JPH0432798A - Nuclear reactor pressure reduction maintaining device - Google Patents

Nuclear reactor pressure reduction maintaining device

Info

Publication number
JPH0432798A
JPH0432798A JP2138365A JP13836590A JPH0432798A JP H0432798 A JPH0432798 A JP H0432798A JP 2138365 A JP2138365 A JP 2138365A JP 13836590 A JP13836590 A JP 13836590A JP H0432798 A JPH0432798 A JP H0432798A
Authority
JP
Japan
Prior art keywords
pressure
nuclear reactor
reactor
breakage
reactor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2138365A
Other languages
Japanese (ja)
Inventor
Takashi Sato
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2138365A priority Critical patent/JPH0432798A/en
Publication of JPH0432798A publication Critical patent/JPH0432798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent heat breakage and excessive pressure breakage due to a molten reactor core by installing an isolation valve in the vent piping of a nuclear reactor pressure container and then holding the pressure of the nuclear reactor low in case of an accident(SCDA) wherein the reactor core melts while a designed reference accident is exceeded. CONSTITUTION:The upper lid part 6 of the nuclear reactor pressure container 1 is the vapor phase part of the pressure container 1, the vent piping 2 is connected to the upper lid part 6, and the isolation valve 4 installed in the piping 2 is normally closed. Then, if the water level of the nuclear reactor drops to cause SCDA, an automatic pressure reduction system(ADS) operates and when the pressure of the nuclear reactor drops temporarily, the isolation valve 4 is opened by a dedicated DC power source 5 or gas supply system to discharge steam produced in the nuclear reactor into the nuclear reactor storage container. Consequently, the afterward pressure in the storage container rises and even when the ADS is closed, the nuclear reactor pressure never rises again to prevent the direct heat thermal breakage and the excessive pressure breakage of the storage container due to the melting core.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力発電所に用いられる原子炉減圧維持装置
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor depressurization maintenance device used in a nuclear power plant.

(従来の技術) 従来、原子力発電所では原子炉圧力容器に逃し弁あるい
は安全弁(以下総称してSR弁と呼ぶ)が設けられてい
る。そして、原子炉圧力容器の圧力が過大になった場合
に、これらが自動作動し、原子炉圧力を一定値(数十気
圧)以下に保つことができる。また、沸騰水型原子炉(
以下BWRと呼ぶ)では非當炉心冷却系の一つとしてA
DS(自動減圧系)か設けられており、原子炉圧力を数
気圧まで強制的に自動減圧することが可能である。しか
し前記SR弁は原子炉を高圧状態で−・定値以下に保つ
ことしかできない。また、ADSは事故時に原子炉格納
容器の内圧が高いと、弁を閉鎖してしまうため、−旦は
原子炉を低下状態に導くことはできるが、原子炉格納容
器内圧が」1昇して来ると、再び、原子炉圧力もJ:f
/シてしまう。
(Prior Art) Conventionally, in nuclear power plants, a relief valve or safety valve (hereinafter collectively referred to as an SR valve) is provided in a reactor pressure vessel. When the pressure in the reactor pressure vessel becomes excessive, these systems automatically operate to maintain the reactor pressure below a certain value (several tens of atmospheres). In addition, boiling water reactors (
(hereinafter referred to as BWR), A is used as one of the non-core cooling systems.
A DS (automatic depressurization system) is installed, and it is possible to forcibly and automatically reduce the reactor pressure to several atmospheres. However, the SR valve can only maintain the reactor at a high pressure below a certain value. Additionally, if the internal pressure of the reactor containment vessel is high in the event of an accident, ADS closes the valve, so although it is possible to bring the reactor to a low state for a few days, the internal pressure of the reactor containment vessel will rise by 1. When it comes, the reactor pressure is also J:f again.
/ I'm dying.

