JPS6333677B2 - - Google Patents

Info

Publication number
JPS6333677B2
JPS6333677B2 JP55076728A JP7672880A JPS6333677B2 JP S6333677 B2 JPS6333677 B2 JP S6333677B2 JP 55076728 A JP55076728 A JP 55076728A JP 7672880 A JP7672880 A JP 7672880A JP S6333677 B2 JPS6333677 B2 JP S6333677B2
Authority
JP
Japan
Prior art keywords
tube
reactor
core
coolant
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55076728A
Other languages
Japanese (ja)
Other versions
JPS573087A (en
Inventor
Tsuguyuki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7672880A priority Critical patent/JPS573087A/en
Publication of JPS573087A publication Critical patent/JPS573087A/en
Publication of JPS6333677B2 publication Critical patent/JPS6333677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉の緊急炉停止装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an emergency reactor shutdown device for a nuclear reactor.

従来、原子炉においては、炉心に整然と配列さ
れた燃料集合体で発生した熱エネルギーにより冷
却材の温度を上昇させ、温度上昇した冷却材によ
り、熱交換器を介して蒸気を発生させ、タービン
発電機を回転させることにより、核分裂エネルギ
ーを電気エネルギーに変換している。冷却材流量
は燃料集合体の出力により調整され、燃料集合体
の温度が設定値となるように制御されているが、
冷却材が流れる配管が破断したり、冷却材を循環
させているポンプが異常停止してしまうと、充分
な冷却材流量を得ることが出来なくなり、燃料集
合体の温度が急激に上昇して、燃料ペレツトを収
納し外部に放射性の核分裂生成物が放出されない
ようにしている燃料被覆管が破損する危険が生ず
る。
Conventionally, in a nuclear reactor, the temperature of the coolant is raised by the thermal energy generated by the fuel assemblies arranged in an orderly manner in the reactor core, and the coolant with the increased temperature generates steam via a heat exchanger, which is then used to generate electricity using a turbine. By rotating the machine, nuclear fission energy is converted into electrical energy. The coolant flow rate is adjusted by the output of the fuel assembly, and the temperature of the fuel assembly is controlled to the set value.
If the piping through which the coolant flows breaks or the pump that circulates the coolant stops abnormally, it will not be possible to obtain a sufficient flow of coolant, and the temperature of the fuel assembly will rise rapidly. There is a risk that the fuel cladding that houses the fuel pellets and prevents the release of radioactive fission products to the outside world will be damaged.

このため、原子炉には一般に緊急炉停止装置が
設けられており、原子炉の異常を検出すると、た
だちに中性子吸収物質を炉心に挿入して、核分裂
反応を停止させるように構成されている。しかる
に従来の原子炉の緊急炉停止装置においては、そ
の動作が複雑な判定回路や運転員の判断によつて
制御されているため、これと独立な緊急停止装置
を設けることによつて、原子炉の安全性を一段と
向上させることが望まれている。特に従来の高速
増殖炉においては、原子炉緊急炉停止装置として
は、緊急炉停止棒を炉心に挿入する方法しかとら
れておらず、この機能が喪失すれば原子炉の反応
をただちに停止させることが出来なくなるため他
の原理による独立な原子炉緊急炉停止装置により
安全性を向上させることが望まれている。
For this reason, nuclear reactors are generally equipped with an emergency reactor shutdown device, which is configured to immediately insert a neutron absorbing material into the reactor core to stop the nuclear fission reaction when an abnormality in the reactor is detected. However, in conventional emergency reactor shutdown systems, the operation of which is controlled by complex judgment circuits and operator judgment, so by providing an independent emergency shutdown system, it is possible to It is desired to further improve the safety of In particular, in conventional fast breeder reactors, the only emergency reactor shutdown device is to insert an emergency reactor shutdown rod into the reactor core, and if this function is lost, the reaction of the reactor is immediately stopped. Therefore, it is desired to improve safety by using an independent emergency reactor shutdown system based on another principle.

本発明は上記の問題点を解消する目的でなされ
たもので、外部動力や判定回路を用いずに、原子
炉の異常を検出し、従来と異なる原理で自動的に
作動し、ただちに原子炉を停止させることができ
る固有安全性をもつた原子炉緊急停止装置を提供
しようとするものである。
The present invention was made for the purpose of solving the above-mentioned problems, and it detects abnormalities in the reactor without using external power or judgment circuits, automatically operates on a principle different from conventional ones, and immediately restarts the reactor. The purpose is to provide an emergency shutdown system for a nuclear reactor that has inherent safety and is capable of shutting down a nuclear reactor.

