FR2985359A1 - Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen - Google Patents
Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen Download PDFInfo
- Publication number
- FR2985359A1 FR2985359A1 FR1200007A FR1200007A FR2985359A1 FR 2985359 A1 FR2985359 A1 FR 2985359A1 FR 1200007 A FR1200007 A FR 1200007A FR 1200007 A FR1200007 A FR 1200007A FR 2985359 A1 FR2985359 A1 FR 2985359A1
- Authority
- FR
- France
- Prior art keywords
- safety
- electric
- source
- security
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
- G21C15/182—Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/02—Arrangements of auxiliary equipment
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/04—Safety arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Stand-By Power Supply Arrangements (AREA)
Abstract
Description
La présente invention concerne des dispositifs capables d'alimenter les organes de sureté et de sécurité des centrales ou installations nucléaires en cas de perte totale des alimentations électriques et donc d'augmenter la sûreté et la sécurité nucléaire. Elle propose notamment au minimum trois circuits de secours électrique. Elle propose aussi l'ajout de matériels complétant et améliorant la sécurité et la sûreté nucléaire La perte du réseau électrique et de la source froide sur des installations nucléaires récemment à Tchernobyl et à Fukushima - a entraîné la fusion des coeurs avec toutes les conséquences radiologiques que l'on connaît. Des doses supérieures à 200 milliSieverts, seuil d'urgence, ont été atteintes. Ce qui est surprenant, c'est qu'à Tchernobyl, un électricien essayait de récupérer de la vapeur dans un dispositif en vue de suppléer à une perte éventuelle du réseau. La perte du contrôle du réacteur s'est d'ailleurs produite car il n'avait pas de connaissance neutronique et est intervenu trop tard sur le réacteur qui était sorti de sa zone de fonctionnement. On note aussi que la puissance électrique nécessaire pour alimenter les pompes et dispositifs de sécurité est faible par rapport à la puissance de la centrale. Les dispositifs, objet de l'invention, pour faire face à une perte de réseau électrique, est le suivant : Trois dispositifs d'alimentation électrique de secours des organes de sureté, dont les circuits électriques seront séparés et segrégés ainsi que quelques matériels complémentaires (capacité 10 et ballon tampon 7 de la planche 1 ci jointe) sont prévus. L'étude de sûreté précisera les connections éventuelles entre ces circuits. En cas de perte de réseau électrique et des alimentations de secours, selon la planche 1 en annexe, les trois batteries électriques 2, circuit électrique de secours, sont connectées automatiquement sur l'alimentation électrique des dispositifs de sûreté et de sécurité. Il y a deux cas : ou les pompes et dispositifs de sûreté et de sécurité sont alimentés en courant continu, par exemple 48 watts, ou elles ne le sont pas. Dans ce dernier cas, il sera prévu en aval des batteries un dispositif de transformation du courant continu en courant alternatif. L'hypothèse faite est qu'une batterie est en maintenance, la deuxième ne fonctionne pas, la troisième est fonctionnelle. Les batteries peuvent être disposées en parallèle et alimenteront tous les dispositifs de sûreté et de sécurité, dont les pompes de sécurité 6, les pompes de recirculation 9, les vannes 8 et électrovannes 11, les recombinateurs d'hydrogène 5 ainsi que la salle de contrôle. Au cas où le circuit batterie serait indisponible, l'électricité sera suppléée par un deuxième circuit de secours électrique constitué d'une éolienne 12 et/ou par toute autre source 13 pouvant faire appel à l'énergie motrice ou au solaire. La remarque ci-dessus concernant le courant continu ou alternatif est applicable -2- Le réseau électrique alimentera une installation électrolytique 3, qui produira de l'hydrogène et de l'oxygène en fonctionnement normal, mais aussi pour les recombinateurs d'hydrogène. En cas d'accident ces gaz (ou liquides) faisant partie d'un stockage de sécurité 14 alimenteront un groupe 6 qui fournira de l'électricité aux dispositifs de sécurité ainsi que précisé ci-dessus. Ce système sera un troisième circuit de secours électrique. Ce dispositif est complété par l'adjonction d'une capacité de liquide neutrophage (acide borique si possible ou tout autre liquide neutrophage) ou réserve d'eau de secours 10 dont le volume sera si possible supérieur à trois fois le volume du circuit primaire. La possilitév d'installer au moins deus capacités sera prise en compte par l'étude de sûreté.. The present invention relates to devices capable of supplying the safety and security organs of nuclear power plants or installations in the event of total loss of power supplies and thus of increasing safety and nuclear safety. In particular, it offers at least three electrical backup circuits. It also proposes the addition of equipment supplementing and improving safety and nuclear safety. The loss of the electrical network and the cold source on nuclear facilities recently in Chernobyl and Fukushima - has resulted in the fusion of hearts with all the radiological consequences that we know. Doses above 200 milliSieverts, the emergency threshold, have been reached. What is surprising is that in Chernobyl, an electrician was trying to recover steam in a device to compensate for a possible loss of the network. The loss of control of the reactor also occurred because it had no neutron knowledge and intervened