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器の再循環系配管から分岐
し原子炉格納容器を貫通して再生熱交換器に吸込ライン
内側,外側隔離弁を介して吸込ラインが接続し、この再
生熱交換器の下流側に非再生熱交換器,原子炉冷却材浄
化系ポンプ,ろ過脱塩塔が接続されてなる原子炉冷却材
浄化系において、前記原子炉格納容器に設けられた圧力
抑制プールの下部に隔離弁を介して吸込配管を接続し、
この吸込配管を吸込弁を介して前記再生熱交換器と非再
生熱交換器との間の接続配管に接続してなることを特徴
とする原子炉冷却材浄化系。
1. A regenerative heat exchanger, which is branched from a recirculation system pipe of a reactor pressure vessel, penetrates the reactor containment vessel, and is connected to a regenerative heat exchanger through suction line inner and outer isolation valves. In the reactor coolant purification system in which a non-regenerative heat exchanger, a reactor coolant purification system pump, and a filter demineralization tower are connected on the downstream side of the reactor, the lower part of the pressure suppression pool provided in the reactor containment vessel. Connect the suction pipe via the isolation valve to
A reactor coolant purification system characterized in that the suction pipe is connected to a connection pipe between the regenerative heat exchanger and the non-regenerative heat exchanger via a suction valve.
【請求項2】 前記吸込配管を前記原子炉冷却材浄化ポ
ンプの上流側配管に接続してなることを特徴とする請求
項1記載の原子炉冷却材浄化系。
2. The reactor coolant purification system according to claim 1, wherein the suction pipe is connected to an upstream pipe of the reactor coolant purification pump.
【請求項3】 前記吸込配管を復水貯蔵槽に接続してな
ることを特徴とする請求項1記載の原子炉冷却材浄化
系。
3. The nuclear reactor coolant purification system according to claim 1, wherein the suction pipe is connected to a condensate storage tank.
【請求項4】 前記復水貯蔵槽からの前記吸込配管を前
記原子炉冷却材浄化系ポンプの上流側に接続してなるこ
とを特徴とする請求項3記載の原子炉冷却材浄化系。
4. The reactor coolant purification system according to claim 3, wherein the suction pipe from the condensate storage tank is connected to an upstream side of the reactor coolant purification system pump.
JP6108042A 1994-05-23 1994-05-23 Coolant purification system for reactor Pending JPH07318687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6108042A JPH07318687A (en) 1994-05-23 1994-05-23 Coolant purification system for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6108042A JPH07318687A (en) 1994-05-23 1994-05-23 Coolant purification system for reactor

Publications (1)

Publication Number Publication Date
JPH07318687A true JPH07318687A (en) 1995-12-08

Family

ID=14474474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6108042A Pending JPH07318687A (en) 1994-05-23 1994-05-23 Coolant purification system for reactor

Country Status (1)

Country Link
JP (1) JPH07318687A (en)

Similar Documents

Publication Publication Date Title
CN109243634B (en) Reactor safety system
JP3226383B2 (en) Reactor
US4043864A (en) Nuclear power plant having a pressurized-water reactor
US5377244A (en) Apparatus and method for chemically decontaminating a PWR reactor coolant system
EP0546798B1 (en) Reactor water cleanup and cooling system
JPH07318687A (en) Coolant purification system for reactor
US4699755A (en) Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor
RU2102800C1 (en) Power plant
US6506955B1 (en) Decontamination method
JP2001091684A (en) Fuel pool cooling equipment
JPH0640147B2 (en) Spent fuel pool purification cooling equipment
JPS5941155B2 (en) Reactor shutdown cooling system
JP2573284B2 (en) Operation method of reactor well pool cooling system
JPH0679073B2 (en) Reactor coolant purification system
JPH05203788A (en) System for purifying reactor water and fuel pool water
JP2563506B2 (en) Reactor coolant purification equipment
JPH0648311B2 (en) Reactor coolant purification device
JPS5882193A (en) Device for cleaning residual heat removal pipeline
JPH029720B2 (en)
JPS60178394A (en) Refrigerant purifying system of nuclear reactor
JPH06160586A (en) Reactor coolant purifying facility
JPH0862373A (en) Heat eliminating device of reactor container
JPS59112293A (en) Leaked sea water decontaminating device
JPS6258196A (en) Purifier for coolant of nuclear reactor
JPS58201094A (en) Reactor coolant cleanup system