(発明か解決しようとする課題) 設計基準事故を超えて炉心が損傷する事故(以下5CD
Aと呼ぶ)が発生すると、この事故進展を途中で停止し
得なかった場合には炉心は溶融し、原子炉圧力容器下部
に落下し、さらには原子炉圧力容器下部を溶融貫通し原
子炉格納容器内に溶融炉心が放出される。その際原子炉
圧力容器が数十気圧という高圧にあれば、溶融炉心は原
子炉格納容器内に高圧放出され、いたる所に飛散してし
まうおそれがある。また、原子炉圧力容器が溶融貫通す
る際に原子炉圧力容器内に大きな、かつ、急激な圧力上
昇が発生する。この圧力スパイクにより原子炉格納容器
が破損すると、大量の放射能が環境に放出されるおそれ
がある。仮にその圧力スパイクによって原子炉格納容器
が破損しなくても、飛散した溶融炉心が原子炉格納容器
内の酸素と急激な酸化反応を起こし、その発熱によって
、原子炉格納容器が直接加熱されて破損に至るおそれも
ある。
(Invention or problem to be solved) Accident in which the reactor core is damaged beyond the design basis accident (hereinafter referred to as 5CD)
If the accident progress cannot be stopped midway, the reactor core will melt and fall into the lower part of the reactor pressure vessel, and even penetrate the lower part of the reactor pressure vessel, causing the reactor containment. A molten core is released into the vessel. At that time, if the reactor pressure vessel is at a high pressure of several tens of atmospheres, there is a risk that the molten core will be released under high pressure into the reactor containment vessel and be scattered everywhere. Further, when the reactor pressure vessel is melted and penetrated, a large and rapid pressure rise occurs within the reactor pressure vessel. If the reactor containment vessel were to rupture due to this pressure spike, large amounts of radioactivity could be released into the environment. Even if the reactor containment vessel is not damaged by the pressure spike, the scattered molten core will cause a rapid oxidation reaction with the oxygen inside the reactor containment vessel, and the heat generated will directly heat the reactor containment vessel and cause damage. There is also a risk that this may lead to

このように5CDA時に原子炉圧力容器が高圧であるこ
とは極めて好ましくない結果をもたらす。
As described above, the high pressure in the reactor pressure vessel at the time of 5CDA brings about extremely unfavorable results.

しかし、前述のように現状のSR弁やADSでは5CD
A時に原子炉圧力を低圧に維持することは困難な場合も
ある。そこで5CDA時にも確実に原子炉圧力を低圧に
維持できる原子炉減圧維持装置を提供する。
However, as mentioned above, the current SR valve and ADS have a 5CD
It may be difficult to maintain the reactor pressure at low pressure during A. Therefore, a nuclear reactor depressurization maintenance device is provided that can reliably maintain the reactor pressure at a low pressure even during 5CDA.

[発明の構成] (課題を解決するための手段) 原子炉圧力容器の気相部に連結し、原子炉格納容器内に
導かれた配管と、この配管上に直流電源もしくは気体駆
動の隔離弁を設置する。
[Structure of the invention] (Means for solving the problem) A pipe connected to the gas phase part of the reactor pressure vessel and led into the reactor containment vessel, and a DC power supply or gas-driven isolation valve on this pipe. Set up.

(作 用) SCDAの発生は何らかの理由により、原子炉の水位が
低下し、炉心露出が長期化した場合に起こる。このよう
に、原子炉の水位が低下する最大の要因としては全交流
電源喪失事象がある。
(Effect) SCDA occurs when, for some reason, the water level in the reactor drops and the core is exposed for a prolonged period of time. As described above, the biggest factor causing the water level in the reactor to drop is the event of total AC power loss.

