JPS6224759B2 - - Google Patents

Info

Publication number
JPS6224759B2
JPS6224759B2 JP53018517A JP1851778A JPS6224759B2 JP S6224759 B2 JPS6224759 B2 JP S6224759B2 JP 53018517 A JP53018517 A JP 53018517A JP 1851778 A JP1851778 A JP 1851778A JP S6224759 B2 JPS6224759 B2 JP S6224759B2
Authority
JP
Japan
Prior art keywords
reactor
steam
pressure
control device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53018517A
Other languages
Japanese (ja)
Other versions
JPS54112490A (en
Inventor
Shigeo Ehata
Akira Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP1851778A priority Critical patent/JPS54112490A/en
Publication of JPS54112490A publication Critical patent/JPS54112490A/en
Publication of JPS6224759B2 publication Critical patent/JPS6224759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は原子炉の出力制御装置に係り、特に沸
騰水型原子炉(以下BWR型原子炉と呼ぶ)にお
いて、原子炉蒸気負荷遮断時における原子炉の異
常な出力上昇を防ぎ、原子炉を安全に制御する原
子炉の出力制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power control device for a nuclear reactor, particularly in a boiling water reactor (hereinafter referred to as a BWR reactor), which is used to control the abnormal power output of a nuclear reactor when the reactor steam load is cut off. This invention relates to a nuclear reactor output control device that prevents nuclear reactors from occurring and safely controls the reactor.

BWR型原子炉において、原子炉の出力制御は
再循環流量を増減させ、炉心内のボイド量を変化
させることにより行つている。即ち炉心内のボイ
ド量が増加すれば炉水の減速剤としての効果が少
なくなり原子炉出力は低下し、逆にボイド量が減
少すれば原子炉出力は増加する。このような制御
を行うBWR型原子炉では、圧力が一定の場合に
は、炉出力に対して自己制御性をもつが、炉心圧
力が上昇すれば、炉内のボイドがつぶれることに
より、正の反応度が印加され原子炉出力は上昇す
る。主蒸気負荷遮断のような圧力上昇を伴う異常
時過渡現象においては、原子炉の正の反応度の上
昇のため、出力が上昇し、燃料棒からの熱流束の
上昇により、燃料棒が許容値以上の出力変化を経
験することになり、燃料破損の原因となる。燃料
棒の破損は環境安全上、又、原子力発電所の稼動
率の上から問題である。現在の原子炉では、主蒸
気系の負荷遮断等の場合、異常な出力上昇に対し
て、負の反応度を急速に印加するために、制御棒
挿入特性を良くすることや、再循環流量を急激に
減少させる、謂る再循環ポンプトリツプシステム
を用いることが考えられている。しかしながら制
御棒を急速挿入して特性を良くすることは、その
機械的な操作のために限界があり、又、再循環流
量の急速減少方法は、流体及びポンプの慣性のた
めに、流量が減少する時定数は、5〜6秒と長
く、この過渡現象の異常な出力上昇を安全に抑え
るのにこれらの方法を組合せても必ずしも十分で
はない。
In a BWR reactor, reactor power is controlled by increasing or decreasing the recirculation flow rate and changing the amount of voids in the reactor core. That is, if the amount of voids in the reactor core increases, the effect of reactor water as a moderator will decrease, and the reactor output will decrease, and conversely, if the amount of voids decreases, the reactor output will increase. In a BWR reactor that uses this type of control, when the pressure is constant, the reactor output is self-regulating, but as the core pressure increases, the voids in the reactor collapse, resulting in a positive Reactivity is applied and reactor power increases. During abnormal transients with pressure increases, such as main steam load shedding, the output increases due to the increase in the positive reactivity of the reactor, and the increase in heat flux from the fuel rods causes the fuel rods to reach the tolerance level. The user will experience a change in output as described above, which may cause fuel damage. Damage to fuel rods is a problem from the standpoint of environmental safety and the availability of nuclear power plants. In current nuclear reactors, in the case of main steam system load shedding, etc., in order to rapidly apply negative reactivity in response to an abnormal increase in output, it is necessary to improve the control rod insertion characteristics and increase the recirculation flow rate. It has been considered to use a so-called recirculation pump trip system to provide rapid reduction. However, rapid insertion of control rods to improve their properties has limitations due to their mechanical operation, and methods for rapidly reducing recirculation flow rate reduce the flow rate due to the inertia of the fluid and pump. The time constant for this is as long as 5 to 6 seconds, and the combination of these methods is not necessarily sufficient to safely suppress the abnormal output rise due to this transient phenomenon.