too late on the reactor that had left its operating area. It is also noted that the power required to power the pumps and safety devices is low compared to the power of the plant. The devices, object of the invention, to cope with a loss of electrical network, is as follows: Three emergency power supply devices safety organs, whose electrical circuits will be separated and segregated and some additional equipment ( capacity 10 and buffer tank 7 of the attached plate 1) are provided. The safety study will specify the possible connections between these circuits. In the event of a loss of the electricity network and emergency power supplies, according to the accompanying plate 1, the three electric batteries 2, emergency electrical circuit, are automatically connected to the power supply of the safety and security devices. There are two cases: where the pumps and safety and security devices are supplied with direct current, for example 48 watts, or they are not. In the latter case, there will be provided downstream of the batteries a device for transforming the direct current into alternating current. The assumption made is that a battery is in maintenance, the second does not work, the third is functional. The batteries can be arranged in parallel and supply all the safety and security devices, including the safety pumps 6, the recirculation pumps 9, the valves 8 and solenoid valves 11, the hydrogen recombiners 5 and the control room. . In case the battery circuit is unavailable, the electricity will be supplemented by a second electrical backup circuit consisting of a wind turbine 12 and / or any other source 13 that can use the motive power or solar. The above remark concerning direct or alternating current is applicable. The electricity network will supply an electrolytic installation 3, which will produce hydrogen and oxygen in normal operation, but also for hydrogen recombiners. In the event of an accident, these gases (or liquids) forming part of a safety storage 14 will supply a group 6 that will supply electricity to the safety devices as specified above. This system will be a third electrical backup circuit. This device is completed by the addition of a neutron-absorbing liquid capacity (boric acid if possible or any other neutron-absorbing liquid) or reserve of emergency water 10 whose volume will be if possible greater than three times the volume of the primary circuit. The possibility of installing at least two capacities will be taken into account by the safety study.
Cette capacité sera en charge par rapport à la cuve, nous l'avons dessinée sur le toit de l'enceinte de confinement, mais elle peut être disposée ailleurs. Une électrovanne 11, temporisée, ou une vanne pyrotechnique peut s'ouvrir par manque de courant ou activée par les circuits de secours électriques ci dessus. Ce dispositif est complété par trois ballons tampon 7, qui sera sous pression de gaz neutre (environ le 1/3 de la pression du circuit primaire) et rempli de fluide neutrophage (acide borique ou autre comme précisé ci-dessus). En cas de dépressurisation du circuit primaire, le fluide neutrophage se déversera dans le circuit, la vanne 8 pouvant être un clapet de non retour, une électrovanne ou une vanne pyrotechnique. L'étude de sûreté indiquera le dispositif le plus adéquat. Ce dispositif est complété par un circuit de recirculation des eaux accumulées dans le fond d'enceinte à l'aide des pompes 9 qui réinjecteront les fluides dans la cuve et en aspersion en haut d'enceinte de confinement. Il sera aussi prévu la possibilité de la perte d'eau de secours en alimentant l'installation (capacité 10 , enceinte de confinement) par des pompes 15 (3 minimum, nombre à confirmer par l'étude de sûreté) pouvant aspirer dans une réserve d'eau (barrage, étang, fleuve, mer). Enfin, tous ces dispositifs de sécurité et d'alimentation, pylônes du réseau sur quelques km, support de l'éolienne 12, de l'autre source d'appoint 13, les batteries 2, l'installation électrolytique 3 ...) seront calculés selon les normes antisismiques et contre le tsunami, les cyclones, l'inondation, si le site risque d'en subir. Le mode de réalisation proposé sur la planche 1 et décrit ici est donné à titre d'exemple non limitatif et peut s'appliquer aux centrales ou installations nucléaires existantes ou nouvelles. This capacity will be loaded with respect to the tank, we have drawn it on the roof of the containment, but it can be arranged elsewhere. A solenoid valve 11, timed, or a pyrotechnic valve may open due to lack of current or activated by the above electrical emergency circuits. This device is completed by three buffer tanks 7, which will be under neutral gas pressure (about 1/3 of the pressure of the primary circuit) and filled with neutron-absorbing fluid (boric acid or other as specified above). In the event of depressurization of the primary circuit, the neutron-absorbing fluid will flow into the circuit, the valve 8 possibly being a non-return valve, a solenoid valve or a pyrotechnic valve. The safety study will indicate the most suitable device. This device is completed by a water recirculation circuit accumulated in the bottom of the enclosure using the pumps 9 which reinject the fluids into the tank and sprinkling at the top of containment. It will also be provided the possibility of the loss of emergency water by supplying the installation (capacity 10, containment) by pumps 15 (3 minimum, number to be confirmed by the safety study) that can suck in a reserve of water (dam, pond, river, sea). Finally, all these safety and power devices, network pylons over a few km, support of the wind turbine 12, the other backup source 13, the batteries 2, the electrolytic installation 3 ...) will be calculated according to anti-seismic standards and against tsunami, cyclones, flood, if the site is likely to suffer. The embodiment proposed on plate 1 and described here is given by way of non-limiting example and can be applied to existing or new nuclear power plants or installations.