全交流電源喪失が発生すると、交流電源を使用している
非常用炉心冷却系は全て使用不可能となる。原子炉への
注水はタービン駆動の原子炉隔離時冷却系(RCICと
呼ぶ)によってのみ可能であるが、数時間で制御用に使
用しているステーションバッテリーか枯渇するとRCI
Cも停止してしまう。その結果、原子炉水位が低下し、
炉心損傷が発生するおそれかある。これをこのまま放置
すると原子炉圧力容器の溶融貫通が高圧状態で発生して
しまうので、ADSによって原子炉圧力を事前に低圧状
態に導くことが望ましい。その具体的方法としては、A
DSの作動信号の変更とか制御バッテリーのADS専用
化等が別途検討されている。これにより一旦原子炉圧力
は低下するが、原子炉燃料から放出され続ける崩塘熱に
より、原子炉格納容器の内圧が上昇すると、ADSは再
び閉鎖してしまう。ADSか閉鎖すると1時間程度で原
子炉圧力は再び数十気圧にまで上Rしてしまう。そこで
このようなことを防止するため、ADSが作動し、原子
炉圧力が一旦低下した時点で、本発明による原子炉減圧
維持装置の隔離弁を専用の直流電源もしくは気体供給系
によって開状態にし、原子炉内で発生した水蒸気等を原
子炉格納容器内に放出する。その後、原子炉格納容器の
内圧が上昇し、ADSは閉鎖する。しかし、本発明によ
る原子炉減圧維持装置がすでに作動しているため、原子
炉圧力が百び」1昇することはない。
If a total AC power loss occurs, all emergency core cooling systems using AC power become unusable. Water can only be injected into the reactor using a turbine-driven Reactor Isolation Cooling System (RCIC), but if the station battery used for control is depleted within a few hours, the RCI
C also stops. As a result, the reactor water level drops,
There is a risk of core damage. If this is left as it is, melt penetration of the reactor pressure vessel will occur in a high pressure state, so it is desirable to bring the reactor pressure to a low pressure state in advance by ADS. The specific method is A.
Changes to the DS operating signal and the use of a control battery exclusively for ADS are being considered separately. As a result, the reactor pressure temporarily decreases, but as the internal pressure of the reactor containment vessel increases due to the collapse heat that continues to be released from the reactor fuel, the ADS closes again. If the ADS were shut down, the reactor pressure would rise again to several tens of atmospheres in about an hour. Therefore, in order to prevent this, when the ADS is activated and the reactor pressure once drops, the isolation valve of the reactor depressurization maintenance device according to the present invention is opened by a dedicated DC power supply or gas supply system. Release water vapor generated inside the reactor into the reactor containment vessel. After that, the internal pressure of the reactor containment vessel increases and the ADS closes. However, since the reactor pressure reduction maintenance device according to the present invention is already in operation, the reactor pressure will not rise by 100%.

このようにして原子炉圧力容器の溶融貫通が発生する時
点にあっても、原子炉圧力容器は低圧に維持されるため
溶融炉心が原子炉格納容器内に飛び散って直接加熱破損
や圧カスバイクによる原子炉格納容器の過圧破損が生じ
ることを防止できる。
In this way, even at the point where melt penetration of the reactor pressure vessel occurs, the reactor pressure vessel is maintained at a low pressure, so the molten reactor core is scattered into the reactor containment vessel, resulting in direct heating damage and atomic atomization due to pressure build-up. It is possible to prevent overpressure damage to the reactor containment vessel.

(実施例) 以下本発明の一実施例を第1図を参照して説明る。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において原子炉圧力容器1の気相部である原子炉
圧力容器上蓋部6に接続されたベント配管2は原子炉格
納容器(図示せず)内のサンプ3中に導かれる。通常時
このベント配管2を閉鎖するために隔離弁4を設置する
。隔離弁4は信頼性向1−のため多重に設置してもよい
。また、隔Kt弁4は専用の直流(DC)電源5によっ
て駆動する。
In FIG. 1, a vent pipe 2 connected to a reactor pressure vessel upper cover 6, which is a gas phase portion of a reactor pressure vessel 1, is guided into a sump 3 in a reactor containment vessel (not shown). An isolation valve 4 is installed to close this vent pipe 2 under normal conditions. The isolation valves 4 may be installed in multiple numbers because of the reliability property 1-. Further, the distance Kt valve 4 is driven by a dedicated direct current (DC) power source 5.

このDC電源5は常設であるか可搬式であるかのいずれ
てあってもよい。また、隔離弁4は気体作動弁、駆動源
は気体供給系であってもよい。
This DC power source 5 may be either permanently installed or portable. Further, the isolation valve 4 may be a gas-operated valve, and the driving source may be a gas supply system.

[発明の効果] 本発明による原子炉減圧維1jI装置によって原子炉圧
力容器の溶融貫通が発生する時点にあっても、原子炉圧
力容器は低圧に維持されるため、溶融炉心が原子炉格納
容器内に飛び散って直接加熱破損や圧力スパイクによる
原子炉格納容器の過圧破損が生じることを防止できる。
[Effects of the Invention] The reactor pressure vessel is maintained at a low pressure even at the time when melt penetration of the reactor pressure vessel occurs by the reactor depressurization fiber 1jI device according to the present invention, so that the molten core is kept in the reactor containment vessel. This can prevent direct heating damage caused by splashing inside the reactor, as well as overpressure damage to the reactor containment vessel due to pressure spikes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す原子炉減圧維持装置の
系統概要図である。 1・・・原子炉圧力容器 2・・・ベント配管 3・・・サンプ 5・・・直流電源 4・・・隔離弁
FIG. 1 is a system schematic diagram of a nuclear reactor depressurization maintenance device showing one embodiment of the present invention. 1... Reactor pressure vessel 2... Vent piping 3... Sump 5... DC power supply 4... Isolation valve