本発明は以上の点に鑑みてなされたもので、そ
の目的とするところは、上述したような原子炉の
異常な出力上昇過渡時において、従来のスラム及
び再循環ポンプ・トリツプシステムに加え、原子
炉外部から高温高圧の冷却材と同じ組成の二相流
を急速に炉心に注入し、炉内のボイド量の増加に
よつて負の反応度を急速に印加し、原子炉を安全
に停止させることができる出力制御装置を得るこ
とにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to, in addition to the conventional slam and recirculation pump trip system, A two-phase flow with the same composition as the high-temperature, high-pressure coolant is rapidly injected into the reactor core from outside the reactor, and as the amount of voids inside the reactor increases, negative reactivity is rapidly applied to safely shut down the reactor. The objective is to obtain an output control device that can

以下図面を参照して、本発明の一実施例を説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明による出力制御装置を用いた
BWR型原子炉と、主蒸気系、給水系、再循環系
の概略構成図である。原子炉容器内1で発生した
蒸気は主蒸気管3、主蒸気止め弁4を通つて蒸気
タービン5にはいり、これに直結された発電機を
回転させて発電している。蒸気タービン5を出た
蒸気は復水器6で凝縮され、給水加熱器7で一定
温度に加熱されて給水管8を経て原子炉容器1内
に設けられた給水スパージヤ9より再び原子炉に
戻される。通常の原子炉の出力制御は、再循環流
量制御装置13により再循環ポンプ11の速度を
変え再循環配管10内を流れる流体の駆動流量を
変えることにより炉心流量を制御しておこなわれ
ている。一方、主蒸気負荷遮断等の異常時の出力
上昇の抑制は、主蒸気止め弁4の弁位置を検出し
て、スクラム信号発生回路18から出る信号によ
つて制御棒駆動機構15を動作させ、原子炉炉心
2に制御棒16を急速挿入することにより行つて
いる。また、これとは別に、前記主蒸気止め弁位
置の信号はポンプトリプ信号発生回路17で再循
環ポンプトリツプ信号を発生させ、この信号がポ
ンプモータ12を停止させ、炉心流量を急激に減
少させるとともに、急速開放弁21を開放させ、
高温高圧の蒸気及び水が保たれていた加圧加熱器
20から案内管22B,22Cを経て炉心内に設
けられた固定ヘツダ23により飽和蒸気と水の二
相流を急速に注入する。このように本発明による
制御装置は、従来の制御装置に加え、高温高圧の
蒸気及び水を蓄えておく加圧加熱器20と、常時
閉している急速開放弁21と、案内管22と、第
2図に例として示すような多くの穴24をもつた
円環状の固定ヘツダ23とから構成されている。
前記加圧加熱器20は一方向弁19と案内管22
Aを介して前記給水管8に接続され蒸気を供給さ
れている。
FIG. 1 shows a system using the output control device according to the present invention.
This is a schematic configuration diagram of a BWR reactor, main steam system, water supply system, and recirculation system. Steam generated in the reactor vessel 1 passes through a main steam pipe 3 and a main steam stop valve 4 and enters a steam turbine 5, which rotates a generator directly connected to the steam turbine 5 to generate electricity. Steam exiting the steam turbine 5 is condensed in a condenser 6, heated to a constant temperature in a feed water heater 7, and returned to the reactor via a feed water spargeer 9 provided in the reactor vessel 1 via a feed water pipe 8. It can be done. Normally, the output of a nuclear reactor is controlled by controlling the core flow rate by changing the speed of the recirculation pump 11 and the driving flow rate of the fluid flowing in the recirculation pipe 10 using the recirculation flow rate control device 13. On the other hand, to suppress the output increase in the event of an abnormality such as main steam load cutoff, the valve position of the main steam stop valve 4 is detected and the control rod drive mechanism 15 is operated by a signal output from the scram signal generation circuit 18. This is done by rapidly inserting the control rods 16 into the reactor core 2. Separately, the main steam stop valve position signal also causes the pump trip signal generation circuit 17 to generate a recirculation pump trip signal, which stops the pump motor 12 and rapidly reduces the core flow rate. Open the release valve 21,
A two-phase flow of saturated steam and water is rapidly injected from the pressure heater 20 in which high-temperature, high-pressure steam and water are kept through guide pipes 22B and 22C and into a fixed header 23 provided in the reactor core. In this way, the control device according to the present invention includes, in addition to the conventional control device, a pressurizing heater 20 that stores high-temperature, high-pressure steam and water, a quick-release valve 21 that is always closed, and a guide pipe 22. It is composed of an annular fixed header 23 having many holes 24 as shown in FIG. 2 as an example.
The pressure heater 20 includes a one-way valve 19 and a guide pipe 22.
It is connected to the water supply pipe 8 via A and is supplied with steam.