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200007A FR2985359A1 (en) | 2012-01-02 | 2012-01-02 | Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1200007A FR2985359A1 (en) | 2012-01-02 | 2012-01-02 | Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2985359A1 true FR2985359A1 (en) | 2013-07-05 |
Family
ID=45926721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1200007A Withdrawn FR2985359A1 (en) | 2012-01-02 | 2012-01-02 | Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2985359A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872327A (en) * | 1981-10-22 | 1983-04-30 | 株式会社東芝 | Battery power source |
DE3432475A1 (en) * | 1984-09-04 | 1986-03-13 | Kraftwerk Union AG, 4330 Mülheim | Nuclear power station having a boiling water reactor |
JPH02238396A (en) * | 1989-03-13 | 1990-09-20 | Toshiba Corp | Boiling water reactor |
JP2004044508A (en) * | 2002-07-12 | 2004-02-12 | Toshiba Corp | Wind power plant |
WO2011039462A1 (en) * | 2009-10-02 | 2011-04-07 | Dcns | Underwater electricity generation module |
CN102195334A (en) * | 2011-05-20 | 2011-09-21 | 中国广东核电集团有限公司 | Method and system for improving reliability of emergency power supplies of nuclear power plant |
CN102255377A (en) * | 2011-05-20 | 2011-11-23 | 中国广东核电集团有限公司 | Method and system for supplying emergency power supply to nuclear power station |
-
2012
- 2012-01-02 FR FR1200007A patent/FR2985359A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872327A (en) * | 1981-10-22 | 1983-04-30 | 株式会社東芝 | Battery power source |
DE3432475A1 (en) * | 1984-09-04 | 1986-03-13 | Kraftwerk Union AG, 4330 Mülheim | Nuclear power station having a boiling water reactor |
JPH02238396A (en) * | 1989-03-13 | 1990-09-20 | Toshiba Corp | Boiling water reactor |
JP2004044508A (en) * | 2002-07-12 | 2004-02-12 | Toshiba Corp | Wind power plant |
WO2011039462A1 (en) * | 2009-10-02 | 2011-04-07 | Dcns | Underwater electricity generation module |
CN102195334A (en) * | 2011-05-20 | 2011-09-21 | 中国广东核电集团有限公司 | Method and system for improving reliability of emergency power supplies of nuclear power plant |
CN102255377A (en) * | 2011-05-20 | 2011-11-23 | 中国广东核电集团有限公司 | Method and system for supplying emergency power supply to nuclear power station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10590552B2 (en) | Hydrogen production apparatus and hydrogen production system | |
CN103903659B (en) | Floating nuclear power plant Heat Discharging System of Chinese | |
US20120263268A1 (en) | Passive high pressure safety injection tank system (hpsit) for responding to station blackout (sbo) and loss-of-coolant accidents (loca) | |
US9966154B1 (en) | Cooling overheating reactor using compressed gas to propel liquid to reactor | |
JP6305936B2 (en) | Underwater power generation module | |
JP6353360B2 (en) | Assembly and method for emergency supply of nuclear chemical equipment | |
US20170287576A2 (en) | Compressed air, utility-scale, non-polluting energy storage and nuclear reactor emergency cooling system using thermal power plant waste heat | |
FR2986654A1 (en) | WATER SPRAY RESIDUAL HEAT EXHAUST SYSTEM FOR A NUCLEAR POWER PLANT | |
CN104036838A (en) | Moving platform type floating nuclear power plant and refueling method | |
JP6203196B2 (en) | Power generation module | |
RU2607474C2 (en) | Submerged energy production module | |
CN109300561B (en) | Electric power system structure of marine floating nuclear power station combined with new energy | |
KR101193677B1 (en) | Mobile emergency cooling-water supply system | |
FR2985359A1 (en) | Safety device for use in nuclear power station, has electric source supplying electricity to electric batteries to feed safety elements in control room, where source utilizes electrolytic installation unit for storing oxygen and hydrogen | |
EP2653773A1 (en) | Industrial unit for production of hydrogen and optimization of operation of electric power plants | |
JP6305937B2 (en) | Submersible or underwater power generation module | |
JP2014141956A (en) | Buoyancy power generating system using force of buoyancy | |
CN203826015U (en) | Movable platform type floating nuclear power plant | |
CN111063462B (en) | Self-generating cooling system after spent fuel pool accident | |
JP6307443B2 (en) | Submersible power generation module | |
US20130308738A1 (en) | Heat transfer systems and methods for nuclear plants | |
JP2015143712A (en) | Nuclear plant device with dummy load | |
JP2013088419A (en) | Nuclear power plant with radioactive decontamination facility | |
CN117967512A (en) | Off-grid modularized hydrogen-storage offshore wind power platform | |
JP2013142383A (en) | Power generation facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
ST | Notification of lapse |
Effective date: 20180928 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
FC | Decision of inpi director general to approve request for restoration |
Effective date: 20191114 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 13 |