以下図面を参照して本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の原子炉緊急炉停止装置の一
実施例の炉心部縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of the core of an embodiment of the emergency reactor shutdown system of the present invention.

図において、冷却材は原子炉下部から供給され
原子炉炉心1中を上昇し加熱され、原子炉上部へ
と流動している。
In the figure, coolant is supplied from the lower part of the reactor, rises through the reactor core 1, is heated, and flows to the upper part of the reactor.

本発明の緊急炉停止装置2は、原子炉炉心1を
貫通して垂直配置された円筒状のガイド管3と、
このガイド管3内に遊挿された膨脹管4とこの膨
脹管4に連結部材5により一定間隔を保持して連
結された中性子吸収装置6とから構成されてい
る。
The emergency reactor shutdown device 2 of the present invention includes a cylindrical guide pipe 3 vertically arranged to pass through the reactor core 1;
It consists of an expansion tube 4 loosely inserted into the guide tube 3 and a neutron absorption device 6 connected to the expansion tube 4 by a connecting member 5 at a constant interval.

ガイド管3は、ガイド管3内の冷却材が炉心入
口付近の冷却材によつて冷却されるのを防ぐた
め、例えばステンレス等の耐腐食性の大きい金属
8により、断熱材7を被覆した構成とされてお
り、その上端および炉心上部と相対する位置に
は、それぞれ冷却材流出口10と冷却材流入口9
が形成されている。膨脹管4は、収縮、拡張が容
易に行なえる金属製ベローズにより形成されてお
り、内部には不活性気体11が封入されている。
The guide tube 3 has a structure in which a heat insulating material 7 is covered with a highly corrosion-resistant metal 8 such as stainless steel, in order to prevent the coolant inside the guide tube 3 from being cooled by the coolant near the core inlet. A coolant outlet 10 and a coolant inlet 9 are provided at the upper end and at a position facing the upper part of the core, respectively.
is formed. The expansion tube 4 is formed of a metal bellows that can be easily contracted and expanded, and an inert gas 11 is sealed inside.

中性子吸収装置6は内部に、例えばB4C等の中
性子吸収物質12を、ステンレス等の耐腐食性の
大きい金属13で被覆した構造となつている。中
性子吸収装置6が炉心1の外に位置するときは、
膨脹管4の中央部が冷却材流入口9の近傍に位置
し、他方、中性子吸収装置6が炉心1の内に位置
するときは、膨脹管4の上部が冷却材流出口10
の近傍に位置するように膨脹管4と中性子吸収装
置6の間隔が保持されている。
The neutron absorbing device 6 has a structure in which a neutron absorbing substance 12 such as B 4 C is coated inside with a metal 13 having high corrosion resistance such as stainless steel. When the neutron absorption device 6 is located outside the core 1,
When the center of the expansion tube 4 is located near the coolant inlet 9, and on the other hand, when the neutron absorber 6 is located within the reactor core 1, the upper part of the expansion tube 4 is located near the coolant outlet 10.
The distance between the expansion tube 4 and the neutron absorption device 6 is maintained so that the expansion tube 4 and the neutron absorption device 6 are located near the neutron absorption device 6.

次に本発明装置の作用について説明する。通常
運転時においては、炉心1で加熱された冷却材の
一部が冷却材流入口9からガイド管3の内部に矢
符で示すように流入するため、膨脹管4の内部に
封入された不活性気体11の温度は、炉心1の冷
却材出口温度と等しくなつており、その温度と、
外部圧力によつてボイルーシヤルルの法則PV=
nRTによつて定まる体積を有し、膨脹管4は、
その体積からアルキメデスの原理によつて決まる
浮力を冷却材から受けている。このとき、連結部
材5によつて連結された、中性子吸収装置6はそ
の重量によつて、ガイド管3底部の炉心から、離
れた位置でつり合い状態で静止している。而し
て、一次冷却材配管や、循環ポンプの故障や制御
棒の誤操作によつて冷却材流量が減少したり、炉
心の出力が増加したりすると、冷却材流入口9か
ら流入する冷却材温度が上昇し、膨脹管4内に封
入されている不活性気体11の温度も上昇する。
その結果、不活性気体11はボイルーシヤルルの
法則に従つて体積膨張する。この体積膨張によ
り、膨脹管4は、通常運転時より、大きな浮力を
受けるようになり、中性子吸収装置の重量とのつ
り合いが破れて上昇しはじめ、それに連結されて
いる、中性子吸収装置6も上方へ移動する。
Next, the operation of the device of the present invention will be explained. During normal operation, a portion of the coolant heated in the core 1 flows into the guide tube 3 from the coolant inlet 9 as shown by the arrow, so that the The temperature of the active gas 11 is equal to the coolant outlet temperature of the core 1, and that temperature and
Due to external pressure Boilouchard's law PV=
The expansion tube 4 has a volume determined by nRT.
Due to its volume, it receives a buoyant force from the coolant determined by Archimedes' principle. At this time, the neutron absorbing device 6 connected by the connecting member 5 is stationary in a balanced state at a distance from the core at the bottom of the guide tube 3 due to its weight. Therefore, if the coolant flow rate decreases due to failure of the primary coolant piping, circulation pump, or incorrect operation of the control rods, or if the core output increases, the temperature of the coolant flowing from the coolant inlet 9 will decrease. increases, and the temperature of the inert gas 11 sealed in the expansion tube 4 also increases.
As a result, the volume of the inert gas 11 expands according to Boilouchard's law. Due to this volumetric expansion, the expansion tube 4 is subjected to a larger buoyant force than during normal operation, and the balance with the weight of the neutron absorption device is broken and it begins to rise, and the neutron absorption device 6 connected to it also moves upward. Move to.