次に本発明による制御装置の作用について説明
する。原子炉炉心下部に取付けられた蒸気と水の
二相流噴出用の固定ヘツダ23は、原子炉負荷遮
断時、原子炉の異常な出力上昇を抑え、原子炉を
安全に制御するためのものである。すなわち、負
荷遮断時、主蒸気止め弁4は急速閉鎖されるた
め、原子炉圧力は急上昇し、炉心内ボイドがつぶ
れて減少し原子炉の反応度は急上昇し従つて原子
炉出力も急上昇する。このとき、前記主蒸気止め
弁4の閉信号により、スクラム信号、再循環ポン
プトリツプ信号が出されて原子炉はスクラムさ
れ、再循環ポンプ11はある時定数をもつて停止
する。本発明によれば、この再循環ポンプトリツ
プ信号が発生した時、この信号によつて急速開放
弁21を開放させ、案内管22B,Cを経て、原
子炉炉心下部に設けられた固定ヘツダ23より、
高温高圧の蒸気と水との二相流を噴出させ、炉心
内にボイドを発生させることにより、ボイドによ
る負の反応度を印加し、原子炉の異常な出力上昇
を抑えることができる。なお、上述の高温高圧の
蒸気と水は少なくとも原子炉蒸気負荷遮断時の設
定圧(例えば主蒸気逃し安全弁の設定圧)以上に
加圧する必要がある。これは、原子炉蒸気負荷遮
断事故が発生した場合、原子炉容器内の圧力が設
定圧以上になると主蒸気逃し安全弁が開動作する
ため原子炉容器内の最大圧力に対応させるためで
ある。
Next, the operation of the control device according to the present invention will be explained. The fixed header 23 for two-phase flow jetting of steam and water installed at the bottom of the reactor core is intended to suppress abnormal power output of the reactor and safely control the reactor when the reactor load is cut off. be. That is, when the load is cut off, the main steam stop valve 4 is rapidly closed, so the reactor pressure rises rapidly, the voids in the reactor core collapse and decrease, the reactivity of the reactor rises rapidly, and the reactor output also rises rapidly. At this time, in response to the closing signal of the main steam stop valve 4, a scram signal and a recirculation pump trip signal are issued, the reactor is scrammed, and the recirculation pump 11 is stopped with a certain time constant. According to the present invention, when this recirculation pump trip signal is generated, the quick release valve 21 is opened by this signal, and the recirculation pump is passed through the guide pipes 22B and 22C to the fixed header 23 provided at the lower part of the reactor core.
By ejecting a two-phase flow of high-temperature, high-pressure steam and water and generating voids within the reactor core, negative reactivity due to the voids can be applied and abnormal increases in reactor output can be suppressed. Note that the above-mentioned high-temperature, high-pressure steam and water need to be pressurized to at least the set pressure at the time of reactor steam load cutoff (for example, the set pressure of the main steam relief safety valve). This is because in the event of a reactor steam load shedding accident, the main steam relief safety valve opens when the pressure inside the reactor vessel exceeds the set pressure, so it corresponds to the maximum pressure inside the reactor vessel.