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器の気相部に連結し原子炉圧力容器内に導
かれた配管と、この配管に設置された直流電源によって
作動する隔離弁とから構成される原子炉減圧維持装置。
A nuclear reactor depressurization maintenance device consisting of a pipe connected to the gas phase part of the reactor pressure vessel and led into the reactor pressure vessel, and an isolation valve installed in this pipe and operated by a DC power source.
JP2138365A 1990-05-30 1990-05-30 Nuclear reactor pressure reduction maintaining device Pending JPH0432798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2138365A JPH0432798A (en) 1990-05-30 1990-05-30 Nuclear reactor pressure reduction maintaining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2138365A JPH0432798A (en) 1990-05-30 1990-05-30 Nuclear reactor pressure reduction maintaining device

Publications (1)

Publication Number Publication Date
JPH0432798A true JPH0432798A (en) 1992-02-04

Family

ID=15220229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2138365A Pending JPH0432798A (en) 1990-05-30 1990-05-30 Nuclear reactor pressure reduction maintaining device

Country Status (1)

Country Link
JP (1) JPH0432798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236878A (en) * 2009-03-30 2010-10-21 Toshiba Corp Boiling water reactor
CN106601312A (en) * 2017-01-19 2017-04-26 清华大学天津高端装备研究院 ADS (accelerator driven sub-critical system) integrated reactor top structure and nuclear power generation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236878A (en) * 2009-03-30 2010-10-21 Toshiba Corp Boiling water reactor
US20100290576A1 (en) * 2009-03-30 2010-11-18 Kabushiki Kaisha Toshiba Boiling water reactor
US8744034B2 (en) 2009-03-30 2014-06-03 Kabushiki Kaisha Toshiba Boiling water reactor
CN106601312A (en) * 2017-01-19 2017-04-26 清华大学天津高端装备研究院 ADS (accelerator driven sub-critical system) integrated reactor top structure and nuclear power generation equipment

Similar Documents

Publication Publication Date Title
US5057271A (en) Protection system for the basemat reactor containment buildings in nuclear power stations
US3431168A (en) Reactor cooling system
US20160141054A1 (en) In-vessel and ex-vessel melt cooling system and method having the core catcher
JPH02268295A (en) Heat removing system for containment vessel
US20130070887A1 (en) Reactor adapted for mitigating loss-of-coolant accident and mitigation method thereof
KR20170037971A (en) Loca integral isolation valve systems and methods of operating same for loss of coolant accidentlocaprotection
US5085825A (en) Standby safety injection system for nuclear reactor plants
JP2022511137A (en) Reactor core melt cooling method and reactor core melt cooling control system
JPH04216494A (en) Light water reator
JPH08170998A (en) Reinforcement protective system against transient excessive output
JPH0432798A (en) Nuclear reactor pressure reduction maintaining device
CN113972016B (en) Method, device, equipment and medium for coping with water loss accident outside containment of nuclear power plant
US4064001A (en) Hot leg relief system
CN103426485B (en) It is a kind of to prevent the method for fused mass melting loss pressure vessel and the system for implementing this method in reactor
KR102647479B1 (en) System for coolant feeding to steam generator using coolant in PAFS tank and Method for coolant feeding using the same
Jintang et al. A Study of AP1000 Nuclear Power Plant SGTR Event Processing Strategy
CN112037949B (en) Method for executing cap buckling after loading in AP1000 containment overall leakage rate test
JP5985232B2 (en) Criticality prevention device, nuclear power plant and criticality prevention method
JPH08201561A (en) Safety system reactor container
CN116543929A (en) Automatic control method and system for non-uniform boron dilution prevention protection of nuclear power plant
JPH06194493A (en) Failure support system for nuclear power plant
JPH0631782B2 (en) Light water reactor
JPH08292284A (en) Pressure pipe type heavy water reactor facility
Pingting et al. Research on Severe Accident Management Guidelines for HPR1000 NPP
JPH0440397A (en) Nuclear reactor pressure vessel cooling device