JP2695905B2 - Boiling water reactor - Google Patents

Boiling water reactor

Info

Publication number
JP2695905B2
JP2695905B2 JP1060163A JP6016389A JP2695905B2 JP 2695905 B2 JP2695905 B2 JP 2695905B2 JP 1060163 A JP1060163 A JP 1060163A JP 6016389 A JP6016389 A JP 6016389A JP 2695905 B2 JP2695905 B2 JP 2695905B2
Authority
JP
Japan
Prior art keywords
reactor
storage battery
power supply
power
boiling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1060163A
Other languages
Japanese (ja)
Other versions
JPH02238396A (en
Inventor
誠 秋永
崇 佐藤
準嘉 桶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1060163A priority Critical patent/JP2695905B2/en
Publication of JPH02238396A publication Critical patent/JPH02238396A/en
Application granted granted Critical
Publication of JP2695905B2 publication Critical patent/JP2695905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、沸騰水型原子炉に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a boiling water reactor.

(従来の技術) 一般に、沸騰水型原子炉においては、何らかの原因に
より外部電源が喪失し、かつ非常用ディーゼル発電機に
よる給電にも失敗するような全交流電源喪失事故が発生
した場合においても、原子炉施設の安全確保のために必
要な機器へ直流電源設備からの給電を行い、機器を作動
・制御することにより、プラントを安定な状態に保つこ
とができるよう構成されている。
(Prior Art) Generally, in a boiling water reactor, even if an external power supply is lost for some reason and an AC power loss accident occurs, in which power supply by an emergency diesel generator also fails, Power is supplied from the DC power supply to equipment required for ensuring the safety of the reactor facility, and the equipment is operated and controlled to maintain the plant in a stable state.

第2図は従来の沸騰水型原子炉における直流電源設備
の系統構成の要部の一例を示すもので、非常用母線1に
は、負荷に対して並列に接続された充電器2と蓄電池3
が接続されており、通常時は充電器2より直流母線4を
介して制御回路及びその他の連続負荷に給電されるとと
もに、蓄電池3は常に充電状態に保たれるよう構成され
ている。また、直流母線4には、直流電源設備の負荷の
一部であって、全交流電源喪失事故時に作動される原子
炉隔離時冷却系5および自動減圧系6等が接続されてい
る。なお、自動減圧系6には主蒸気逃し安全弁の機能も
含まれている。
FIG. 2 shows an example of a main part of a system configuration of a DC power supply system in a conventional boiling water reactor. An emergency bus 1 has a charger 2 and a storage battery 3 connected in parallel to a load.
In a normal state, power is supplied from the charger 2 to the control circuit and other continuous loads via the DC bus 4, and the storage battery 3 is always kept charged. The DC bus 4 is connected to a reactor isolation cooling system 5, an automatic pressure reducing system 6, and the like, which are part of the load of the DC power supply equipment and are operated in the event of an AC power loss. The automatic pressure reducing system 6 also includes a function of a main steam release safety valve.

以上のように構成された沸騰水型原子炉において、何
らかの原因により外部構成が喪失し、かつ非常用ディー
ゼル発電機による給電にも失敗するような異常な事態が
発生した場合には、直流電源設備の蓄電池3より原子炉
施設の安全性を確保するために必要な機器に給電が開始
されるとともに、原子炉は緊急停止され、復水・給水系
は停止し、復水器から隔離状態におかれる。この場合、
炉心崩壊熱により発生した蒸気は、主蒸気逃し安全弁を
介して、サプレッションプール水中へ排出され、原子炉
圧力は、主蒸気逃し安全弁の設定圧力程度に一定に保た
れる。
In the case of the boiling water reactor configured as described above, if the external configuration is lost for some reason and the power supply by the emergency diesel generator fails, Power supply to the equipment necessary to ensure the safety of the reactor facility is started from the storage battery 3 at the same time, the reactor is emergency shut down, the condensing / water supply system is stopped, and the reactor is isolated from the condenser. I will in this case,
The steam generated by the core decay heat is discharged into the suppression pool water through the main steam release safety valve, and the reactor pressure is kept constant at about the set pressure of the main steam release safety valve.