ここで、蒸気と水との二相流を噴出させるの
が、本発明の特徴である。原子炉炉心下部から空
気又は蒸気、ガス(He,N2等)を注入する装置
は従来から考えられているが、主蒸気遮断時、本
発明によるとスクラム及び再循環ポンプトリツプ
の補助的作用として、主蒸気遮断直後から2〜3
秒間のみ蒸気と水の二相流を注入する。即ち、炉
心外部から空気又はガスを注入することは、主蒸
気遮断時の原子炉圧力の上昇を更に強める結果と
なつて好ましくない。又蒸気のみを注入する方法
は、注入する蒸気の温度・圧力を制御しなけれ
ば、結局原子炉圧力の上昇につながる。従つて、
蒸気と水の二相流を注入するのが最も現実的であ
る。しかも、原子炉は負荷遮断後、原子炉は1〜
2秒で十分スクラムの効果が効いてきており、こ
の装置により蒸気と水の二相流を注入するのは負
荷遮断直後2〜3秒のみで良い。従つて、前述の
加熱加圧器は2〜3秒間炉心に蒸気と水の二相流
を注入できる容量のもので良い。次に蒸気と水の
二相流を注入する位置は、ここでは一実施例とし
て炉心下部に設けた固定ヘツダより注入する場合
を述べたが、他の場所でも良い。但しBWR型原
子炉の定常状態でのボイド分布が第3図の様にな
つていることを考えると、炉心下部より注入した
方が、炉心全体に最も効果的にボイドが分布する
と考えられる。又、炉心下部の固定ヘツダの形状
は、他の構造物の制約がなければ必ずしも環状に
する必要はない。なお、前記急速開放弁と固定ヘ
ツダ間の案内管内は通常運転中、炉水で満たされ
ているが、急速開放弁と固定ヘツダの距離は略
10mであり、二相流の注入時における水及び蒸気
の量と前述の案内管内の炉水の量とを比較すると
本発明の作用・効果には何ら問題とならない量で
ある。
Here, a feature of the present invention is that a two-phase flow of steam and water is ejected. Devices for injecting air, steam, gas (He, N2 , etc.) from the lower part of the reactor core have been considered in the past, but according to the present invention, when the main steam is shut off, as an auxiliary function of the scram and recirculation pump trip, 2 to 3 times immediately after main steam shutoff
Inject a two-phase flow of steam and water for only seconds. That is, it is not preferable to inject air or gas from outside the reactor core because it further intensifies the rise in reactor pressure when the main steam is shut off. Furthermore, the method of injecting only steam will eventually lead to an increase in reactor pressure unless the temperature and pressure of the steam to be injected are controlled. Therefore,
Injecting a two-phase flow of steam and water is the most practical. Moreover, after the load is cut off, the reactor is 1~
The scram effect is sufficiently effective within 2 seconds, and it is only necessary to inject the two-phase flow of steam and water for 2 to 3 seconds immediately after load shedding with this device. Therefore, the heating pressurizer described above may be of a capacity capable of injecting a two-phase flow of steam and water into the reactor core for 2 to 3 seconds. Next, although the two-phase flow of steam and water is injected from a fixed header provided at the bottom of the reactor core as an example, other locations may be used. However, considering that the steady-state void distribution of a BWR reactor is as shown in Figure 3, it is thought that injecting from the bottom of the core will most effectively distribute the voids throughout the core. Further, the shape of the fixed header at the lower part of the core does not necessarily have to be annular unless there are other structural restrictions. The inside of the guide pipe between the quick release valve and the fixed header is filled with reactor water during normal operation, but the distance between the quick release valve and the fixed header is approximately
10 m, and when comparing the amount of water and steam during two-phase flow injection with the amount of reactor water in the guide tube described above, this amount does not pose any problem for the operation and effects of the present invention.