第2図は、本発明による原子炉の緊急炉停止装
が、作動した状態を示す縦断面図である。第
2図において第1図と同一分部は同一符号で示し
てある。冷却材温度の上昇により、浮上した膨脹
管4はガイド管3の上端で、上蓋に抑えられてそ
れ以上の上昇を制限されており、従つて中性子吸
収装置6が炉心1に挿入された状態となり中性子
吸収材12が炉心部の反応度を著しく減少させ、
炉心1を未臨界状態にすることにより原子炉を停
止させる。炉心1の発熱が停止すると冷却材温度
が下降するが、ガイド管3の上端内側に上昇した
膨脹管4を係止させる係止機構(図示しない)が
あるため中性子吸収装置6も炉心から自然に下降
することはない。
FIG. 2 is a longitudinal sectional view showing the emergency reactor shutdown device 2 for a nuclear reactor according to the present invention in an activated state. In FIG. 2, the same parts as in FIG. 1 are designated by the same reference numerals. Due to the rise in coolant temperature, the expansion tube 4 that has floated to the surface is restrained by the upper cover at the upper end of the guide tube 3 and is restricted from rising any further. Therefore, the neutron absorption device 6 is inserted into the core 1. The neutron absorber 12 significantly reduces the reactivity of the reactor core,
The reactor is stopped by bringing the reactor core 1 into a subcritical state. When the heat generation of the reactor core 1 stops, the coolant temperature decreases, but since there is a locking mechanism (not shown) inside the upper end of the guide tube 3 that locks the raised expansion tube 4, the neutron absorption device 6 also moves naturally from the core. It won't go down.

なお、必要に応じてガイド管3の上端内側に上
昇した膨脹管4を係止させる係止機構を別に設け
てもよい。
Note that, if necessary, a locking mechanism may be separately provided for locking the inflation tube 4 raised inside the upper end of the guide tube 3.