また、復水・給水系が停止したことにより原子炉水位
は低下するが、原子炉の高圧蒸気の一部を用いたタービ
ン駆動ポンプにより、復水貯蔵槽水あるいはサプレッシ
ョンプール水を原子炉に注水する原子炉隔離時冷却系5
が自動起動して原子炉の水位回復を図り、十分な炉心冷
却が行われる。
In addition, although the reactor water level drops due to the condensate / supply system being stopped, water from the condensate storage tank or suppression pool water is injected into the reactor by a turbine-driven pump that uses part of the reactor high-pressure steam. Reactor isolation cooling system 5
Automatically starts to recover the water level of the reactor, and sufficient core cooling is performed.

以上のように全交流電源喪失事故時においては、交流
電源に依存せず蓄電池3からの給電によって機能する主
蒸気逃し安全弁と原子炉隔離時冷却系の作動によって、
原子炉を安定な状態に維持することが可能となってい
る。また、蓄電池3は、全交流電源喪失事故発生後、必
要な機器に対して数時間給電が可能な運転時間容量とさ
れており、この間に外部電源の復旧が行われ、あるいは
非常用ディーゼル発電機からの給電に成功した場合、原
子炉施設の安全性は確保され、事故を収束することがで
きる。
As described above, in the event of a total AC power supply loss accident, the operation of the main steam release safety valve and the cooling system at the time of reactor isolation, which function by power supply from the storage battery 3 without depending on the AC power supply,
It has become possible to maintain the reactor in a stable state. The storage battery 3 has an operation time capacity capable of supplying power to necessary devices for several hours after the occurrence of an accident in which all AC power is lost, during which time the external power supply is restored, or the emergency diesel generator is used. If the power supply succeeds, the safety of the reactor facility will be secured and the accident can be resolved.

(発明が解決しようとする課題) 上述した従来の沸騰水型原子炉において、全交流電源
喪失自己が発生し、蓄電池の運転時間容量以内の外部電
源が復旧せず、また、非常用ディーゼル発電機からの給
電も復旧しない場合には、いずれ蓄電池は枯渇する。
(Problems to be Solved by the Invention) In the above-mentioned conventional boiling water reactor, the entire AC power supply itself is lost, the external power supply within the operating time capacity of the storage battery is not restored, and the emergency diesel generator is used. If the power supply from is not restored, the storage battery will eventually be exhausted.

この場合、原子炉隔離時冷却系による原子炉への注水
が停止し、原子炉の水位が低下し始める。その後も、電
源復旧が行われない場合には、炉心は蒸気雰囲気中に徐
々に露出し始め、自己の崩壊熱及び水−金属反応による
発熱によって過熱され、炉心が損傷する事態へと進展す
る。
In this case, water injection into the reactor by the reactor isolation cooling system is stopped, and the water level in the reactor begins to drop. After that, if the power supply is not restored, the core gradually starts to be exposed to the steam atmosphere, is overheated by its own decay heat and heat generated by the water-metal reaction, and progresses to a situation where the core is damaged.

この時、水−金属反応により非凝縮性ガスの水素が発
生するが、原子炉隔離時冷却系による原子炉への注水が
停止した後において、原子炉の自動減圧系が作動せず原
子炉が高圧状態に維持されていると、原子炉の自動減圧
系が作動する場合に比べて、原子炉内の保有水量が多
く、電源の復旧によって原子炉への注水が再開されない
限り、水−金属反応が促進されることになる。その結
果、水素発生量が増加し、格納容器の過圧を促進し、格
納容器健全性の喪失を早める恐れがある。また、蓄電池
が枯渇する以前に自動減圧系を作動させて原子炉を急速
減圧すると、原子炉の高圧蒸気の一部を用いたタービン
駆動ポンプにより原子炉に注水する原子炉隔離時冷却系
の使用が不能となり、逆に炉心損傷を早める結果とな
る。
At this time, hydrogen of non-condensable gas is generated by the water-metal reaction, but after the injection of water into the reactor by the cooling system during the isolation of the reactor is stopped, the automatic depressurization system of the reactor does not operate and the reactor When the reactor is maintained at high pressure, the amount of water in the reactor is larger than when the automatic depressurization system of the reactor operates, and the water-metal reaction occurs unless water is restarted by the restoration of power supply. Will be promoted. As a result, the amount of generated hydrogen increases, which may promote overpressure of the containment vessel and accelerate the loss of containment integrity. In addition, if the reactor is rapidly depressurized by activating the automatic depressurization system before the storage battery is depleted, a reactor isolation cooling system is used to inject water into the reactor by a turbine-driven pump that uses part of the reactor high-pressure steam. Becomes impossible, and consequently, the core damage is accelerated.