次に本発明の効果を、本発明を用いない従来の
制御方法と比較して説明する。第4図、第5図に
負荷遮断がおこつた場合の中性子束変化、燃料棒
からの表面熱流束の過渡変化について、従来との
比較で示す。実線は本発明、破線は従来例であ
る。本発明によると、負荷遮断時原子炉のスクラ
ムの効果が効いてくるまでの短い時間に注入され
た蒸気と水の二相流は、炉心内でボイドとなつ
て、原子炉出力を抑制し、負荷遮断時の原子炉の
異常な出力上昇を抑える。また、蒸気と水の二相
流は、原子炉内で凝縮するような温度に設定して
あり、原子炉圧力の上昇を最少限に抑える。斯し
て、本発明による原子炉の出力制御装置は、原子
炉の負荷遮断等異常時の原子炉出力の上昇を、安
全かつ効果的に抑制することが出来るものであ
る。
Next, the effects of the present invention will be explained in comparison with a conventional control method that does not use the present invention. Figures 4 and 5 show changes in neutron flux and transient changes in surface heat flux from the fuel rods when load shedding occurs in comparison with the conventional system. The solid line represents the present invention, and the broken line represents the conventional example. According to the present invention, the two-phase flow of steam and water injected in a short time before the scram effect of the reactor takes effect during load shedding becomes a void in the reactor core, suppressing the reactor output, Suppressing the abnormal output rise of the reactor during load shedding. Additionally, the two-phase flow of steam and water is set at a temperature that will condense within the reactor, minimizing the rise in reactor pressure. Thus, the nuclear reactor output control device according to the present invention can safely and effectively suppress an increase in the reactor output during abnormalities such as load shedding of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の出力制御装置の一実施例を示
す図、第2図a,bは炉心下部に設けるヘツダの
一実施例を示す平面図及び断面図、第3図は
BWR型原子炉の定常状態での一般的なボイド分
布の例を示す図、第4図、第5図は従来の方法に
よるものと、本発明による制御装置をもつものと
の負荷遮断の場合の原子炉中性子束変化、表面熱
流束変化を示す図である。 19…一方向弁、20…加圧加熱器、21…急
速開放弁、22A,22B,22C…案内管、2
3…ヘツダー。
FIG. 1 is a diagram showing an embodiment of the output control device of the present invention, FIGS. 2a and 2b are a plan view and a sectional view showing an embodiment of a header provided at the bottom of the core, and FIG.
Figures 4 and 5, which show examples of general void distribution in a steady state of a BWR type nuclear reactor, show the case of load shedding using the conventional method and the one with the control device according to the present invention. FIG. 3 is a diagram showing changes in reactor neutron flux and surface heat flux. 19... One-way valve, 20... Pressure heater, 21... Quick release valve, 22A, 22B, 22C... Guide pipe, 2
3...Hetzder.

Claims (1)