以上説明したように、本発明の原子炉緊急停止
装置は、気体の体積膨張や液体の浮力のような、
自然現象を利用しているため、外部動力や判定回
路を全く用いずに、炉心の異常を検出し、ただち
に原子炉を停止させることができ、原子炉の固有
安全性を著しく高めることができる。しかも、従
来の原子炉緊急停止装置にみられるような複雑な
構造を全く必要としないため、構造が簡単で故障
が少なく信頼性が高い。
As explained above, the nuclear reactor emergency shutdown system of the present invention uses
Because it uses natural phenomena, it is possible to detect abnormalities in the reactor core and immediately shut down the reactor without using any external power or judgment circuits, significantly increasing the inherent safety of the reactor. Moreover, since it does not require any complicated structure as seen in conventional nuclear reactor emergency shutdown systems, it has a simple structure and is highly reliable with few failures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による原子炉緊急停止装置の
縦断面図、第2図は、緊急炉停止装置が作動した
状態を示す図である。 1……原子炉炉心、……緊急炉停止装置、3
……ガイド管、4……膨脹管、5……連結部材、
6……中性子吸収装置、9……冷却材流入口、1
0……冷却材流出口、11……不活性気体、12
……中性子吸収物質。
FIG. 1 is a longitudinal sectional view of the emergency reactor shutdown device according to the present invention, and FIG. 2 is a diagram showing the state in which the emergency reactor shutdown device is activated. 1...Reactor core, 2 ...Emergency reactor shutdown device, 3
... Guide tube, 4 ... Expansion tube, 5 ... Connection member,
6... Neutron absorption device, 9... Coolant inlet, 1
0... Coolant outlet, 11... Inert gas, 12
...Neutron absorbing material.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉炉心を貫通するガイド管と、このガイ
ド管の上端に設けられた冷却材流出口と、このガ
イド管の炉心上部と相対する位置に設けられた冷
却材流入口と、このガイド管内に上下移動可能に
遊挿された収縮、拡張が自在な金属ベローズによ
り構成され、内部に不活性気体を封入した膨脹管
及びこの膨脹管の下部に連結部材によつて一定間
隔を保持して連結された中性子吸収装置と、この
ガイド管の上端内側に上昇した膨脹官を係止させ
る係止機構とから構成された緊急炉停止装置にお
いて、前記中性子吸収装置が前記炉心外に位置す
るとき、前記膨脹管の中央部が前記冷却部材流入
口の近傍に位置し、他方、前記中性子吸収装置が
炉心内に位置するとき、前記膨脹管の上部が前記
冷却材流出口の近傍に位置するように前記膨脹管
と中性子吸収装置の間隔を保持したことを特徴と
する緊急炉停止装置。
1. A guide tube that penetrates the reactor core, a coolant outlet provided at the upper end of this guide tube, a coolant inlet provided in a position opposite to the upper part of the core of this guide tube, and a It consists of a metal bellows that can be freely contracted and expanded so that it can be moved up and down, and is connected to an expansion tube with an inert gas sealed inside and a connecting member at a constant interval to the lower part of the expansion tube. In the emergency reactor shutdown device, the emergency reactor shutdown device is composed of a neutron absorber and a locking mechanism that locks the expansion tube raised inside the upper end of the guide tube, when the neutron absorber is located outside the core, the expansion The expansion tube is arranged such that the central part of the tube is located near the cooling member inlet, and on the other hand, when the neutron absorber is located in the reactor core, the upper part of the expansion tube is located near the coolant outlet. An emergency reactor shutdown device characterized by maintaining a distance between a tube and a neutron absorption device.
JP7672880A 1980-06-09 1980-06-09 Emergency reactor shutdown device Granted JPS573087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7672880A JPS573087A (en) 1980-06-09 1980-06-09 Emergency reactor shutdown device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7672880A JPS573087A (en) 1980-06-09 1980-06-09 Emergency reactor shutdown device

Publications (2)

Publication Number Publication Date
JPS573087A JPS573087A (en) 1982-01-08
JPS6333677B2 true JPS6333677B2 (en) 1988-07-06

Family

ID=13613625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7672880A Granted JPS573087A (en) 1980-06-09 1980-06-09 Emergency reactor shutdown device

Country Status (1)

Country Link
JP (1) JPS573087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585080U (en) * 1992-04-15 1993-11-16 日本無線株式会社 Electronic device housing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221989B2 (en) * 1993-09-08 2001-10-22 株式会社東芝 Fast reactor core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585080U (en) * 1992-04-15 1993-11-16 日本無線株式会社 Electronic device housing

Also Published As

Publication number Publication date
JPS573087A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
US8638898B2 (en) Emergency core cooling system for pressurized water reactor
EP2366180B1 (en) Steam generator flow by-pass system
US2961393A (en) Power breeder reactor
Oka et al. Supercritical-pressure, once-through cycle light water cooled reactor concept
JP2014512013A (en) Integrated compact pressurized water reactor
US9583221B2 (en) Integrated emergency core cooling system condenser for pressurized water reactor
US4399095A (en) Protection and control system for a nuclear reactor
US5045274A (en) Water cooled nuclear reactors
US3049487A (en) Direct-cycle, boiling-water nuclear reactor
US3261755A (en) Nuclear reactor control
Oka et al. Systems design of direct-cycle supercritical-water-cooled fast reactors
JPH032277B2 (en)
Kambe et al. RAPID-L operator-free fast reactor concept without any control rods
US2989453A (en) Pressure system control
US8559585B2 (en) Cold shutdown assembly for sodium cooled reactor
JPS6333677B2 (en)
JP2521256B2 (en) Natural circulation boiling water reactor control method
US3507748A (en) Control and safety device for nuclear reactors
KR20190124537A (en) Nuclear Fuel Element for Solid Core And Small Modular Nuclear Reactor with a Solid Core
JP2718855B2 (en) Nuclear fuel channel and its own safe water cooled tube reactor
US6804320B2 (en) Automatically scramming nuclear reactor system
Kambe RAPID-A fast reactor concept without any control rods
US20030194043A1 (en) Nuclear reactor system and method for automatically scramming the same
JPH0631777B2 (en) Output control device for natural circulation furnace
Spinks A passive emergency heat sink for water-cooled reactors with particular application to CANDU reactors