本発明はかかる従来の事情に対処してなされたもの
で、長期間の全交流電源喪失が発生し、炉心が損傷する
ような事故に至った場合においても、原子炉を確実に急
速減圧することができ、水素ガスの発生を低減して格納
容器の過圧負荷を低減することができ、従来に比べて大
幅に安全性を向上させることのできる沸騰水型原子炉を
提供しようとするものである。
The present invention has been made in view of such a conventional situation, and it is necessary to surely rapidly depressurize the reactor even in the event of a long-term loss of all AC power and leading to an accident that may damage the core. It is intended to provide a boiling water reactor that can reduce the generation of hydrogen gas, reduce the overpressure load on the containment vessel, and greatly improve the safety compared to the past. is there.

[発明の構成] (課題を解決するための手段) すなわち、本発明の沸騰水型原子炉は、全交流電源喪
失事故時に少なくとも原子炉隔離時冷却系に電力を供給
するための第1の蓄電池と、全交流電源喪失事故時に自
動減圧系に電力を供給するための第2の蓄電池と、前記
第1の蓄電池および前記第2の蓄電池を充電するための
充電器と、全交流電源喪失事故時に前記第1の蓄電池と
前記第2の蓄電池を電気的に遮断するための遮断器とを
備えたことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the boiling water reactor of the present invention is a first storage battery for supplying power to at least the reactor isolation cooling system in the event of a total AC power loss loss accident. A second storage battery for supplying power to the automatic pressure reducing system in the event of a loss of all AC power, a charger for charging the first storage battery and the second storage battery, It is characterized by comprising a circuit breaker for electrically interrupting the first storage battery and the second storage battery.

(作用) 上記構成の本発明の沸騰水型原子炉では、全交流電源
喪失事故が発生しかつ炉心冷却を維持する機器へ給電す
る蓄電池の運転時間容量以後も外部電源が復旧せず、ま
た、非常用ディーゼル発電機からの給電にも失敗して、
その結果炉心の損傷に至るような事故が発生した場合に
は、専用の蓄電池(第2の蓄電池)からの給電によって
自動減圧系が作動され、原子炉を減圧し、原子炉内の保
有水量を減少させることにより、水−金属反応による水
素ガスの発生を低減し、格納容器健全性の早期喪失を防
止する。
(Operation) In the boiling water reactor of the present invention having the above-mentioned configuration, the external power supply is not restored even after the operation time capacity of the storage battery for supplying power to the equipment for maintaining the core cooling in the event of a loss of all AC power, and The power supply from the emergency diesel generator also failed,
As a result, in the event of an accident that could lead to damage to the core, the power supply from the dedicated storage battery (second storage battery) activates the automatic pressure reduction system, depressurizes the reactor, and reduces the amount of water held in the reactor. The reduction reduces the generation of hydrogen gas due to the water-metal reaction and prevents the early loss of containment integrity.

(実施例) 以下、本発明の詳細を図面を参照して実施例について
説明する。
(Examples) Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の沸騰水型原子炉の要部
構成を示すもので、非常用母線11には、負荷に対して並
列に接続される充電器12と蓄電池13が接続されており、
通常時は充電器12より直流母線14を介して制御回路およ
びその他の連続負荷に給電されるとともに、蓄電池13は
常に充電状態に保たれるように構成されている。
FIG. 1 shows a main configuration of a boiling water reactor according to one embodiment of the present invention. A charger 12 and a storage battery 13 connected in parallel to a load are connected to an emergency bus 11. Has been
Normally, the power is supplied from the charger 12 to the control circuit and other continuous loads via the DC bus 14, and the storage battery 13 is configured to be always kept charged.