【特許請求の範囲】 1 原子炉圧力容器の内部に配設され、前記原子
炉の冷却材と同じ組成の二相流を原子炉炉心に注
入する固定ヘツダと、この固定ヘツダに急速開放
弁を介して連通し、原子炉蒸気負荷遮断時の設定
圧以上に加圧制御された高温高圧の蒸気及び水を
貯溜する加圧加熱器と、原子炉蒸気負荷遮断時に
前記急速開放弁を開動作させる制御装置とから成
ることを特徴とする原子炉の出力制御装置。 2 前記固定ヘツダは、原子炉炉心の下部に配置
されて成ることを特徴とする特許請求の範囲第1
項記載の原子炉の出力制御装置。 3 前記固定ヘツダは、内周面に穴が穿設された
円環であることを特徴とする特許請求の範囲第1
項または第2項記載の原子炉の出力制御装置。
[Scope of Claims] 1. A fixed header that is disposed inside a reactor pressure vessel and injects a two-phase flow having the same composition as the reactor coolant into the reactor core, and a quick release valve provided in the fixed header. A pressure heater that stores high-temperature, high-pressure steam and water that is pressurized to a pressure higher than the set pressure at the time of reactor steam load cutoff, and the quick release valve is opened when the reactor steam load is cut off. An output control device for a nuclear reactor, comprising a control device. 2. Claim 1, wherein the fixed header is arranged at a lower part of the nuclear reactor core.
The power control device for the nuclear reactor described in Section 3. 3. Claim 1, wherein the fixed header is a ring having a hole bored in its inner peripheral surface.
The power control device for a nuclear reactor according to item 1 or 2.
JP1851778A 1978-02-22 1978-02-22 Output controller of reactor Granted JPS54112490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1851778A JPS54112490A (en) 1978-02-22 1978-02-22 Output controller of reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1851778A JPS54112490A (en) 1978-02-22 1978-02-22 Output controller of reactor

Publications (2)

Publication Number Publication Date
JPS54112490A JPS54112490A (en) 1979-09-03
JPS6224759B2 true JPS6224759B2 (en) 1987-05-29

Family

ID=11973812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1851778A Granted JPS54112490A (en) 1978-02-22 1978-02-22 Output controller of reactor

Country Status (1)

Country Link
JP (1) JPS54112490A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078953A (en) * 1990-04-16 1992-01-07 General Electric Company Natural circulation boiling-water reactor with output power regulation

Also Published As

Publication number Publication date
JPS54112490A (en) 1979-09-03

Similar Documents

Publication Publication Date Title
US10950358B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
US10529457B2 (en) Defense in depth safety paradigm for nuclear reactor
JPH0718945B2 (en) Emergency coolant injection system for nuclear reactor
JPS6224759B2 (en)
JPS61118692A (en) Method of operating generation system of pressurized water type reactor
Feng et al. Safety analysis of high-power-density annular fuel for PWRs
Iwamura et al. A concept and safety characteristics of JAERI passive safety reactor (JPSR)
JPH0375593A (en) Nuclear power plant
JPH0225160B2 (en)
KR940008250B1 (en) Nuclear fuel channel and natural safety water cooled type tube reactor using this
Susyadi Thermal-hydraulic analysis of SMR with naturally circulating primary system during loss of feed water accident
Murao et al. A Concept of Passive Safety, Pressurized Water Reactor System with Inherent Matching Nature of Core Heat Generation and Heat Removal
Alassaf et al. Evaluation of Rod Ejection Accident for an Advanced Integral Reactor, SMART
JPS6333677B2 (en)
EP4085471A1 (en) Dry stand-by liquid control system for a nuclear reactor
Guo et al. Safety Analysis of a High Breeding Fast Reactor Cooled by Supercritical-Pressure Light Water: Accidents and Abnormal Transients at Supercritical Pressure
JP2022032025A (en) Integrated type fast neutron reactor including exclusive safety device for reducing core meltdown accident
JPS5999008A (en) Control method of steam generating plant
Dubberley et al. Super Prism metal core margins to severe core damage
Tang et al. Plant-specific RETRAN analyses in support of Chinshan BWR/4 operation
CN110808109A (en) Emergency water supply device for nuclear reactor of nuclear power station in emergency state
Kamata et al. Safety Analysis of a Super Fast Reactor With Upward Flow Cooling in Two Pass at Supercritical Pressure
JPH0631777B2 (en) Output control device for natural circulation furnace
JPS6118155B2 (en)
Linebarger et al. LOFT isothermal and nuclear experiment results