また、上記直流母線14には、直流電源設備の負荷の一
部をなすものとして、全交流電源喪失事故時に作動され
る原子炉隔離時冷却系15および自動減圧系16等が接続さ
れている。また、充電器12には、遮断器17を介して自動
減圧系専用の蓄電池18が接続されており、この自動減圧
系専用の蓄電池18には、自動減圧系専用の直流母線19を
介して自動減圧系20が接続されている。なお、遮断器17
は、制御回路21によって制御されるように構成されてお
り、通常時は、充電器12と自動減圧系専用の蓄電池18と
が電気的に接続された状態として、常に自動減圧系専用
の蓄電池18が充電状態に保たれ、後述するように、全交
流電源喪失事故が発生した場合は、遮断器17を遮断して
自動減圧系専用の蓄電池18と蓄電池13を隔離するよう構
成されている。
Further, the DC bus 14 is connected to a reactor isolation cooling system 15 and an automatic pressure reducing system 16 which are operated in the event of a loss of all AC power as a part of the load of the DC power supply equipment. A battery 18 dedicated to the automatic pressure reducing system is connected to the charger 12 via a circuit breaker 17, and the storage battery 18 dedicated to the automatic pressure reducing system is automatically connected via a DC bus 19 dedicated to the automatic pressure reducing system. The decompression system 20 is connected. Circuit breaker 17
Is configured to be controlled by the control circuit 21.In normal times, the battery 12 dedicated to the automatic pressure reducing system is always in a state where the charger 12 and the storage battery 18 dedicated to the automatic pressure reducing system are electrically connected. Is maintained in a charged state, and as will be described later, in the event of a loss of all AC power, a circuit breaker 17 is shut off to isolate the storage battery 18 and the storage battery 13 dedicated to the automatic pressure reducing system.

上記構成のこの実施例の沸騰水型原子炉では、全交流
電源喪失事故が発生した場合、全交流電源喪失信号ある
いは運転員の手動操作等によって送出される信号を入力
された制御回路21によって、遮断器17が操作され、自動
減圧系20の電源である自動減圧系専用の蓄電池18と、原
子炉隔離時冷却系15等のその他の機器への電源である蓄
電池13とが隔離される。
In the boiling water reactor of this embodiment having the above-described configuration, when a total AC power loss accident occurs, the control circuit 21 to which a signal transmitted by a total AC power loss signal or a signal transmitted by a manual operation of an operator is input, The circuit breaker 17 is operated, and the storage battery 18 dedicated to the automatic pressure reducing system, which is the power supply of the automatic pressure reducing system 20, and the storage battery 13, which is the power supply to other equipment such as the cooling system 15 at the time of reactor isolation, are isolated.

したがって、原子炉隔離時冷却系15等の炉心冷却を維
持する機器へ給電する蓄電池13の運転時間容量以後も外
部電源が復旧せず、あるいは非常用ディーゼル発電機か
らの給電復旧も行われず、その結果炉心の損傷に至るよ
うな事故が発生した場合においても、自動減圧系20への
電源は自動減圧系専用の蓄電池18によって確保されてお
り、必要に応じて原子炉の急速減圧を行い、原子炉内の
保有水量を減少させることによって、水−金属反応によ
る水素ガスの発生を低減し、格納容器健全性の早期喪失
を防止することができる。
Therefore, the external power supply is not restored after the operation time capacity of the storage battery 13 for supplying power to the core cooling system such as the reactor isolation cooling system 15 or the power supply from the emergency diesel generator is not restored. Even in the event of an accident that could result in damage to the reactor core, power to the automatic decompression system 20 is secured by the storage battery 18 dedicated to the automatic decompression system. By reducing the amount of water retained in the furnace, the generation of hydrogen gas due to the water-metal reaction can be reduced, and the early loss of containment integrity can be prevented.

[発明の効果] 以上説明したように、本発明の沸騰水型原子炉によれ
ば、長時間の全交流電源喪失が発生し、炉心が損傷する
ような事故に至った場合においても、原子炉を確実に急
速減圧することができ、水素ガスの発生を低減して格納
容器の過圧負荷を低減することができるので、従来に比
べて大幅に安全性を向上させることができる。
[Effects of the Invention] As described above, according to the boiling water reactor of the present invention, even if a long-term loss of all AC power occurs and an accident in which the reactor core is damaged occurs, the reactor Can be reliably and rapidly depressurized, and the generation of hydrogen gas can be reduced to reduce the overpressure load on the storage container. Therefore, the safety can be greatly improved as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の沸騰水型原子炉の概略構成
を示す図、第2図は従来の沸騰水型原子炉の概略構成を
示す図である。 11……非常用母線 12……充電器 13……蓄電池 14……直流母線 15……原子炉隔離時冷却系 16……自動減圧系 17……遮断器 18……自動減圧系専用の蓄電池 19……自動減圧系専用の直流母線 20……自動減圧系 21……制御回路
FIG. 1 is a diagram showing a schematic configuration of a boiling water reactor according to one embodiment of the present invention, and FIG. 2 is a diagram showing a schematic configuration of a conventional boiling water reactor. 11 Emergency bus 12 Charger 13 Battery 14 DC bus 15 Reactor isolation cooling system 16 Automatic decompression system 17 Circuit breaker 18 Storage battery dedicated to automatic decompression system 19 … DC bus dedicated to automatic pressure reducing system 20… Automatic pressure reducing system 21… Control circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全交流電源喪失事故時に少なくとも原子炉
隔離時冷却系に電力を供給するための第1の蓄電池と、
全交流電源喪失事故時に自動減圧系に電力を供給するた
めの第2の蓄電池と、前記第1の蓄電池および前記第2
の蓄電池を充電するための充電器と、全交流電源喪失事
故時に前記第1の蓄電池と前記第2の蓄電池を電気的に
遮断するための遮断器とを備えたことを特徴とする沸騰
水型原子炉。
1. A first storage battery for supplying power to at least a reactor isolation cooling system in the event of a total AC power loss accident;
A second storage battery for supplying power to the automatic pressure reducing system in the event of a loss of all AC power, the first storage battery and the second storage battery;
And a breaker for electrically shutting off the first storage battery and the second storage battery in the event of a total AC power loss accident. Reactor.
JP1060163A 1989-03-13 1989-03-13 Boiling water reactor Expired - Fee Related JP2695905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060163A JP2695905B2 (en) 1989-03-13 1989-03-13 Boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1060163A JP2695905B2 (en) 1989-03-13 1989-03-13 Boiling water reactor

Publications (2)

Publication Number Publication Date
JPH02238396A JPH02238396A (en) 1990-09-20
JP2695905B2 true JP2695905B2 (en) 1998-01-14

Family

ID=13134211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060163A Expired - Fee Related JP2695905B2 (en) 1989-03-13 1989-03-13 Boiling water reactor

Country Status (1)

Country Link
JP (1) JP2695905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2985359A1 (en) * 2012-01-02 2013-07-05 Jean Pronost Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen
JP2016012980A (en) * 2014-06-27 2016-01-21 三菱重工業株式会社 Dc power supply facility

Also Published As

Publication number Publication date
JPH02238396A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US20080317193A1 (en) Emergency core cooling system
CN111540483B (en) Method for coping with small-sized crevasse loss of coolant accident in pressurized water reactor nuclear power plant
EP2019393B1 (en) Boiling water reactor with an emergency core cooling system
US5349616A (en) Reactor cooling system for boiling water reactors
US20120294409A1 (en) Transient mitigation system for reactor
JP4960178B2 (en) Nuclear plant safety system
JP2695905B2 (en) Boiling water reactor
JP2953787B2 (en) Light water reactor
US11355255B2 (en) System and method for reducing atmospheric release of radioactive materials caused by severe accident
JPH08170998A (en) Reinforcement protective system against transient excessive output
JP2859990B2 (en) Boiling water reactor equipment
JPH06230177A (en) Boiling water reactor
JPH05264774A (en) Emergency reactor cooling equipment
JPH02222878A (en) Residual heat removal system of nuclear power plant
Ke et al. The emergency operating strategy analysis of medium LOCA with MHSI unavailable
Tang et al. Study on Modifications of CPR1000 Nuclear Plants for Design Extension Conditions
JPS62237397A (en) Safety protective device for boiling water type reactor
JPH0551115B2 (en)
Lu et al. Accident management strategy based on symptom oriented for loss of secondary side heat sink in HPR1000
JPH0466897A (en) Dc power source for nuclear power station
CN111916234A (en) Passive and active combined nuclear power plant safety injection system and using method thereof
JPH04289493A (en) Primary system depressurization equipment
Muellner et al. Investigation of a possible emergency procedure for the VVER 1000 NPP in case of a total loss of feedwater and a main steam line break
Evans et al. Quantification of the contribution to light water reactor core melt frequency of loss of offsite power
JPS60260889A (en) Protective device for nuclear reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees