JP2013088419A - Nuclear power plant with radioactive decontamination facility - Google Patents

Nuclear power plant with radioactive decontamination facility Download PDF

Info

Publication number
JP2013088419A
JP2013088419A JP2011239579A JP2011239579A JP2013088419A JP 2013088419 A JP2013088419 A JP 2013088419A JP 2011239579 A JP2011239579 A JP 2011239579A JP 2011239579 A JP2011239579 A JP 2011239579A JP 2013088419 A JP2013088419 A JP 2013088419A
Authority
JP
Japan
Prior art keywords
water
decontamination
layer
tunnel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239579A
Other languages
Japanese (ja)
Other versions
JP4974258B1 (en
Inventor
Yasumasa Yasu
泰昌 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011239579A priority Critical patent/JP4974258B1/en
Application granted granted Critical
Publication of JP4974258B1 publication Critical patent/JP4974258B1/en
Publication of JP2013088419A publication Critical patent/JP2013088419A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a utility is provided with a decontamination facility to perform treatment inside a power plant without performing discharge to the outside, since it is too risky to perform discharge without decontaminating radioactivity included in a gas to be discharged when a nuclear reactor falls into an uncontrollable state, the risk of explosion of a pressure container increases and vent execution is needed.SOLUTION: While a system which decontaminates all the radioactivity generated inside a nuclear power plant within the power plant and does not discharge it to the outside is needed, a large-sized decontamination system in a tower structure for decontaminating the gas generated inside the plant and contaminated circulation water is constructed to perform the entire treatment inside without performing discharge to the outside at all.

Description

本願発明は原子力発電所で発生した放射能を含む気体や汚染水を施設外の周辺地域に放出拡散するのを防止し、施設内で放射能を含む気体や汚染水を超低レベルに除染処理する原子力発電所の放射能除染施設に関するものである。  The present invention prevents release and diffusion of radioactive gas and contaminated water generated at nuclear power plants to surrounding areas outside the facility, and decontaminates radioactive gas and contaminated water within the facility to an extremely low level. It relates to radioactive decontamination facilities of nuclear power plants to be processed.

1986年のチェルノブイリ原子力発電所の爆発によりウクライナの地方都市ではいまだ許容基準以上の放射能のため住民は避難したままでいつ帰郷出来るかの、めども立たない状態であり原子力発電所で一端重大な事故が発生して周辺地域に放射能が放出拡散すると重大で深刻な放射能の汚染問題となる。また2011年3月11日の福島第一原子力発電所の津波による全電源停止が発生し、冷却水循環停止により、燃料棒のメルトダウンおよび水素爆発により高濃度の放射能が周辺地域に拡散し、30キロ圏内外の住民の避難となり、農産物、畜産業、漁業関係の放射能汚染による市場出荷停止に始まり、莫大な保障問題の発生が起こった。このように現状の原子力発電所の設置場所が海岸沿いや川や湖の近辺に多く立地しており、事故等で原子炉建屋内の圧力容器や格納容器が破壊されたとき、内部の放射能が大気中に放出され、広い範囲の周辺地域が放射能で汚染されると重大な結果を招くことになる。  If in Ukraine regional cities by the explosion of the Chernobyl nuclear power plant in 1986 still residents for more than acceptance criteria of radioactivity time can be homecoming remains were evacuated, one end serious in is a nuclear power plant in the state that does not stand prospect If an accident occurs and radioactivity is released and diffused in the surrounding area, it becomes a serious and serious problem of radioactive contamination. In addition, a total power outage due to the tsunami of the Fukushima Daiichi Nuclear Power Station on March 11, 2011 occurred, and due to the cooling water circulation stop, high concentration of radioactivity diffused to the surrounding area due to meltdown of the fuel rod and hydrogen explosion, Residents outside the 30-kilometer zone were evacuated, starting with the suspension of market shipments due to radioactive contamination in agricultural products, livestock industry, and fisheries, enormous security problems occurred. In this way, there are many places where nuclear power plants are currently installed along the coast or in the vicinity of rivers and lakes. When the pressure vessel or containment vessel inside the reactor building is destroyed due to an accident, Are released into the atmosphere, and a wide range of surrounding areas contaminated with radioactivity can have serious consequences.

原子力発電所施設の構造は建設前や建設時に事故対策を十分考慮して建設されたはずであるが想定外という言葉の基で発生した事故に対して対処できない場合、前記したように悲惨な結果を招くことになる。そのため今後も国民が文化的な生活を維持継続していくためには市民生活や産業の振興および発展していくための電力需要を賄うためには現在のエネルギー技術や自然再生エネルギーだけでは需要を満たしきれず、新たなエネルギー技術の開発があるまでは原子力発電に当面は頼らねばならない。  If the structure of the nuclear power plant facility should have been constructed with due consideration for accident countermeasures before and during construction, but it is not possible to cope with an accident that occurred based on the word of unexpected, as described above, the disastrous result Will be invited. For this reason, in order for the people to continue to maintain their cultural life, the current energy technology and natural renewable energy alone will not be able to meet the demand for electricity to promote and develop citizens' lives and industries. Until it can not be satisfied and new energy technologies are developed, nuclear power generation must be relied on for the time being.

昭53−110793  Sho 53-110793 昭61−84588  Sho 61-84588 特許第2883938号  Japanese Patent No. 2883938 平2−85795  2-85779 2010−101144  2010-101144

現在の原子力発電施設は海岸沿いや冷却水源のある平地に原子炉建屋やタービン建屋等と付帯施設が建設されているのが標準的スタイルである。原子力発電施設は事故に対して対応策はそれぞれに十分講じているが福島第一原発の事故例にもあるように想定外の要因で放射能放出事故が発生する可能性は今後も在り得る。現状の原子力発電所においては爆発等で格納容器や圧力容器が破壊するか、またはベントの実施で放射能が周辺地域に拡散するのを防止するのは現状では極めて困難といえる。原子炉の放射能で汚染した冷却循環水の除染処理や原子炉建屋内の空気中の放射能の除染処理を完全に行い発電所施設外への放射能の拡散防止対策をほどこして放射能除去を施設内で除去してから外部への放出を完全に行うことは難しい問題である。しかし原子炉が何らかの原因で爆発事故等が発生した場合、周辺地域や海洋への放射能拡散により周辺地域が汚染すると極めて重大な結果をもたらす事が改めて証明された結果となったが、このような事態を再発させないためにも絶対に放射能拡散防止することの出来る原子力発電所のシステムを確立する必要がある。  The standard style of current nuclear power generation facilities is that the reactor building, turbine building, and other incidental facilities are constructed along the coast and on the flat ground where the cooling water source is located. Although nuclear power facilities have taken sufficient measures for accidents, there is a possibility that a radioactive emission accident may occur due to an unexpected factor as in the accident example at the Fukushima Daiichi nuclear power plant. At present nuclear power plants, it is extremely difficult to prevent the containment vessel and pressure vessel from being destroyed due to an explosion or the like, or to prevent the radioactivity from spreading to the surrounding area by venting. Radiation is performed by taking measures to prevent the diffusion of radioactivity outside the power plant facility by completely decontaminating cooling circulating water contaminated by the radioactivity of the reactor and decontaminating radioactivity in the air inside the reactor building. It is a difficult problem to completely release to the outside after removing the ability removal in the facility. However, it was proved again that if a nuclear accident caused an explosion for some reason, contamination of the surrounding area due to radioactive diffusion to the surrounding area or the ocean would have extremely serious consequences. It is necessary to establish a nuclear power plant system that can absolutely prevent the spread of radioactivity in order to prevent a reoccurrence.

仮に外部電源喪失し、非常電源が停止して一時冷却水が循環が停止しても原子炉や燃料プールへの冷却水の供給を継続すると共に、また格納容器の圧力が高まりベントを実施しても放射能を含んだ気体や蒸気を原発施設外に放射能の拡散流出するのを防ぐ安全対策を講じることが必要である。福島第一原発では原子炉の循環水が長時間にわたり停止した際に圧力が上昇したのでベントを実施したがこの圧力は配管を通して排気塔から放出されたが、これはまさに周辺地域に放射能をまき散らしたことである。この事は今後の原子力発電所では絶対やってはならないことである。また立地条件として活断層があるところには原子力発電所の建設は取り止める事も重要となる。全電源喪失という事態が発生しても複数で多重の安全対策システムを講じながら、電源復旧するまで複数の対応策の構築、原子炉建屋、タービン建屋内で発生した汚染水の一時貯蔵槽、そして電源回復時の汚染水の除染施設の完備等が必要で原子力発電所内では発生する放射能は所内で除染処理して外部には一切出さないという基本的な考え方に基づくことが必要である。福島第一原発のように地震による津波対策として津波の波高以上の防潮堤の建設も重要な要因であることは言うまでもない。  Even if the external power supply is lost and the emergency power supply stops and the temporary cooling water stops circulating, the cooling water supply continues to the reactor and the fuel pool, and the containment pressure increases and venting is performed. However, it is necessary to take safety measures to prevent radioactive gases and vapors from diffusing and flowing out of the nuclear facilities. At the Fukushima Daiichi nuclear power plant, when the circulating water of the reactor was stopped for a long time, the pressure increased, so venting was carried out, but this pressure was released from the exhaust tower through the piping, but this did not cause radioactivity in the surrounding area. It was scattered. This should never be done in future nuclear power plants. It is also important to cancel the construction of nuclear power plants where there are active faults. Even if the situation of total power loss occurs, while implementing multiple safety measures systems, construction of multiple countermeasures until power restoration, temporary storage tank of contaminated water generated in the reactor building, turbine building, and It is necessary to complete a decontamination facility for contaminated water when power is restored, and it is necessary to be based on the basic idea that the radioactivity generated within a nuclear power plant is decontaminated inside the facility and not emitted outside. . Needless to say, the construction of a seawall above the tsunami wave height is also an important factor as a countermeasure against the tsunami caused by the earthquake, like the Fukushima Daiichi nuclear power plant.

原子力発電施設を建設して、安全に運用して行く際に何らかの要因で事故が発生しても原子炉施設から放射能物質が周辺地域に放出拡散を防止する方法としてIPC特許分類のG21C1/00@Dを検索すると先行技術文献の特許文献2の地下式原子力発電所のような方式がたくさん検索される。こうした技術はすでに公知であるが余り普及しているようには見えない。その理由として考えられるのは建設費の高騰にあると思える。しかし安全対策を最優先して極力こうした地下方式等を採用して原子力発電を活用する方法を取ることが結果的に事故を起こして損害額や補償額を計算すると安価に済む事になると予想できる。  G21C1 / 00 of the IPC patent classification is a method to prevent radioactive materials from being released and diffused from the reactor facility to the surrounding area even if an accident occurs for some reason when building a nuclear power plant and operating it safely. When @D is searched, a lot of methods such as the underground nuclear power plant of Patent Document 2 of the prior art document are searched. Such techniques are already known but do not appear to be very popular. The reason for this seems to be the soaring construction costs. However, it can be expected that adopting such a underground method as much as possible with the highest priority on safety measures and utilizing nuclear power generation will result in an accident, and it will be cheaper to calculate the amount of damage and compensation .

福島第一原子力発電所の事故のように津波による全電源喪失で原子炉に冷却水を循環注入が出来なくなり水素爆発を起こして、放射能が周辺地域に拡散すると言う最悪の結果を招いてしまったことは、まことに残念であり、またタービン建屋の地下室にたまった汚染水が外洋に流失してしまうという事態も発生した。2度とこのような事故を起こさないようにしなければならない。そのためには既存の原子力発電所や新設の発電所等に本願発明のような放射能除染システムを備えた施設を設置して、最大の安全対策を講じて周辺地域に居住する住民の原発事故発生の不安を取り除き、安全対策が取られているから絶対に心配ないという安心感の持たれる原子力発電所にしなければならない。現代社会の電力需要を満たすためにも、また原子力発電所の周辺地域住民の生存権を脅かすような現状での原子力運営指針は改善しなければならない。  Like the accident at the Fukushima Daiichi Nuclear Power Station, the loss of all power caused by the tsunami caused the inability to circulate cooling water into the reactor, resulting in a hydrogen explosion and the worst result of radioactivity spreading to the surrounding area. This was a shame, and the contaminated water that had accumulated in the basement of the turbine building was washed away into the open ocean. Never again have such an accident. To that end, a facility equipped with a radioactive decontamination system as in the present invention is installed at an existing nuclear power plant or a newly established power plant, etc., and the nuclear accident of residents living in the surrounding area by taking the greatest safety measures The nuclear power plant must be reassured that there is no need to worry because the safety measures have been taken to eliminate the fear of occurrence. In order to meet the power demands of the modern society, and the current nuclear operation guidelines that threaten the right of survival for the residents in the vicinity of nuclear power plants must be improved.

上記問題を解決するために本願発明は事故で原子炉が高圧になり、爆発する危険性が増大してベントを実施した際に排出した放射能を含む蒸気や気体を隔壁気密構造にした大型の閉鎖貯留用空洞トンネルに外気に触れることなく、管路で送気して閉鎖後貯留用トンネル内で上部に設置した配管から散水シャワーによる除染、散水した水を蓄積して残留した気体を圧縮して下部水タンクに導きタンク下部の管路から気泡として放出して再度除染水に放射能を含む気体を水に接触させ、水に放射能を移す事により気体の除染を行う。低レベルになった気体は更に次の上部タンクに移動して気体に含まれる残留放射能を吸着性の良い化学物質で出来た多層構造の各フィルターに気体を通過させて放射能の除染行う。各フィルターを通過した気体は更に粘土質の放射能の吸着の良い粘土質土壌で作成したフィルターに通過させて除染を行い安全なレベルに放射能を低減する。この際、放射能除去フィルターはヨウ素、セシウム134、セシウム137、ストロンチューム、プルトニューム等の放射能物質を除染する各フィルターを個別に設置しそれぞれに通過除染を行うものである。それぞれのフィルターには最適な吸着物質を使用した専門メーカーの製品を使用するので常にその時代の最先端の効率の良い製品が選別して使用する事が可能となる。  In order to solve the above problems, the present invention has a large-sized structure in which a vapor or gas containing radioactivity discharged when a vent is carried out due to an accident that causes a high pressure in the reactor and an explosion is carried out, and a vent is sealed. Without touching the outside air to the closed storage hollow tunnel, air is sent through the pipeline, and after closing, decontamination with a water spray shower from the pipe installed in the upper part of the storage tunnel, and the remaining gas is compressed by accumulating the sprayed water. Then, the gas is decontaminated by being led to the lower water tank, discharged as bubbles from the pipe line at the lower part of the tank, and again brought into contact with water a gas containing radioactivity in the decontamination water, and transferring the radioactivity to water. The low-level gas is further moved to the next upper tank, and the residual radioactivity contained in the gas is passed through each multi-layer filter made of a highly adsorbable chemical to decontaminate the radioactivity. . The gas that passes through each filter is further passed through a filter made of clay soil with good adsorption of clay radioactivity, and decontaminated to reduce the radioactivity to a safe level. At this time, the radioactivity removal filter is a filter for individually decontaminating radioactive substances such as iodine, cesium 134, cesium 137, strontium, and plutonium, and performs decontamination for each. Each filter uses a product of a specialized manufacturer that uses the most suitable adsorbent, so it is always possible to select and use the most advanced and efficient products of the time.

格納容器のベントを実施した際の除染作業を説明したが、ベントを実施しない通常時には原子炉建屋内やタービン建屋内の空気の放射線レベルが上昇した際には前記した貯留用空洞トンネルに送風して除染作業を実施する事も出来るような構造設計をして使用できるようにして置く事も重要である。原子炉建屋、タービン建屋の内部の若干でも放射能を含んだ空気は直接外部に放出することはなく、常に内部で除染されるので安全性は確保される。  Although the decontamination work when the containment vessel was vented was explained, when the radiation level of the air inside the reactor building or turbine building rises during the normal time when venting is not conducted, the air is blown into the above-mentioned storage hollow tunnel It is also important to design the structure so that it can be used for decontamination work. Even in the interior of the reactor building and turbine building, air containing radioactivity is not directly discharged to the outside, but is always decontaminated inside, thus ensuring safety.

次に原子炉建屋、タービン建屋内に溜まった汚染水も一端地下の貯留槽に一時貯留して置き除染層の除染作業が停止しているときにポンプで地下から上層のの滞留水除染用貯留槽のタンクに送水して薬液注入後、放射性物質能の除染、油成分の除去、海水が含まれる場合は塩分の除去、有機成分が含まれる場合はその除去作業等を行い、外部に排出しないで再度循環水として発電所内で燃料貯蔵プールの冷却水や循環水として利用可能な設計となっている。  Next, once the contaminated water collected in the reactor building and turbine building is temporarily stored in the underground storage tank, and the decontamination work of the decontamination layer is stopped, the remaining water from the basement is removed from the basement by a pump. After sending water to the tank for dyeing and injecting chemicals, decontamination of radioactive material ability, removal of oil components, removal of salt if seawater is included, removal work if organic components are included, etc. It is designed to be used as cooling water or circulating water for the fuel storage pool in the power plant as circulating water again without being discharged to the outside.

地震等で原子炉に制御棒が投入され核反応が停止しても腹水器の冷却水の循環や燃料プールへの冷却水は継続して注水しなければならず停止することは出来ない。仮に全電源喪失する事態が発生しても冷却や注水は継続する対策として本願発明に於いては冷却水用貯留タンクが格納容器よりも高い位置にあるので重力の作用で格納容器や燃料貯蔵プール内の水が蒸発しても不足分はタンクより重力の作用で補充されようになっており、メルトダウンの心配は払拭されるので福島第一原発の事故のようなことは起こらない。仮に電源が喪失したとしても貯蔵されている水量と蒸発する水量には時間的余裕があるのでその間に電源の復旧が行える時間が確保されて外部電源や非常用電源の回復作業が行える。  Even if a control rod is inserted into the reactor due to an earthquake or the like and the nuclear reaction stops, the circulation of the cooling water in the ascites and the cooling water to the fuel pool must be continuously poured and cannot be stopped. As a measure for continuing cooling and water injection even if the entire power supply is lost, the storage tank for cooling water is located higher than the storage container in the present invention. Even if the water in the tank evaporates, the shortage will be replenished by the action of gravity from the tank, and the fear of meltdown will be dispelled, so there will be no such thing as the accident at the Fukushima Daiichi nuclear power plant. Even if the power supply is lost, the amount of water stored and the amount of water to be evaporated have a time margin, so that a time for recovering the power supply is secured during that time, and the external power supply and the emergency power supply can be restored.

何らかの原因で原子炉本体に制御棒が投入され、原子炉本体は発電を停止しても圧力容器や燃料プールの冷却は継続して行わねばならないので電源の確保は至上命令であり、絶対条件である。本願発明では電源停止状態が一週間から10日間位電源か回復しなくても非常用蓄電池のみの少量の電源のみでもベントしたガスの除染作業が継続可能とするものでその間に電源回復作業が行えるものである。予備電源の回復作業や外部電源の復旧作業による早期の電源回復を行い原発の安定した冷温停止を図る事を目的とするものである。さらに原子力発電所の事故対策として原子炉が万が一事故により原子炉が制御不能となっても原子炉外の大気中に放射能の放出はしないで貯留槽トンネル内に封じ込めて汚染された放射物質を貯留槽トンネル内で除染処理をする方式の除染施設付原子力発電所となるものである。  For some reason, control rods are inserted into the reactor body, and even if the reactor body stops power generation, the pressure vessel and fuel pool must be continuously cooled. is there. In the present invention, even if the power supply is not recovered from about 1 week to 10 days, the vented gas decontamination work can be continued with only a small amount of power of the emergency storage battery. It can be done. The purpose of this is to recover the power supply at an early stage by the recovery work of the standby power supply or the recovery work of the external power supply, and to achieve a stable cold shutdown of the nuclear power plant. Furthermore, as a countermeasure against accidents at nuclear power plants, even if the nuclear reactor becomes uncontrollable due to an accident, radioactive materials that are contained in the storage tank tunnel without being released into the atmosphere outside the reactor will be contaminated. This is a nuclear power plant with a decontamination facility that uses a decontamination process in the storage tank tunnel.

すべての原子力発電所がそうであるように本システムの原子力発電施設も事故のない安定運転が最大目的であり、将来的に事故が仮に発生しても安全に人的被害や放射能汚染の発生を防止することを目的とするもので、周辺地域への放射能汚染の被害を防止するものである。今後も人類が文明的で快適な生活を継続するには現状においてまだ自然エネルギーや再生エネルギーのみでは技術的に電力需要を満たすことには無理がある。それを補うにはやはり将来的には当面原子力発電に頼ららずを得ない。将来もっと安全なエネルギー技術が開発されれば原子力発電を廃止することも考えられるがCO2削減からも原状では原子力発電を継続せざるを得ないのが実情である。また本願特許は沸騰型原子炉にも加圧水型原子炉にも対応するのですでに建設稼動している原子炉に本願システムを増設して外部に放射能の放出を阻止できるので将来的な事故時の対応として安全であると同時に原子力発電所の最大の不安要因を払拭できる最大の解決策と成り得るものである。旧来の原子力発電は安全運転を前提とした目標の元に事故対策に対する安全策を基本にした多重的なシステムを重点的に配備する事を目的としているように見える。福島第一原発の事故のようによく想定外という表現耳にしたがその想定外の事故に対する対策を講じてこなかった事が莫大な損害事故発生になった言えるのではないだろうか。そのため本願発明のように建設費が多額になっても転ばぬ先の杖でこれからの原子力発電所には絶対必要な施設と言える物である。  As with all nuclear power plants, the main purpose of the nuclear power generation facilities of this system is to ensure stable operation without accidents, and even if accidents occur in the future, human damage and radioactive contamination will occur safely. The purpose is to prevent radiation damage to the surrounding area. In the future, it is still impossible for human beings to continue to live a civilized and comfortable life by technically satisfying the demand for electric power using only natural energy and renewable energy. In order to make up for this, it will be necessary to rely on nuclear power for the time being. If safer energy technology is developed in the future, nuclear power generation may be abolished, but in reality, nuclear power generation must be continued from the CO2 reduction. In addition, since this patent is applicable to both boiling and pressurized water reactors, it is possible to prevent the release of radioactivity outside by adding this system to a reactor that is already under construction. It can be safe as a response, and at the same time be the biggest solution that can eliminate the biggest anxiety factors of nuclear power plants. It seems that the traditional nuclear power generation is aimed at intensively deploying multiple systems based on safety measures for accident countermeasures based on the goal of safe operation. It may be said that a huge damage accident occurred because I often heard that it was unexpected, like the accident at the Fukushima Daiichi nuclear power plant, but did not take measures against the unexpected accident. Therefore, it can be said that it is an absolutely necessary facility for future nuclear power plants with the cane that does not fall even if the construction cost becomes large as in the present invention.

本願発明は原子力発電所に付随して放射能除染施設を建設して放射能を含む気体や万一事故が発生してベントした際の放出ガスや、汚染された原子炉建屋内やタービン建屋内の滞留水をそれぞれ専用の貯留槽に導き、それぞれに対応した複数の放射能の除染作業を行い人体に影響のないレベルに低減して発電所内で再利用する事が可能になるものである。そのため原子力発電所外の周辺近郊地域には原子力発電所で発生した放射性物質を含む有害物質は一切排出されないので安心して近隣地域住民は心配なく居住できるようにするものである。  The present invention relates to a radioactive decontamination facility associated with a nuclear power plant, gas containing radioactivity, released gas in the event of an accident and venting, contaminated reactor building or turbine building. The indoor stagnant water is guided to a dedicated storage tank, and multiple radioactivity decontamination operations corresponding to each are conducted to reduce the level to a level that does not affect the human body and can be reused in the power plant. is there. Therefore, no harmful substances including radioactive materials generated in the nuclear power plant are discharged in the surrounding suburbs outside the nuclear power plant, so that residents in the neighborhood can live without worry.

本願発明の原子力発電所を建設する場合新規に建設する場合とすでに建設されている原子力発電所を本願方式に改造する場合とに分類して実施例を説明すると、新規に建設する場合は揚水ダムのある山間部に建設する場合や新たに揚水ダムを建設する場合には実施例1のようになり、すでに建設され運用されている場合の原子力発電所本願方式に改造する場合は実施例2と実施例3のようになる。  In the case of constructing a nuclear power plant of the present invention, an embodiment will be described by classifying a newly constructed nuclear power plant and a case where a nuclear power plant that has already been constructed is remodeled into the present system. When constructing in a mountainous area or when constructing a new pumping dam, it will be as in Example 1. When remodeling to a nuclear power plant application system already constructed and operated, Example 2 Example 3 is obtained.

これから新規に原子力発電所を建設する場合、本願発明の実施例としてはその最適地として向いているのは揚水発電所である。揚水発電所に原子力発電所を併設することである。その最大の要因はは非常時の原子力発電所内の電源の確保が容易である。非常時外部電源が停止しても揚水発電所で発電した電力は常時原子力発電所内で使用できるからである。非常時外部電源の停止、非常用自家発電の停止等重複した事故が発生しても揚水発電所においては上部ダムから下部ダムへの放水による発電が可能であるので容易に発電して電力の供給が可能となる。普段は原子力発電所の夜間の余剰電力を利用して下部ダムから上部ダムへの揚水作業を行い上部ダムにいつも水力を蓄積して発電可能な体制が確立しておけるので安全対策としては最適である。更に原子力発電所の発電が停止して冷却機能が作動しなくなっても上部ダムの水で強制的に格納容器や圧力容器の冷却矢燃料貯蔵プールの冷却水を注入を続けられる事が上げられる。このように冷却水の確保、電源の確保等が容易である。  In the case of constructing a new nuclear power plant from now on, a pumped-storage power plant is suitable as an optimum place as an embodiment of the present invention. A nuclear power plant is added to the pumped storage power plant. The biggest factor is that it is easy to secure power in the nuclear power plant in the event of an emergency. This is because the electric power generated at the pumped storage power plant can always be used in the nuclear power plant even if the external power supply is stopped in an emergency. Even in the event of repeated accidents, such as an emergency external power supply stop or emergency private power generation stoppage, the pumped-storage power station can generate power by discharging water from the upper dam to the lower dam, so it can easily generate power and supply power. Is possible. Normally, the surplus power at night of the nuclear power plant is used to pump water from the lower dam to the upper dam, and a system that can always generate hydraulic power by accumulating hydraulic power in the upper dam can be established. is there. Furthermore, even if the power generation of the nuclear power plant stops and the cooling function is not activated, the water in the upper dam can be forced to inject the cooling water of the containment vessel or pressure vessel and the fuel storage pool. In this way, it is easy to ensure cooling water, ensure power supply, and the like.

また揚水発電所は所在地が山間部であるため用地代が安価であるため建設費が抑制できるメリットがある。建設場所が山間部であるため新たな工事用、作業用進入路を建設しなければならない問題が発生するが現在の機械化された土木工事からすればさほどの困難さはない。発電所の大部分は地中化するため景観的にも見た目の危険性が排除され、一番の目的は原子力発電所からは放射性物質は地中で除染処理されるので外部に排出されることはなく、周辺地域に済む少ない住民も安心して居住が出来る。  The pumped storage power plant has a merit that the construction cost can be suppressed because the land cost is low because the location is in a mountainous area. Since the construction site is in a mountainous area, there is a problem that a new work and work approach path must be constructed, but it is not so difficult from the current mechanized civil engineering work. Most of the power plants are underground, eliminating the danger of appearance in terms of scenery. The primary purpose is to discharge radioactive materials from nuclear power plants because they are decontaminated in the ground. There is no such thing, and even a small number of residents in the surrounding area can live with peace of mind.

図1のように原子炉本体である格納容器9は図2の大型の遂道25の内部に建設されタービン13と腹水器12が格納容器と繋がり、下部ダム15と冷却水用の冷却水管路18と腹水器12、更に地下汚染水貯留槽19とも繋がっている。図1の上部ダム2の水を除染タワー最上部の第1層の除染水取り入れ口3に接続して循環処理水として図8の第1層33に貯めて浄化装置34を通過後第2層36、第3層37に貯留される。図1に戻って原子炉格納容器9と除染タワー7はベントした際の排気ダクト5により図8の除染タワーの第6層46と接続される。更に上部ダムと下部ダムは用水発電用の水路4が設置され昼間は必要時発電を行い、夜間は余剰電力を使用して揚水ポンプ16として下部ダムの水を上部ダムに汲み上げ昼間の活用に利用される。原子炉やタービン13及び腹水器12からの漏洩した水や滞留水は地下汚染水貯留槽19に貯留後、非常時以外の通常時に地下汚染水貯留槽のポンプで汚染水汲み上げ配管54を通して図8の第7層50にくみ上げて油分分離装置65、凝集沈殿装置66を通してつぎの複数ある各除染室51に流して除染作業を行うものである。更に図1の原子炉建屋8とタービン建屋内11の空気も放射能濃度を測定して必要が生じた場合は送風機で第4層40に送気してフィルター除染を行うこをも可能である。もちろん非常時の外部電力の送電施設や非常用発電装置、非常用蓄電池等の施設も配備して多重化して、多角的な電源の確保も完備されるものである。  As shown in FIG. 1, the containment vessel 9 which is the main body of the nuclear reactor is constructed in the large end 25 of FIG. 2, the turbine 13 and the ascites 12 are connected to the containment vessel, the lower dam 15 and the cooling water conduit for cooling water. 18 is connected to the ascites vessel 12 and further to the underground contaminated water storage tank 19. The water in the upper dam 2 in FIG. 1 is connected to the first-layer decontamination water intake 3 at the top of the decontamination tower and stored in the first layer 33 in FIG. It is stored in the second layer 36 and the third layer 37. Returning to FIG. 1, the reactor containment vessel 9 and the decontamination tower 7 are connected to the sixth layer 46 of the decontamination tower of FIG. 8 by the exhaust duct 5 when vented. In addition, the upper and lower dams are equipped with a water supply channel 4 for generating electricity during the daytime, generating power when needed, and using the surplus power at night to pump the water from the lower dam to the upper dam for use during the daytime. Is done. The leaked water and accumulated water from the reactor, the turbine 13 and the ascites 12 are stored in the underground contaminated water storage tank 19 and then through the contaminated water pumping pipe 54 by a pump of the underground contaminated water storage tank at a normal time other than emergency. The decontamination work is performed by pumping up to the seventh layer 50 and flowing through the oil separation device 65 and the coagulation sedimentation device 66 to the next plurality of decontamination chambers 51. Further, if the air concentration in the reactor building 8 and the turbine building 11 shown in FIG. 1 needs to be measured by measuring the radioactivity concentration, it can be sent to the fourth layer 40 by a blower to perform filter decontamination. is there. Of course, facilities such as power transmission facilities for emergency external power, emergency power generators, emergency storage batteries, etc. are also deployed and multiplexed to ensure a diversified power source.

本方式の原子力発電所の除染設備タワーの概要及び除染施設の運用方法ならびに除染作業の大まかな工程を説明すると図1の側面図にように揚水発電所の上部ダムと下部ダムの中間位置の山腹に遂道を必要な長さを掘削して、遂道内面を鉄筋コンクリートで強化補強し内部にそれぞれの施設を図1のように配置して核反応による発生する熱を利用して電力を発生させる施設となるものである。  The outline of the decontamination equipment tower of the nuclear power plant of this system, the operation method of the decontamination facility, and the rough process of the decontamination work are explained. As shown in the side view of Fig. 1, the middle of the upper dam and lower dam of the pumped storage power plant Drill the required length of the Suido on the hillside of the location, reinforce and reinforce the inner surface of the Suido with reinforced concrete, and arrange each facility as shown in Fig. 1 to use the heat generated by the nuclear reaction to generate electric power. It will be a facility that generates

図2は山腹に掘削される各遂道の正面図で各遂道が図のように山腹に配置され、必要時以外はハッチで閉鎖され外部とは完全に遮断される。除染施設となるタワー構造の各施設の配置は図1の側面図では10段になる構造で設計されているが発電所の発電能力等により構造は自由に設計されるものであり別段特定するものでなく必要な施設が配置されていいればよい。除染タワーの概要は図8に示すように最上部の第1層の貯留槽の除染水取り入れ口3に上部ダム2から除染用冷却処理水が取り込まれ浄化装置34を通過して第2層36と第3層37が貯留槽として利用される。第5層42と第6層48は非常時にベントされた際のガスをここに原子炉から排出ダクト5により誘導してこの中に入れられる。ベント排出したガスは高温高圧のため自然に流れ込む事になる。第5層内に取り付けられている圧力センサーと温度センサーと排出ダクト5内の圧力センサー及び温度センサーが(図示されていない)が一定の数値に安定したら排出ダクト遮蔽水放出バルブ39が開弁して、排出ダクト遮蔽水貯留槽38内部の水が弁の下部の配管を通して第6層に放出する。この水が排出ダクト遮蔽用水位液面47の図で示された点線部分の水位に達すると排出ダクト5と第6層は水で遮断され通気不能の状態となる。この時図8の排出ダクト遮蔽フロートバルブ63は第6層入口とダクト部分を閉鎖して通気出来ない状態にする。  FIG. 2 is a front view of each end road excavated on the hillside. Each end road is arranged on the hillside as shown in the figure, and is closed by a hatch and completely cut off from the outside except when necessary. In the side view of FIG. 1, the layout of each facility of the tower structure that is a decontamination facility is designed with a structure of 10 stages, but the structure is freely designed according to the power generation capacity of the power plant, etc. and is specified separately. It is sufficient if necessary facilities are arranged instead of things. As shown in FIG. 8, the outline of the decontamination tower is as follows. Cooling water for decontamination is taken from the upper dam 2 into the decontamination water intake 3 of the uppermost first-layer storage tank, passes through the purification device 34, and passes through the purification device 34. The second layer 36 and the third layer 37 are used as a storage tank. The fifth layer 42 and the sixth layer 48 are introduced into the gas when the gas is vented in an emergency from the nuclear reactor through the discharge duct 5. The vented gas flows naturally because of high temperature and pressure. When the pressure sensor and temperature sensor mounted in the fifth layer and the pressure sensor and temperature sensor in the discharge duct 5 (not shown) are stabilized at a certain value, the discharge duct shielding water discharge valve 39 is opened. Thus, the water inside the discharge duct shielding water storage tank 38 is discharged to the sixth layer through the piping below the valve. When this water reaches the water level of the dotted line shown in the drawing of the water level liquid level 47 for shielding the discharge duct, the discharge duct 5 and the sixth layer are blocked by water and cannot be vented. At this time, the discharge duct shielding float valve 63 shown in FIG. 8 closes the sixth layer inlet and the duct portion to prevent ventilation.

ベントして排出されたガスは第6層、第5層に閉じ込められた状態でこのガスに含まれる放射能は除染水で散水による水除染作業を行う。水除染は第3層37に貯留されている除染水を除染水排出バルブ56を開弁して散水配管60を通じて5層と第6層の天井部に配管支持具43で多数吊り下げられた状態で配置された配管下部の細部の穴からシャワー状態で散水して層内のガスに含まれる放射能を散水除染する。除染水排出バルブ56の開弁は排出バルブ遮蔽フロートバルブ63の閉弁動作と連動して行うものである。第5層と第6層に散水を始めた除染水は第6層の下部に蓄積していくが、開始時は第6層48の点線47で表示されている水面位置であるが散水配管60により散水により層内の水位が上昇していく事によりガスが層内上部に圧縮されることにとより第6層分にあった気体は第5層に押し上げられていく。散水作業の継続により第6層の最上部まで水に満たされると第6層上部のフロートバルブ45が動作して第6層と第5層が遮断される。そして散水配管44も第6層と第5層の連結部分である散水配管バルブ44が閉じて第6層の散水作業は終了する。第5層42の散水配管60の散水作業は引き続き継続して行われる。第5層も除染水の水位の上昇は続く、それにより気体の圧力は高まり気体排出口58から排出される気体は除染ガス放出管62を通じて第6層の水面下部に敷設してある管の上部の小さな穴から気泡として第6層に溜まっている除染水中に放出されて更に気泡中の放射能は除染水に取り込まれる事により放出ガスの放射能は更に低減していく。第6層に気泡として放出した気体分は上昇しても第5層には前記した弁45の閉鎖により第5層には排出されずに第6層の上部にあるガス吸い込み口46から吸い込まれ、第4層に排出することになる。第6層ガス排出管61は第4層のフィルター室に連結されている。この連結口のバルブは前記した第6層が満水時に作用したフロートバルブの作用で第6層ガス排出バルブ59は開弁して第4層と通気状態になる。そのため第6層の気体はフィルター室に自動的に流れていく。第5層と第6層で2度にわたる水による除染工程を行い、放射能が低減した気体は第4層40にて放射能除去フィルターを通過させて更に除染作業を行う。The gas discharged by venting is confined in the sixth layer and the fifth layer, and the radioactivity contained in this gas is subjected to water decontamination work by sprinkling with decontaminated water. In water decontamination, a large number of decontamination water stored in the third layer 37 is suspended by the pipe support 43 on the ceiling of the fifth and sixth layers through the sprinkling pipe 60 by opening the decontamination water discharge valve 56. Sprinkle decontamination of the radioactivity contained in the gas in the bed by sprinkling water in the shower state from the hole in the lower part of the pipe placed in the state where it is placed. The decontamination water discharge valve 56 is opened in conjunction with the closing operation of the discharge valve shielding float valve 63. The decontaminated water that has started to sprinkle the 5th and 6th layers accumulates in the lower part of the 6th layer, but at the start, the water surface position indicated by the dotted line 47 of the 6th layer 48 is sprinkled. As the water level in the layer rises due to water spraying 60, the gas is compressed to the upper part of the layer, and the gas in the sixth layer is pushed up to the fifth layer. When the water is filled up to the top of the sixth layer by continuing the watering operation, the float valve 45 at the top of the sixth layer operates to shut off the sixth layer and the fifth layer. And the sprinkling pipe 44 which is a connection part of the 6th layer and the 5th layer also closes the watering pipe 44, and the 6th layer sprinkling work is completed. The water sprinkling work of the water sprinkling pipe 60 of the fifth layer 42 is continuously performed. In the fifth layer, the water level of the decontamination water continues to rise, whereby the gas pressure increases and the gas discharged from the gas discharge port 58 passes through the decontamination gas discharge pipe 62 and is laid under the water surface of the sixth layer. The radioactivity in the bubbles is further reduced by being released into the decontamination water accumulated in the sixth layer as bubbles from the small hole in the upper part of the gas, and further, the radioactivity in the bubbles is taken into the decontamination water. Even if the amount of gas released as bubbles in the sixth layer rises, the fifth layer is sucked from the gas suction port 46 at the top of the sixth layer without being discharged to the fifth layer by closing the valve 45 described above. , Will be discharged to the fourth layer. The sixth layer gas exhaust pipe 61 is connected to the fourth layer filter chamber. The valve at this connection port opens the sixth layer gas discharge valve 59 by the action of the float valve that is activated when the sixth layer is full of water, and is in a state of ventilation with the fourth layer. Therefore, the gas in the sixth layer automatically flows into the filter chamber. The decontamination process with water twice in the fifth layer and the sixth layer is performed, and the gas whose radioactivity is reduced passes through the radioactivity removal filter in the fourth layer 40 and further decontamination work is performed.

第4層のフィルター室は図8では5室設けられており、各室にはヨウ素、セシウム134、セシウム137、ストロンチューム、プルトニューム等と吸着の良い化学物質により作成された各フィルターが必要枚数が各フィルター室内に設置されており第6層ガス排出管61を通じて入ってきた気体分はフィルターに通過接触させて除染を行う。フィルター室の最終除染には放射能の吸着の良い土壌をフィルターとして通過させて除染を行う。このようにベントで排出した気体は水による2回の除染工程更にフィルター層を通過して除染作業を繰り返し安全な放射能レベルに低減するものであり、多くのフィルター層通過させ安全性を最大限確保する多重システムになっている。安全なレベルまで放射能の低下を確認して原子炉建屋等の内部に循環して再使用されるが一部排気塔1からも排出する場合もある。第5層、第6層の放射能で汚染した除染水は気体分の除染作業の終了後第6層の下部にある汚染水放出バルブ64を開弁して第7層47に汚染水が流し込まれる事になる。  In FIG. 8, there are five fourth-layer filter chambers, and each chamber has a necessary number of filters made of chemicals that have good adsorption properties such as iodine, cesium 134, cesium 137, strontium, and plutonium. Is installed in each filter chamber, and the gas component that has entered through the sixth-layer gas exhaust pipe 61 is passed through the filter to be decontaminated. For final decontamination of the filter chamber, decontamination is performed by passing through a soil with good radioactivity adsorption as a filter. In this way, the gas exhausted at the vent is passed through two filter decontamination processes and further through the filter layer, and the decontamination work is repeated to reduce the radiation level to a safe level. It is a multiplex system that secures the maximum. After confirming the decrease in radioactivity to a safe level, it is circulated and reused inside the reactor building or the like, but some may also be discharged from the exhaust tower 1. The decontaminated water contaminated with the radioactivity of the fifth layer and the sixth layer opens the contaminated water discharge valve 64 at the lower part of the sixth layer after the decontamination work of the gas component, and the seventh layer 47 is contaminated with the contaminated water. Will be poured.

この第7層に油分分離装置62と凝集沈殿装置63が配置されており、汚染水はこの装置を通過して汚染水除染室51に入っていく。図8では汚染水除染室51は3室並んでおり、汚染水はそれぞれの除染室で並列して処理を行い除染効率を高めることが可能となる。世界的に実績のあるメーカーの除染システムを多数各室に採用する事で能力の比較及び故障停止率を測り、事後対策の目安にすることの資料に出来る。常に最新の除染能力の高い除染設備を設置して効率の良い除染を行う事が可能となる。第7層で除染された水は第8層から第10層に貯留して、燃料貯蔵プールや原子炉格納容器、圧力容器の補充水や腹水器等の冷却水として利用する。  The oil separation device 62 and the coagulation sedimentation device 63 are arranged in the seventh layer, and the contaminated water passes through this device and enters the contaminated water decontamination chamber 51. In FIG. 8, the three contaminated water decontamination chambers 51 are arranged side by side, and the contaminated water can be processed in parallel in each decontamination chamber to increase the decontamination efficiency. By adopting many decontamination systems from world-renowned manufacturers in each room, it is possible to compare the capacity and measure the failure stop rate, and use it as a guideline for subsequent countermeasures. It is possible to perform efficient decontamination by always installing the latest high decontamination equipment. The water decontaminated in the seventh layer is stored in the eighth to tenth layers and used as cooling water for fuel storage pools, reactor containment vessels, pressure vessel replenishment water, ascites and the like.

ベントしたガスが第6層と第5層で水除染が完了し、除染を終了したガスが第4層のフィルター室を通過して再除染を完了する。第6層と第5層に溜まった汚染水も第7層に設置されている油分分離装置、凝集沈殿装置を通過後、放射能除染施設を通過して除染が終了した除染水は下層になる第8層から第10層に貯留して、最初の除染工程が終了する。この初期除染工程は非常事態が発生して全電源喪失状態でも非常用バッテリー等による小電力による電源でも発電所の計器類が稼動させる電力で初期段階の除染作業を遂行可能となる。原子炉本体の圧力容器内の燃料棒のメルトダウンを回避して最悪の事態を招かないための予防処置となるものである。初期段階の除染作業を終了すると各層のフロートバルブや他の弁は初期状態に戻して次の除染工程に入る事になる。第6層と第5層の汚染水が第7層に流下して無くなると排出ダクト遮蔽フロートバルブ61が開弁するとベント排出ダクト5内に1回目で第6層に送気出来なかった放射能を含む残留ガスを送気ファンにより再度第6層に送気して残留放射能の除染作業を実施する事になる。この時原子炉が非常停止した理由が電源停止による場合は電源再開が2度目の除染工程に入る条件となるが電源が回復すれば冷却ポンプの駆動やその他の装置の正常運転開始の確認が出来るものとなる。実施例1の場合は揚水発電所と除染タワーが同一場所にあるので非常事態の発生や全電源喪失等の場合には安定冷却への前処置をしたり、電源復旧を図る場合には極めて有利である。  The degassing of the vented gas is completed in the sixth layer and the fifth layer, and the decontaminated gas passes through the filter chamber of the fourth layer to complete the recontamination. Contaminated water accumulated in the 6th and 5th layers also passes through the oil separation device and coagulation sedimentation device installed in the 7th layer, then passes through the radioactive decontamination facility, and the decontaminated water is finished. The first decontamination process is completed by storing in the lower layer from the eighth layer to the tenth layer. In this initial decontamination process, it is possible to carry out the decontamination work at the initial stage with the electric power operated by the power station instruments even when the entire power supply is lost even when an emergency situation occurs and the power source is operated by a small power source such as an emergency battery. This is a preventive measure for avoiding the worst situation by avoiding the meltdown of the fuel rod in the pressure vessel of the reactor main body. When the decontamination work at the initial stage is completed, the float valves and other valves in the respective layers are returned to the initial state, and the next decontamination process is started. Radioactivity that could not be supplied to the sixth layer in the vent discharge duct 5 for the first time when the discharge duct shielding float valve 61 was opened when the contaminated water of the sixth layer and the fifth layer disappeared to the seventh layer. The residual gas containing gas is again supplied to the sixth layer by the air supply fan, and the decontamination work for residual radioactivity is performed. At this time, if the reason for the emergency shutdown of the reactor is due to the power shutdown, the restart of the power is a condition for entering the second decontamination process. It will be possible. In the case of Example 1, since the pumped storage power plant and the decontamination tower are in the same place, in the case of occurrence of an emergency or loss of all power sources, pre-treatment for stable cooling or power restoration is extremely important. It is advantageous.

図8の塩分離淡水化装置配置室35は実施例1の揚水発電所においては上部ダムは真水であるために必要としない。これは実施例2、実施例3の場合のみに除染タワーの第1層に配置されるものである。  The salt separation desalinator arrangement chamber 35 of FIG. 8 is not necessary in the pumped storage power plant of Example 1 because the upper dam is fresh water. This is arranged in the first layer of the decontamination tower only in the case of Example 2 and Example 3.

地震発生や原子炉各所で異常事態が発生し、原子炉の制御棒が投入され核反応が停止しも燃料棒の表面温度は摂氏500度内部温度は1800度と高温状態にあり、格納容器、圧力容器を水棺しても冷却を停止するとメルトダウンが起こる可能性があることは周知の事実であるがこの状態では毎時100トンの水が蒸発すると想定されている。非常時に全電源喪失が発生して腹水器の冷却循環が停止した場合でも自動的に毎時100トンの注水は継続するとした場合、電源復旧まで一週間必要としたとき100毎時/トン×24時間×7日=16,800トンの冷却水が継続して注水循環する水量が必要となる。最悪の事態を想定してこの水量を貯留することが必要となるので除染タワーの設計時この水量を考慮して設計する必要がある。ただし第一実施例のように揚水ダムの原子力発電所を建設する場合は上部ダムに十分な水量を確保されている場合はこの注水用冷却水の用量を余り多く確保の必要性は低いが第2実施例や第3実施例のように海岸線に建設されている原子力発電所に本方式の除染タワーを建設する場合は十分冷却水の容量の確保は考慮しておく必要性がある。  Even if an earthquake occurs or an abnormal situation occurs in various parts of the reactor, the reactor control rod is inserted and the nuclear reaction stops, the surface temperature of the fuel rod is 500 degrees Celsius, the internal temperature is as high as 1800 degrees, the containment vessel, Although it is a well-known fact that meltdown may occur when cooling is stopped even if the pressure vessel is submerged, it is assumed that 100 tons of water evaporates per hour in this state. Even in the event of a loss of all power in the event of an emergency, even if the cooling circulation of the ascites device is stopped, if 100 tons of water is automatically continued, 100 hours per ton × 24 hours × 7 days = 16,800 tons of cooling water is required to continuously circulate water. Since it is necessary to store this amount of water in the worst case, it is necessary to design the decontamination tower in consideration of this amount of water. However, when constructing a nuclear power plant for a pumping dam as in the first embodiment, if a sufficient amount of water is secured in the upper dam, there is little need to secure this amount of cooling water for injection. When constructing a decontamination tower of this method at a nuclear power plant constructed on the coastline as in the second embodiment or the third embodiment, it is necessary to consider sufficient cooling water capacity.

このように本願発明は原子力発電所において放射能に汚染された気体や汚染水を除染施設があるタワー構造の建屋に誘導して除染作業を行い外部に漏洩排出拡散することを防止して周辺地域が放射能で汚染されるのを防ぐ施設である。過去の原子力発電所の事故からも判るように一端放射能が周辺地域に拡散すると長期に渡る期間、周辺住民は居住できなくなり多大な損害が発生することになる。その被害損害はすでに人類は経験済みで将来的にも安全対策を十分に認識して将来的に新たなエネルギー源を確保する技術が確立するまでは地球温暖化対策の面からも原子力発電に依存せざるを得ない現状では事故対策には十分考慮して当たらなければならない。  In this way, the present invention prevents the gas and polluted water contaminated by radioactivity in the nuclear power plant from being guided to the building of the tower structure where the decontamination facility is installed, and prevents leakage and diffusion to the outside. This facility prevents the surrounding area from being contaminated with radioactivity. As can be seen from past accidents at nuclear power plants, once the radioactivity spreads to the surrounding area, the surrounding residents cannot live for a long period of time, causing a great deal of damage. The damage has already been experienced by mankind and will depend on nuclear power generation from the standpoint of global warming countermeasures until the establishment of technology to fully secure safety measures and secure new energy sources in the future. In the current situation, we must carefully consider accident countermeasures.

ベントの実施により最初に排出したガスを除染タワーの第6層と第5層で除染が終了すれば非常事態の状況により、揚水発電の電力や非常電源が使用可能とする余裕があればベント排出ダクト内に遮蔽されていた残留ガスを第6層にファンを駆動して送気し、水除染を再開して除染を継続しても良いし、地下汚染水貯留タンク19に溜まった汚染水を第7層にポンプアップして除染を開始しても良い、また格納容器内や圧力容器内に水素ガスの発生があれば窒素ガスの注入等を開始しながら圧力容器周辺の冷却水注入作業の継続した実行、建屋や施設内各所の放射能に汚染した空気の換気誘導して除染処理を実施する等作業員の健康管理を考慮した除染作業を行い発電再開への情報を中央制御室に集中統合して必要に応じて判断し総合的な安全管理運営が必要となる。  If the decontamination is completed in the 6th and 5th tiers of the decontamination tower, the gas discharged first by the venting will be able to be used by the pumped-storage power and the emergency power supply depending on the emergency situation. Residual gas shielded in the vent exhaust duct may be sent to the sixth layer by driving a fan to resume water decontamination and continue decontamination, or accumulated in the underground contaminated water storage tank 19. Contaminated water may be pumped up to the seventh layer to start decontamination. If hydrogen gas is generated in the containment vessel or pressure vessel, nitrogen gas injection is started while the surroundings of the pressure vessel are started. Continued the cooling water injection work, guided the ventilation of air contaminated with radioactivity in the buildings and facilities, and carried out the decontamination process in consideration of the health management of workers, and resumed power generation. Information is centralized and integrated into the central control room, and judgment is made as necessary. Management and operation is required.

実施例2の除染タワー施設はすでに海岸沿い等に建設されている原子力発電所が安全対策を強化するために本願発明を採用して除染タワーを増設する場合の実施例を図3に示している。この場合原子炉施設の背後に山や丘陵地がある場合に適している。実施例2の場合は実施例1同様に除染タワー自体を背後の山等の地中に遂道を掘削してそれぞれの穴に鉄筋コンクリートで補強して使用するものである。地中内部に除染タワーを設置して事故で最悪の事態が発生しても放射能を周辺地域に拡散しないよう除染タワーにベントした気体や汚染水を導き除染するものである。施設の構造等実施例1とほとんど同じであるが非常事態時に海沿いであるため地震津波による被害を想定して、非常電源の設置場所や防波堤や複数の電源確保による対策等を講じておく事が必要であり、最悪の事態が発生した時の水源の確保と共に海水を使用する事態も考慮して塩分除去装置を設置して真水の貯蔵する施設も用意しておく必要がある。図4は図3の平面図で海中から冷却水を地下の水路で取り込み冷却用としてタービン建屋、汚染水地下貯蔵タンクに取り入れ冷却用として使用できる配置となっている。汚染水地下貯蔵タンクは汚染水が溜まった際にはポンプ(P)で除染タワーに汲み上げ緊急時で無い時除染作業をして除染水は再利用を行う。また地中に埋設するのは非常事態時に地中に埋設して周辺地域に放射能の拡散を防止する事にある。  The decontamination tower facility of the second embodiment is shown in FIG. 3 in the case where the nuclear power plant already built along the coast or the like adopts the present invention to add a decontamination tower in order to strengthen safety measures. ing. This is suitable when there are mountains and hills behind the reactor facility. In the case of Example 2, as in Example 1, the decontamination tower itself is excavated in the ground such as a mountain behind, and reinforced concrete is reinforced in each hole. A decontamination tower is installed in the underground to decontaminate the gas and polluted water vented to the decontamination tower so that the radioactivity does not spread to the surrounding area even in the worst case of an accident. The structure of the facility is almost the same as in Example 1, but because it is along the sea in the event of an emergency, take measures such as installing an emergency power source, a breakwater, or securing multiple power sources, assuming damage from an earthquake tsunami It is necessary to prepare a facility for storing fresh water by installing a salt removal device in consideration of the situation of using seawater in addition to securing a water source when the worst situation occurs. FIG. 4 is a plan view of FIG. 3 in which cooling water is taken from the sea through an underground channel and taken into the turbine building and the contaminated water underground storage tank to be used for cooling. When contaminated water is stored in the underground storage tank, it is pumped up to the decontamination tower by a pump (P) and decontaminated when it is not an emergency, and the decontaminated water is reused. In addition, it is buried in the ground in the event of an emergency to prevent the spread of radioactivity in the surrounding area.

実施例3の場合は実施例2のように海岸沿いの原子力発電所の背後に山間丘陵地が無い場合図5のように除染タワーを鉄筋或いは鉄骨構造のコンクリートで建設した建屋内に設置して除染作業を実施するものである。図6は配置図の平面図を示し、図7は除染タワーの構造の正面図で中央部に各除染施設を収容するタワー構造の坑道を建設して、正面図両サイド部には作業用坑道が併設されている。この場合実施例1や実施例2のように地中に建設するのでその構造は円形にする方が建設が容易であるが実施例3の場合は平地に高層階の建屋構造に建設するので図7のような構造で建設するほうが工法的にも予算的にも容易である。大きな構造物であるために費用の高騰など問題点は多いが事故が発生した場合の事を考慮すれば安全対策として克服しなければならい問題である。この場合も緊急時真水の供給が停止する事を考慮して海水の使用の必要性が発生する事も考慮して実施例2の場合と同様に図8に爪されているように除染タワー第1層の後部に塩分分離淡水が装置35を設置して緊急時用の事故対策として設置しておく事が安全対策上必要である。特段設置場所は特定されず適当の場所ならばどこでも良い。  In the case of Example 3, when there is no mountainous hilly area behind the nuclear power plant along the coast as in Example 2, the decontamination tower is installed in a building constructed with steel bars or steel structure concrete as shown in FIG. To carry out decontamination work. Fig. 6 shows a plan view of the layout plan, and Fig. 7 is a front view of the decontamination tower structure. A tower-structure tunnel that houses each decontamination facility is constructed in the center, and work is performed on both sides of the front view. There is a mine shaft. In this case, since construction is performed in the ground as in the first and second embodiments, it is easier to construct a circular structure, but in the case of the third embodiment, a high-rise building structure is constructed on a flat ground. It is easier to construct with a structure like 7 in terms of construction and budget. Although it is a large structure, there are many problems such as rising costs, but it is a problem that must be overcome as a safety measure if an accident occurs. In this case as well, the decontamination tower as shown in FIG. 8 is clawed in the same manner as in Example 2 in consideration of the necessity of using seawater in consideration of the supply of fresh water in an emergency. It is necessary for safety measures that salt separation fresh water is installed in the rear part of the first layer as a countermeasure for accidents by installing the device 35. The special installation location is not specified and any suitable location may be used.

世界的に脱原発の世論が高まる中の現状での原子力発電所の電力供給の継続は安全運転に対する不安が完全に払拭されない限り脱原発運動の減少は望めにくい、そのために本願発明による原子力発電所の建設稼動は放射能事故が発生しても発電所周辺地域への放射能拡散を防止して山中或いは除染施設内に封じ込めてしまい、放射能に汚染された発電所内の汚染水や内部空気は内部に設置されている除染装置で除染してから排出するものとするであるので外部には拡散が防止される。従来の原子力発電所で事故が発生したとして、その場合放射能性ガスが周辺地域に放出拡散すると周知のように被害地は住宅地から農地山林に始まり、農産物、海産物、畜産業界に汚染が拡大すると莫大な補償問題が発生する。場合によって数十年単位の期間その地域に居住できなくなる恐れが発生しうる。  The continued power supply of nuclear power plants under the current situation that public opinion about denuclearization is increasing globally, it is difficult to expect a decrease in nuclear power plant movement unless the concerns about safe driving are completely eliminated. Even if a radiological accident occurs, the construction operation of the plant prevents radioactive diffusion to the surrounding area of the power plant and contains it in the mountains or in the decontamination facility. Is to be discharged after being decontaminated by a decontamination device installed inside, so that diffusion to the outside is prevented. As it is well known that an accident occurred at a conventional nuclear power plant, in which case radioactive gas was released and diffused into the surrounding area, the damaged area started from residential areas to farmland forests, and pollution spread to the agricultural, marine and livestock industries. This creates enormous compensation problems. In some cases, there may be a risk of being unable to live in the area for a period of several decades.

本方式での実施例1、実施例2の発電所建設はトンネル掘削用マシンで掘削して内面は鉄筋コンクリートで補強すれば早期のトンネル掘削工事の完了が可能であるし、施設の外部に覆われる部分は岩盤であるため建設費も平地に建設するよりもむしろ安価に建設が可能と判断できる。前記したように事故時に発生する補償額を勘案すると工事額の費用問題などは対象外であると判断できる。各層の除染タワー内の各種センサー類やモニターの通信回線は中央制御室に集中統合して極力自動化を図ると共に人力で手動で操作する部分や箇所は各層へは作業坑道を通じて入坑して操作が可能となる。非常事態が発生して電源が喪失した場合でも半自動で電源回復までベントした気体や汚染水の除染作業止めることなく継続が可能である。  The construction of the power plant of Example 1 and Example 2 in this system can be completed early by excavating with a tunnel excavating machine and the inner surface is reinforced with reinforced concrete, and is covered outside the facility Because the part is rock, it can be judged that construction costs can be made at low cost rather than construction on flat ground. Considering the compensation amount generated at the time of the accident as described above, it can be determined that the cost problem of the construction amount is not covered. Various sensors and monitor communication lines in the decontamination tower of each layer are centrally integrated in the central control room to automate as much as possible, and parts and points that are manually operated manually are entered into each layer through work tunnels. Is possible. Even if the power supply is lost due to an emergency, it is possible to continue the decontamination work of the vented gas and contaminated water semi-automatically until the power supply is restored.

揚水ダム方式での本方式の原子炉及び除染施設配置図  Reactor and decontamination facility layout of this method with pumping dam method 従来方式の原発施設の配置図  Layout of conventional nuclear power plant facilities 既設海岸沿い原子力発電所及び除染施設の地中化による配置図  Layout map of existing coastal nuclear power plant and decontamination facility 既設海岸沿いの発電所除染施設地上方式配置の平面図  Plan view of ground layout of power plant decontamination facilities along existing coast 既設発電所の平地上に除染施設の建設方式  Construction method of decontamination facility on the flat ground of the existing power plant 図5の方式の配置平面図  Arrangement plan view of the method of FIG. 図5の方式の除染施設の構造図  Structure diagram of decontamination facility using the method of FIG. 除染タワー詳細図  Detailed view of decontamination tower

1 排気塔
2 上部ダム
3 除染水取り入れ口
4 揚水ダム水路
5 ベント排出ダクト
6 排気ダクト
7 除染タワー
8 原子炉建屋
9 格納容器
10 燃料貯蔵プール
11 タービン建屋
12 腹水器
13 タービン
14 中央制御室
15 下部ダム
16 揚水発電機
17 汚染水排出管路
18 冷却水管路
19 地下汚染水貯留槽
20 汚染水汲み上げポンプ
21 作業用坑道
22 第1層
23 第2層
24 第10層
25 原子炉建屋遂道
26 地下汚染水貯留槽
27 工事作業用坑道
28 冷却水管路
29 海
30 防波堤
31 第5層
32 除染水汲み上げ管路
33 第1層
34 浄化装置配置室
35 塩分分離淡水化装置配置室
36 第2層
37 第3層
38 排出ダクト遮蔽水貯留槽
39 排出ダクト遮蔽水放出バルブ
40 第4層
41 除染水配管
42 第5層
43 除染水配管支持具
44 除染水散水配管閉鎖バルブ
45 第6層、第5層連絡管閉鎖バルブ
46 第6層排出ガス取り込み口
47 排気ダクト閉鎖用水上部液面
48 第6層
49 気泡放出配管
50 第7層
51 汚染水除染処理室
52 第8層
53 第9層
54 汚染水汲み上げ配管
55 第10層
56 除染水排出バルブ
57 ガス除染フィルター室
58 第5層気体排出口
59 第6層ガス排出バルブ
60 散水配管
61 第6層ガス排出管
62 除染ガス放出管
63 排出ダクト遮蔽フロートバルブ
64 汚染水放出バルブ
65 油分分離装置
66 凝集沈殿装置
67 除染循環水放出バルブ
DESCRIPTION OF SYMBOLS 1 Exhaust tower 2 Upper dam 3 Decontamination water intake 4 Pumping dam waterway 5 Vent discharge duct 6 Exhaust duct 7 Decontamination tower 8 Reactor building 9 Containment vessel 10 Fuel storage pool 11 Turbine building 12 Astrocharger 13 Turbine 14 Central control room 15 Lower dam 16 Pumped-storage generator 17 Contaminated water discharge line 18 Cooling water line 19 Underground contaminated water storage tank 20 Contaminated water pump 21 Work tunnel 22 1st layer 23 2nd layer 24 10th layer 25 Reactor building final road 26 Underground contaminated water storage tank 27 Construction work tunnel 28 Cooling water conduit 29 Sea 30 Breakwater 31 Fifth layer 32 Decontaminated water pumping conduit 33 First layer 34 Purification device placement chamber 35 Salt separation and desalination device placement chamber 36 Second Layer 37 Third layer 38 Discharge duct shielding water storage tank 39 Discharge duct shielding water discharge valve 40 Fourth layer 41 Decontamination water pipe 42 Fifth layer 43 Decontamination water pipe support 4 4 Decontamination water sprinkling pipe closing valve 45 6th layer, 5th layer connecting pipe closing valve 46 6th layer exhaust gas intake port 47 Exhaust duct closing water upper liquid level 48 6th layer 49 Bubble discharge pipe 50 7th layer 51 Contamination Water decontamination treatment chamber 52 8th layer 53 9th layer 54 Contaminated water pumping pipe 55 10th layer 56 Decontamination water discharge valve 57 Gas decontamination filter chamber 58 5th layer gas discharge port 59 6th layer gas discharge valve 60 Water spray Piping 61 Sixth layer gas discharge pipe 62 Decontamination gas discharge pipe 63 Discharge duct shielding float valve 64 Contaminated water discharge valve 65 Oil content separation device 66 Coagulation sedimentation device 67 Decontamination circulation water discharge valve

上記問題を解決するために本願発明は事故で原子炉が高圧になり、爆発する危険性が増大してベントを実施した際に排出した放射能を含む蒸気や気体を隔壁気密構造にした大型の閉鎖貯留用空洞トンネルに外気に触れることなく、管路で送気して閉鎖後貯留用トンネル内で上部に設置した配管から散水シャワーによる除染、散水した水を蓄積して残留した気体を圧縮して下部の水トンネルに導きトンネル下部の管路から気泡として放出して再度除染水に放射能を含む気体を水に接触させ、水に放射能を移す事により気体の除染を行う。低レベルになった気体は更に次の上部トンネルに移動して気体に含まれる残留放射能を吸着性の良い化学物質で出来た多層構造の各フィルターに気体を通過させて放射能の除染行う。各フィルターを通過した気体は更に粘土質の放射能の吸着の良い粘土質土壌で作成したフィルターに通過させて除染を行い安全なレベルに放射能を低減する。この際、放射能除去フィルターはヨウ素、セシウム134、セシウム137、ストロンチューム、プルトニューム等の放射能物質を除染する各フィルターを個別に設置しそれぞれに通過除染を行うものである。それぞれのフィルターには最適な吸着物質を使用した専門メーカーの製品を使用するので常にその時代の最先端の効率の良い製品が選別して使用する事が可能となる。In order to solve the above problems, the present invention has a large-sized structure in which a vapor or gas containing radioactivity discharged when a vent is carried out due to an accident that causes a high pressure in the reactor and an explosion is carried out, and a vent is sealed. Without touching the outside air to the closed storage hollow tunnel, air is sent through the pipeline, and after closing, decontamination with a water spray shower from the pipe installed in the upper part of the storage tunnel, and the remaining gas is compressed by accumulating the sprayed water. Then, the gas is decontaminated by being led to the lower water tunnel , discharged as bubbles from the pipeline at the lower part of the tunnel , brought into contact with water again with a gas containing radioactivity in the decontamination water, and transferred to the water. The low-level gas is further moved to the next upper tunnel, and the residual radioactivity contained in the gas is passed through each multi-layer filter made of a highly adsorbable chemical substance to decontaminate the radioactivity. . The gas that passes through each filter is further passed through a filter made of clay soil with good adsorption of clay radioactivity, and decontaminated to reduce the radioactivity to a safe level. At this time, the radioactivity removal filter is a filter for individually decontaminating radioactive substances such as iodine, cesium 134, cesium 137, strontium, and plutonium, and performs decontamination for each. Each filter uses a product of a specialized manufacturer that uses the most suitable adsorbent, so it is always possible to select and use the most advanced and efficient products of the time.

次に原子炉建屋、タービン建屋内に溜まった汚染水も一端地下の貯留槽に一時貯留して置き除染層の除染作業が停止しているときにポンプで地下から上層のの滞留水除染用貯留槽のトンネルに送水して薬液注入後、放射性物質能の除染、油成分の除去、海水が含まれる場合は塩分の除去、有機成分が含まれる場合はその除去作業等を行い、外部に排出しないで再度循環水として発電所内で燃料貯蔵プールの冷却水や循環水として利用可能な設計となっている。Next, once the contaminated water collected in the reactor building and turbine building is temporarily stored in the underground storage tank, and the decontamination work of the decontamination layer is stopped, the remaining water from the basement is removed from the basement by a pump. After sending water to the tunnel of the dyeing storage tank and injecting chemicals, decontamination of radioactive material ability, removal of oil components, removal of salt when seawater is contained, removal work when organic components are contained, etc. It is designed to be used as cooling water or circulating water for the fuel storage pool in the power plant as circulating water again without being discharged to the outside.

地震等で原子炉に制御棒が投入され核反応が停止しても腹水器の冷却水の循環や燃料プールへの冷却水は継続して注水しなければならず停止することは出来ない。仮に全電源喪失する事態が発生しても冷却や注水は継続する対策として本願発明に於いては冷却水用貯留トンネルが格納容器よりも高い位置にあるので重力の作用で格納容器や燃料貯蔵プール内の水が蒸発しても不足分はタンクより重力の作用で補充されようになっており、メルトダウンの心配は払拭されるので福島第一原発の事故のようなことは起こらない。仮に電源が喪失したとしても貯蔵されている水量と蒸発する水量には時間的余裕があるのでその間に電源の復旧が行える時間が確保されて外部電源や非常用電源の回復作業が行える。Even if a control rod is inserted into the reactor due to an earthquake or the like and the nuclear reaction stops, the circulation of the cooling water in the ascites and the cooling water to the fuel pool must be continuously poured and cannot be stopped. As a measure for continuing cooling and water injection even if the entire power supply is lost, the storage tunnel for cooling water is located higher than the containment vessel in the present invention. Even if the water in the tank evaporates, the shortage will be replenished by the action of gravity from the tank, and the fear of meltdown will be dispelled, so there will be no such thing as the accident at the Fukushima Daiichi nuclear power plant. Even if the power supply is lost, the amount of water stored and the amount of water to be evaporated have a time margin, so that a time for recovering the power supply is secured during that time, and the external power supply and the emergency power supply can be restored.

これから新規に原子力発電所を建設する場合、本願発明の実施例としてはその最適地として向いているのは揚水発電所である。揚水発電所に原子力発電所を併設することである。その最大の要因はは非常時の原子力発電所内の電源の確保が容易である。非常時外部電源が停止しても揚水発電所で発電した電力は常時原子力発電所内で使用できるからである。非常時外部電源の停止、非常用自家発電の停止等重複した事故が発生しても揚水発電所においては上部ダムから下部ダムへの放水による発電が可能であるので容易に発電して電力の供給が可能となる。普段は原子力発電所の夜間の余剰電力を利用して下部ダムから上部ダムへの揚水作業を行い上部ダムにいつも水力を蓄積して発電可能な体制が確立しておけるので安全対策としては最適である。更に原子力発電所の発電が停止して冷却機能が作動しなくなっても上部ダムの水で強制的に格納容器や圧力容器の冷却燃料貯蔵プールの冷却水を注入を続けられる事が上げられる。このように冷却水の確保、電源の確保等が容易である。In the case of constructing a new nuclear power plant from now on, a pumped-storage power plant is suitable as an optimum place as an embodiment of the present invention. A nuclear power plant is added to the pumped storage power plant. The biggest factor is that it is easy to secure power in the nuclear power plant in the event of an emergency. This is because the electric power generated at the pumped storage power plant can always be used in the nuclear power plant even if the external power supply is stopped in an emergency. Even in the event of repeated accidents, such as an emergency external power supply stop or emergency private power generation stoppage, the pumped-storage power station can generate power by discharging water from the upper dam to the lower dam, so it can easily generate power and supply power. Is possible. Normally, the surplus power at night of the nuclear power plant is used to pump water from the lower dam to the upper dam, and a system that can always generate hydraulic power by accumulating hydraulic power in the upper dam can be established. is there. Furthermore, even if the power generation of the nuclear power plant is stopped and the cooling function is not activated, it is possible to continue to inject cooling water of the containment vessel and pressure vessel and cooling water of the fuel storage pool with the water of the upper dam. In this way, it is easy to ensure cooling water, ensure power supply, and the like.

ベントして排出されたガスは第6層、第5層に閉じ込められた状態でこのガスに含まれる放射能は除染水で散水による水除染作業を行う。水除染は第3層37に貯留されている除染水を除染水排出バルブ56を開弁して散水配管60を通じて5層と第6層の天井部に配管支持具43で多数吊り下げられた状態で配置された配管下部の細部の穴からシャワー状態で散水して層内のガスに含まれる放射能を散水除染する。除染水排出バルブ56の開弁は排出バルブ遮蔽フロートバルブ63の閉弁動作と連動して行うものである。第5層と第6層に散水を始めた除染水は第6層の下部に蓄積していくが、開始時は第6層48の点線47で表示されている水面位置であるが散水配管60により散水により層内の水位が上昇していく事によりガスが層内上部に圧縮される事により第6層トンネルにあった気体は第5層に押し上げられていく。散水作業の継続により第6層の最上部まで水に満たされると第6層上部のフロートバルブ45が動作して第6層と第5層が遮断される。そして散水配管44も第6層と第5層の連結部分である散水配管バルブ44が閉じて第6層の散水作業は終了する。第5層42の散水配管60の散水作業は引き続き継続して行われる。第5層も除染水の水位の上昇は続く、それにより気体の圧力は高まり気体排出口58から排出される気体は除染ガス放出管62を通じて第6層の水面下部に敷設してある管の上部の小さな穴から気泡として第6層に溜まっている除染水中に放出されて更に気泡中の放射能は除染水に取り込まれる事により放出ガスの放射能は更に低減していく。第6層に気泡として放出した気体分は上昇しても第5層には前記した弁45の閉鎖により第5層には排出されずに第6層の上部にあるガス吸い込み口46から吸い込まれ、第4層に排出することになる。第6層ガス排出管61は第4層のフィルター室に連結されている。この連結口のバルブは前記した第6層が満水時に作用したフロートバルブの作用で第6層ガス排出バルブ59は開弁して第4層と通気状態になる。そのため第6層の気体はフィルター室に自動的に流れていく。第5層と第6層で2度にわたる水による除染工程を行い、放射能が低減した気体は第4層40にて放射能除去フィルターを通過させて更に除染作業を行う。The gas discharged by venting is confined in the sixth layer and the fifth layer, and the radioactivity contained in this gas is subjected to water decontamination work by sprinkling with decontaminated water. In water decontamination, a large number of decontamination water stored in the third layer 37 is suspended by the pipe support 43 on the ceiling of the fifth and sixth layers through the sprinkling pipe 60 by opening the decontamination water discharge valve 56. Sprinkle decontamination of the radioactivity contained in the gas in the bed by sprinkling water in the shower state from the hole in the lower part of the pipe placed in the state where it is placed. The decontamination water discharge valve 56 is opened in conjunction with the closing operation of the discharge valve shielding float valve 63. The decontaminated water that has started to sprinkle the 5th and 6th layers accumulates in the lower part of the 6th layer, but at the start, the water surface position indicated by the dotted line 47 of the 6th layer 48 is sprinkled. 60 by the gas the gas by the water level in the layer rises had more sixth layer tunnel that is compressed in the upper layer by sprinkling is gradually pushed up to the fifth layer. When the water is filled up to the top of the sixth layer by continuing the watering operation, the float valve 45 at the top of the sixth layer operates to shut off the sixth layer and the fifth layer. And the sprinkling pipe 44 which is a connection part of the 6th layer and the 5th layer also closes the watering pipe 44, and the 6th layer sprinkling work is completed. The water sprinkling work of the water sprinkling pipe 60 of the fifth layer 42 is continuously performed. In the fifth layer, the water level of the decontamination water continues to rise, whereby the gas pressure increases and the gas discharged from the gas discharge port 58 passes through the decontamination gas discharge pipe 62 and is laid under the water surface of the sixth layer. The radioactivity in the bubbles is further reduced by being released into the decontamination water accumulated in the sixth layer as bubbles from the small hole in the upper part of the gas, and further, the radioactivity in the bubbles is taken into the decontamination water. Even if the amount of gas released as bubbles in the sixth layer rises, the fifth layer is sucked from the gas suction port 46 at the top of the sixth layer without being discharged to the fifth layer by closing the valve 45 described above. , Will be discharged to the fourth layer. The sixth layer gas exhaust pipe 61 is connected to the fourth layer filter chamber. The valve at this connection port opens the sixth layer gas discharge valve 59 by the action of the float valve that is activated when the sixth layer is full of water, and is in a state of ventilation with the fourth layer. Therefore, the gas in the sixth layer automatically flows into the filter chamber. The decontamination process with water twice in the fifth layer and the sixth layer is performed, and the gas whose radioactivity is reduced passes through the radioactivity removal filter in the fourth layer 40 and further decontamination work is performed.

実施例3の場合は実施例2のように海岸沿いの原子力発電所の背後に山間丘陵地が無い場合図5のように除染タワーを鉄筋或いは鉄骨構造のコンクリートで建設した建屋内に設置して除染作業を実施するものである。図6は配置図の平面図を示し、図7は除染タワーの構造の正面図で中央部に各除染施設を収容するタワー構造の坑道を建設して、正面図両サイド部には作業用坑道が併設されている。この場合実施例1や実施例2のように地中に建設するのでその構造は円形にする方が建設が容易であるが実施例3の場合は平地に高層階の建屋構造に建設するので図7のような構造で建設するほうが工法的にも予算的にも容易である。大きな構造物であるために費用の高騰など問題点は多いが事故が発生した場合の事を考慮すれば安全対策として克服しなければならい問題である。この場合も緊急時真水の供給が停止する事を考慮して海水の使用の必要性が発生する事も考慮して実施例2の場合と同様に図8に示されているように除染タワー第1層の後部に塩分分離淡水が装置35を設置して緊急時用の事故対策として設置しておく事が安全対策上必要である。特段設置場所は特定されず適当の場所ならばどこでも良い。In the case of Example 3, when there is no mountainous hilly area behind the nuclear power plant along the coast as in Example 2, the decontamination tower is installed in a building constructed with steel bars or steel structure concrete as shown in FIG. To carry out decontamination work. Fig. 6 shows a plan view of the layout plan, and Fig. 7 is a front view of the decontamination tower structure. A tower-structure tunnel that houses each decontamination facility is constructed in the center, and work is performed on both sides of the front view. There is a mine shaft. In this case, since construction is performed in the ground as in the first and second embodiments, it is easier to construct a circular structure, but in the case of the third embodiment, a high-rise building structure is constructed on a flat ground. It is easier to construct with a structure like 7 in terms of construction and budget. Although it is a large structure, there are many problems such as rising costs, but it is a problem that must be overcome as a safety measure if an accident occurs. In this case as well, the decontamination tower as shown in FIG. 8 is used in the same manner as in Example 2 in consideration of the necessity of using seawater in consideration of the supply of fresh water in an emergency. It is necessary for safety measures that salt separation fresh water is installed in the rear part of the first layer as a countermeasure for accidents by installing the device 35. The special installation location is not specified and any suitable location may be used.

地震等で原子炉に制御棒が投入され核反応が停止しても復水器の冷却水の循環や燃料プールへの冷却水は継続して注水しなければならず停止することは出来ない。仮に全電源喪失する事態が発生しても冷却や注水は継続する対策として本願発明に於いては冷却水用貯留トンネルが格納容器よりも高い位置にあるので重力の作用で格納容器や燃料貯蔵プール内の水が蒸発しても不足分はタンクより重力の作用で補充されようになっており、メルトダウンの心配は払拭されるので福島第一原発の事故のようなことは起こらない。仮に電源が喪失したとしても貯蔵されている水量と蒸発する水量には時間的余裕があるのでその間に電源の復旧が行える時間が確保されて外部電源や非常用電源の回復作業が行える。Even if a control rod is inserted into the reactor due to an earthquake or the like and the nuclear reaction stops , the cooling water circulation of the condenser and the cooling water to the fuel pool must be continuously poured and cannot be stopped. As a measure for continuing cooling and water injection even if the entire power supply is lost, the storage tunnel for cooling water is located higher than the containment vessel in the present invention. Even if the water in the tank evaporates, the shortage will be replenished by the action of gravity from the tank, and the fear of meltdown will be dispelled, so there will be no such thing as the accident at the Fukushima Daiichi nuclear power plant. Even if the power supply is lost, the amount of water stored and the amount of water to be evaporated have a time margin, so that a time for recovering the power supply is secured during that time, and the external power supply and the emergency power supply can be restored.

すべての原子力発電所がそうであるように本システムの原子力発電施設も事故のない安定運転が最大目的であり、将来的に事故が仮に発生しても安全に人的被害や放射能汚染の発生を防止することを目的とするもので、周辺地域への放射能汚染の被害を防止するものである。今後も人類が文明的で快適な生活を継続するには現状においてまだ自然エネルギーや再生エネルギーのみでは技術的に電力需要を満たすことには無理がある。それを補うにはやはり将来的には当面原子力発電に頼ららずを得ない。将来もっと安全なエネルギー技術が開発されれば原子力発電を廃止することも考えられるがCO2削減からも原状では原子力発電を継続せざるを得ないのが実情である。また本願特許は沸騰型原子炉にも加圧水型原子炉にも対応するのですでに建設稼動している原子炉に本願システムを増設して外部に放射能の放出を阻止できるので将来的な事故時の対応として安全であると同時に原子力発電所の最大の不安要因を払拭できる最大の解決策と成り得るものである。旧来の原子力発電は安全運転を前提とした目標の元に事故対策に対する安全策を基本にした多重的なシステムを重点的に配備する事を目的としているように見える。福島第一原発の事故のようによく想定外という表現耳にしたがその想定外の事故に対する対策を講じてこなかった事が莫大な損害事故発生になった言えるのではないだろうか。そのため本願発明のように建設費が多額になっても転ばぬ先の杖でこれからの原子力発電所には絶対必要な施設と言える物である。As with all nuclear power plants, the main purpose of the nuclear power generation facilities of this system is to ensure stable operation without accidents, and even if accidents occur in the future, human damage and radioactive contamination will occur safely. The purpose is to prevent radiation damage to the surrounding area. In the future, it is still impossible for human beings to continue to live a civilized and comfortable life by technically satisfying the demand for electric power using only natural energy and renewable energy. In order to make up for this, it will be necessary to rely on nuclear power for the time being. If safer energy technology is developed in the future, nuclear power generation may be abolished, but in reality, nuclear power generation must be continued from the CO2 reduction. In addition, since this patent is applicable to both boiling and pressurized water reactors, it is possible to prevent the release of radioactivity outside by adding this system to a reactor that is already under construction. It can be safe as a response, and at the same time be the biggest solution that can eliminate the biggest anxiety factors of nuclear power plants. It seems that the traditional nuclear power generation is aimed at intensively deploying multiple systems based on safety measures for accident countermeasures based on the goal of safe operation. Fukushima was heard well represented that unexpected as in the first nuclear power plant accident or will not be said that it had not taken measures against the unexpected accident has become enormous damage accident. Therefore, it can be said that it is an absolutely necessary facility for future nuclear power plants with the cane that does not fall even if the construction cost becomes large as in the present invention.

図1のように原子炉本体である格納容器9は図2の大型の遂道25の内部に建設されタービン13と復水器12が格納容器と繋がり、下部ダム15と冷却水用の冷却水管路18と復水器12、更に地下汚染水貯留槽19とも繋がっている。図1の上部ダム2の水を除染タワー最上部の第1層トンネルの除染水取り入れ口3に接続して循環処理水として図8の第1層トンネル33に貯めて浄化装置34を通過後第2層トンネル36、第3層トンネル37に貯留される。図1に戻って原子炉格納容器9と除染タワー7はベントした際の排気ダクト5により図8の除染タワーの第6層トンネル48と接続される。更に図1に於いて上部ダムと下部ダムは用水発電用の水路4が設置され昼間は必要時発電を行い、夜間は余剰電力を使用して揚水ポンプ16として下部ダムの水を上部ダムに汲み上げ昼間の活用に利用される。原子炉やタービン13及び復水器12からの漏洩した水や滞留水は地下汚染水貯留槽19に貯留後、非常時以外の通常時に地下汚染水貯留槽のポンプで汚染水汲み上げ配管54を通して図8の第7層トンネル50にくみ上げて油分分離装置65、凝集沈殿装置66を通してつぎの複数ある各除染室51に流して除染作業を行うものである。更に図1の原子炉建屋8とタービン建屋内11の空気も放射能濃度を測定して必要が生じた場合は送風機で第4層トンネル40に送気してフィルター除染を行うことも可能である。もちろん非常時の外部電力の送電施設や非常用発電装置、非常用蓄電池等の施設も配備して多重化して、多角的な電源の確保も完備されるものである。As shown in FIG. 1, the containment vessel 9 which is the main body of the nuclear reactor is constructed in the large end 25 of FIG. 2, the turbine 13 and the condenser 12 are connected to the containment vessel, the lower dam 15 and the cooling water pipe for cooling water. It is also connected to the path 18 and the condenser 12 and further to the underground contaminated water storage tank 19. The water in the upper dam 2 in FIG. 1 is connected to the decontamination water intake 3 of the first layer tunnel at the top of the decontamination tower, and is stored in the first layer tunnel 33 in FIG. After that, it is stored in the second layer tunnel 36 and the third layer tunnel 37. Returning to FIG. 1, the reactor containment vessel 9 and the decontamination tower 7 are connected to the sixth layer tunnel 48 of the decontamination tower of FIG. 8 by the exhaust duct 5 when vented. Further, in FIG. 1, the upper dam and the lower dam are provided with a water channel 4 for irrigation power generation, generating electricity when needed during the daytime, and using the surplus power at night to pump the water from the lower dam to the upper dam. Used for daytime use. The leaked water and accumulated water from the nuclear reactor, turbine 13 and condenser 12 are stored in the underground contaminated water storage tank 19 and then pumped through the contaminated water pumping pipe 54 by a pump of the underground contaminated water storage tank at a normal time other than emergency. The decontamination work is performed by pumping up to the seventh seventh layer tunnel 50 and flowing through the oil separation device 65 and the coagulation sedimentation device 66 to the next plurality of decontamination chambers 51. Further, if the air concentration in the reactor building 8 and the turbine building 11 shown in FIG. 1 needs to be measured by measuring the radioactivity concentration, it can be sent to the fourth-layer tunnel 40 by a blower to perform filter decontamination. is there. Of course, facilities such as power transmission facilities for emergency external power, emergency power generators, emergency storage batteries, etc. are also deployed and multiplexed to ensure a diversified power source.

図2は山腹に掘削される各遂道の正面図で各遂道が図のように山腹に配置され、必要時以外はハッチで閉鎖され外部とは完全に遮断される。除染施設となるタワー構造の各施設の配置は図1の側面図では10段になる構造で設計されているが発電所の発電能力等により構造は自由に設計されるものであり別段特定するものでなく必要な施設が配置されていいればよい。除染タワーの概要は図8に示すように最上部の第1層トンネルの貯留槽の除染水取り入れ口3に上部ダム2から除染用冷却処理水が取り込まれ浄化装置34を通過して第2層トンネル36と第3層トンネル37が貯留槽として利用される。第5層トンネル42と第6層トンネル48は非常時にベントされた際のガスをここに原子炉から排出ダクト5により誘導してこの中に入れられる。ベント排出したガスは高温高圧のため自然に流れ込む事になる。第5層内に取り付けられている圧力センサーと温度センサーと排出ダクト5内の圧力センサー及び温度センサーが(図示されていない)が一定の数値に安定したら排出ダクト遮蔽水放出バルブ39が開弁して、排出ダクト遮蔽水貯留槽38内部の水が弁の下部の配管を通して第6層に放出する。この水が排出ダクト遮蔽用水位液面47の図で示された点線部分の水位に達すると排出ダクト5と第6層トンネルは水で遮断され通気不能の状態となる。この時図8の排出ダクト遮蔽フロートバルブ63は第6層トンネル入口とダクト部分を閉鎖して通気出来ない状態にする。FIG. 2 is a front view of each end road excavated on the hillside. Each end road is arranged on the hillside as shown in the figure, and is closed by a hatch and completely cut off from the outside except when necessary. In the side view of FIG. 1, the layout of each facility of the tower structure that is a decontamination facility is designed with a structure of 10 stages, but the structure is freely designed according to the power generation capacity of the power plant, etc. and is specified separately. It is sufficient if necessary facilities are arranged instead of things. The outline of the decontamination tower is as shown in FIG. 8. Cooling water for decontamination is taken from the upper dam 2 into the decontamination water intake 3 of the storage tank of the uppermost first layer tunnel , and passes through the purification device 34. The second layer tunnel 36 and the third layer tunnel 37 are used as storage tanks. The fifth-layer tunnel 42 and the sixth-layer tunnel 48 are guided into the gas when vented in an emergency from the nuclear reactor through the discharge duct 5. The vented gas flows naturally because of high temperature and pressure. When the pressure sensor and temperature sensor mounted in the fifth layer and the pressure sensor and temperature sensor in the discharge duct 5 (not shown) are stabilized at a certain value, the discharge duct shielding water discharge valve 39 is opened. Thus, the water inside the discharge duct shielding water storage tank 38 is discharged to the sixth layer through the piping below the valve. When this water reaches the water level of the dotted line portion shown in the drawing of the water level liquid level 47 for shielding the discharge duct, the discharge duct 5 and the sixth layer tunnel are blocked with water and cannot be vented. At this time, the discharge duct shielding float valve 63 shown in FIG. 8 closes the sixth-layer tunnel entrance and the duct portion so as not to allow ventilation.

ベントして排出されたガスは第6層トンネル第5層トンネルに閉じ込められた状態でこのガスに含まれる放射能は除染水で散水による水除染作業を行う。水除染は第3層トンネル37に貯留されている除染水を除染水排出バルブ56を開弁して散水配管60を通じて5層トンネル第6層トンネルの天井部に配管支持具43で多数吊り下げられた状態で配置された配管下部の細部の穴からシャワー状態で散水して層内のガスに含まれる放射能を散水除染する。除染水排出バルブ56の開弁は排出バルブ遮蔽フロートバルブ63の閉弁動作と連動して行うものである。第5層トンネル第6層トンネルに散水を始めた除染水は第6層トンネルの下部に蓄積していくが、開始時は第6層トンネル48の点線47で表示されている水面位置であるが散水配管60により散水により層内の水位が上昇していく事によりガスが層内上部に圧縮される事により第6層トンネルにあった気体は第5層トンネルに押し上げられていく。散水作業の継続により第6層トンネルの最上部まで水に満たされると第6層トンネル上部のフロートバルブ45が動作して第6層トンネル第5層トンネルが遮断される。そして散水配管44も第6層トンネル第5層トンネルの連結部分である散水配管バルブ44が閉じて第6層トンネルの散水作業は終了する。第5層トンネル42の散水配管60の散水作業は引き続き継続して行われる。第5層トンネルも除染水の水位の上昇は続く、それにより気体の圧力は高まり気体排出口58から排出される気体は除染ガス放出管62を通じて第6層トンネルの水面下部に敷設してある管の上部の小さな穴から気泡として第6層トンネルに溜まっている除染水中に放出されて更に気泡中の放射能は除染水に取り込まれる事により放出ガスの放射能は更に低減していく。第6層トンネルに気泡として放出した気体分は上昇しても第5層トンネルには前記した弁45の閉鎖により第5層トンネルには排出されずに第6層トンネルの上部にあるガス吸い込み口46から吸い込まれ、第4層トンネルに排出することになる。第6層ガス排出管61は第4トンネルのフィルター室に連結されている。この連結口のバルブは前記した第6層トンネルが満水時に作用したフロートバルブの作用で第6層ガス排出バルブ59は開弁し第4層トンネルと通気状態になる。そのため第6層トンネルの気体はフィルター室に自動的に流れていく。第5層トンネル第6層トンネルで2度にわたる水による除染工程を行い、放射能が低減した気体は第4層トンネル40にて放射能除去フィルターを通過させて更に除染作業を行う。The gas discharged by venting is confined in the sixth-layer tunnel and the fifth-layer tunnel, and the radioactivity contained in this gas is subjected to water decontamination work by sprinkling with decontaminated water. In the water decontamination, the decontaminated water stored in the third layer tunnel 37 is opened with the decontamination water discharge valve 56 and the sprinkling pipe 60 is connected to the ceiling of the fifth layer tunnel and the sixth layer tunnel by the pipe support 43. Sprinkle decontamination of the radioactivity contained in the gas in the bed by sprinkling water in the shower from the detail holes at the bottom of the pipes arranged in a suspended state. The decontamination water discharge valve 56 is opened in conjunction with the closing operation of the discharge valve shielding float valve 63. The decontaminated water that has started to sprinkle in the 5th and 6th layer tunnels accumulates in the lower part of the 6th layer tunnel. At the start, the decontaminated water is at the water surface position indicated by the dotted line 47 of the 6th layer tunnel 48. there is gas gas by the water level in the layer rises by sprinkling had more sixth layer tunnel that is compressed in the upper layer by sprinkling pipe 60 is gradually pushed fifth layer tunnel. When water is filled up to the top of the sixth layer tunnel by continuing the watering operation, the float valve 45 above the sixth layer tunnel operates to shut off the sixth layer tunnel and the fifth layer tunnel . Then, the sprinkling pipe 44 is also connected to the sixth-layer tunnel and the fifth-layer tunnel , and the sprinkling work of the sixth-layer tunnel is completed. The water sprinkling work of the water sprinkling pipe 60 of the fifth layer tunnel 42 is continuously performed. In the fifth layer tunnel, the water level of the decontamination water continues to rise, so that the gas pressure increases and the gas discharged from the gas outlet 58 is laid under the surface of the sixth layer tunnel through the decontamination gas discharge pipe 62 . From the small hole in the upper part of a certain pipe, it is released into the decontamination water accumulated in the 6th layer tunnel as a bubble, and the radioactivity in the bubble is further taken into the decontamination water. Go. Even if the amount of gas released into the sixth layer tunnel as bubbles rises, the fifth layer tunnel is not discharged into the fifth layer tunnel by closing the valve 45 described above, but the gas suction port located above the sixth layer tunnel. It is sucked in from 46 and discharged to the fourth layer tunnel . The sixth layer gas discharge pipe 61 is connected to the filter chamber of the fourth tunnel . The valve at the connection port opens the sixth layer gas discharge valve 59 by the action of the float valve that is activated when the sixth layer tunnel is full of water, and enters the fourth layer tunnel in a vented state. Therefore, the gas in the sixth layer tunnel automatically flows into the filter chamber. The decontamination process with water is performed twice in the fifth-layer tunnel and the sixth-layer tunnel , and the gas with reduced radioactivity is further decontaminated by passing through the radioactivity removal filter in the fourth-layer tunnel 40.

第4層トンネルのフィルター室は図8では5室設けられており、各室にはヨウ素、セシウム134、セシウム137、ストロンチューム、プルトニューム等と吸着の良い化学物質により作成された各フィルターが必要枚数が各フィルター室内に設置されており第6層ガス排出管61を通じて入ってきた気体分はフィルターに通過接触させて除染を行う。フィルター室の最終除染には放射能の吸着の良い土壌をフィルターとして通過させて除染を行う。このようにベントで排出した気体は水による2回の除染工程更にフィルター層を通過して除染作業を繰り返し安全な放射能レベルに低減するものであり、多くのフィルター層通過させ安全性を最大限確保する多重システムになっている。安全なレベルまで放射能の低下を確認して原子炉建屋等の内部に循環して再使用されるが一部排気塔1からも排出する場合もある。第5層トンネル第6層トンネルの放射能で汚染した除染水は気体分の除染作業の終了後第6層の下部にある汚染水放出バルブ64を開弁して第7層トンネル47に汚染水が流し込まれる事になる。 In FIG. 8, there are five filter chambers in the fourth-layer tunnel , and each chamber requires a filter made of chemicals with good adsorption, such as iodine, cesium 134, cesium 137, strontium, and plutonium. The number of gas is set in each filter chamber, and the gas component that has entered through the sixth layer gas discharge pipe 61 is passed through and contacted with the filter for decontamination. For final decontamination of the filter chamber, decontamination is performed by passing through a soil with good radioactivity adsorption as a filter. In this way, the gas exhausted at the vent is passed through two filter decontamination processes and further through the filter layer, and the decontamination work is repeated to reduce the radiation level to a safe level. It is a multiplex system to ensure the maximum. After confirming the decrease in radioactivity to a safe level, it is circulated and reused inside the reactor building or the like, but some may also be discharged from the exhaust tower 1. The decontaminated water contaminated by the radioactivity of the fifth layer tunnel and the sixth layer tunnel opens the contaminated water discharge valve 64 at the lower part of the sixth layer after the decontamination work of the gas component and opens the seventh layer tunnel 47. Contaminated water will be poured into the water.

この第7層トンネル50に油分分離装置62と凝集沈殿装置63が配置されており、汚染水はこの装置を通過して汚染水除染室51に入っていく。図8では汚染水除染室51は3室並んでおり、汚染水はそれぞれの除染室で並列して処理を行い除染効率を高めることが可能となる。
世界的に実績のあるメーカーの除染システムを多数各室に採用する事で能力の比較及び故障停止率を測り、事後対策の目安にすることの資料に出来る。常に最新の除染能力の高い除染設備を設置して効率の良い除染を行う事が可能となる。第7層トンネルで除染された水は第8層トンネルから第10層トンネルに貯留して、燃料貯蔵プールや原子炉格納容器、圧力容器の補充水や復水器等の冷却水として利用する。
The oil separation device 62 and the coagulation sedimentation device 63 are arranged in the seventh layer tunnel 50 , and the contaminated water passes through this device and enters the contaminated water decontamination chamber 51. In FIG. 8, the three contaminated water decontamination chambers 51 are arranged side by side, and the contaminated water can be processed in parallel in each decontamination chamber to increase the decontamination efficiency.
By adopting many decontamination systems from world-renowned manufacturers in each room, it is possible to compare the capacity and measure the failure stop rate, and use it as a guideline for subsequent countermeasures. It is possible to perform efficient decontamination by always installing the latest high decontamination equipment. Water decontaminated in the 7th layer tunnel is stored in the 8th layer tunnel to the 10th layer tunnel and used as cooling water for fuel storage pools, reactor containment vessels, pressure vessel refill water, condensers, etc. .

1 排気塔 2 上部ダム 3 除染水取入れ口
4 揚水ダム水路 5 ベント排出ダクト 6 排気ダクト
7 除染タワー 8 原子炉建屋 9 格納容器
10 燃料貯蔵プール 11 タービン建屋 12 復水器
13 タービン 14 中央制御室 15 下部ダム
16 揚水発電機 17 汚染水排出管路 18 冷却水管路
19 地下汚染水貯留槽 20 汚染水汲み上げポンプ 21 作業用坑道
22 第1層 23 第2層 24 第10層
25 原子炉建屋遂道 26 地下汚染水貯留槽 27 工事作業用坑道
28 冷却水管路 29 海 30 防波堤
31 第5層トンネル 32 除染水汲み上げ管路 33 第1層トンネル
34 浄化装置配置室 35 塩分分離淡水化装置配置室
36 第2層トンネル 37 第3層トンネル
38 排出ダクト遮蔽水貯留槽
39 排出ダクト遮蔽水放出バルブ
40 第4層トンネル 41 除染水配管 42 第5層トンネル
43 除染水配管支持具 44 除染水散水配管閉鎖バルブ
45 第6層、第5層連絡管閉鎖バルブ
46 第6層排出ガス取り込み口
47 排気ダクト閉鎖用水上部液面
48 第6層トンネル 49 気泡放出配管 50 第7層トンネル
51 汚染水除染処理室 52 第8層トンネル 53 第9層トンネル
54 汚染水汲み上げ配管 55 第10層トンネル 56 除染水排出バルブ
57 ガス除染フィルター室 58 第5層気体排出口 59 第6層ガス排出バルブ
60 散水配管 61 第6層ガス排出管 62 除染ガス放出管
63 排出ダクト遮蔽フロートバルブ
64 汚染水放出バルブ 65 油分分離装置 66 凝集沈殿装置
67 除染循環水放出バルブ
DESCRIPTION OF SYMBOLS 1 Exhaust tower 2 Upper dam 3 Decontamination water intake 4 Pumping dam channel 5 Vent discharge duct 6 Exhaust duct 7 Decontamination tower 8 Reactor building 9 Containment vessel 10 Fuel storage pool 11 Turbine building 12 Condenser 13 Turbine 14 Central control Chamber 15 Lower dam 16 Pumped-storage generator 17 Contaminated water discharge pipe 18 Cooling water pipe 19 Underground contaminated water storage tank 20 Contaminated water pumping pump 21 Working tunnel 22 First layer 23 Second layer 24 Tenth layer 25 Reactor building Road 26 Underground contaminated water storage tank 27 Construction tunnel 28 Cooling water pipe 29 Sea 30 Breakwater 31 Fifth layer tunnel 32 Decontaminated water pumping pipe 33 First layer tunnel 34 Purification device arrangement room 35 Salt separation and desalination equipment arrangement room 36 second layer tunnel 37 third layer tunnel 38 exhaust duct shielding water storage tank 39 the discharge duct shielding water discharge valve 40 fourth layer ton Le 41 decontaminated water pipe 42 fifth layer tunnel 43 decontaminated water pipe support 44 decontaminated water sprinkler pipe closing valve 45 the sixth layer, the fifth layer communication pipe closing valve 46 the sixth layer exhaust gas inlet port 47 exhaust duct closed Water upper liquid level 48 6th layer tunnel 49 Bubble discharge pipe 50 7th layer tunnel 51 Contaminated water decontamination processing chamber 52 8th layer tunnel 53 9th layer tunnel 54 Contaminated water pumping pipe 55 10th layer tunnel 56 Decontaminated water discharge Valve 57 Gas decontamination filter chamber 58 Fifth layer gas discharge port 59 Sixth layer gas discharge valve 60 Sprinkling pipe 61 Sixth layer gas discharge pipe 62 Decontamination gas discharge pipe 63 Discharge duct shielding float valve 64 Contaminated water discharge valve 65 Oil content Separation device 66 Coagulation sedimentation device 67 Decontamination circulation water discharge valve

Claims (1)

原子力発電所に於けるベントした排出ガスの除染システムの構造に於いて、排出ガスを格納するトンネルを上下二段に重力の作用で上段から下段に水が流れ落ちるように交互に傾斜角を持つ貯留槽を配置し、前記二段状のトンネルの一段おいて上段に前記二段のトンネルの内部を満たす容量のトンネルを2段配置して内部に放射能を除染する清水を満たし、前記二段のトンネルの下段側に原子炉格納容器から排出したガスを前記二段のトンネルに収納後、前記二段トンネルの上部トンネルに貯留している清水を前記2段トンネル内天井部に敷設した配管によりシャワー状に散水して除染作業を行う、前記二段トンネルの下段トンネル底部に散水した除染水を蓄積し、下部タンクのガスを上部タンクに圧縮貯留後下部タンクと上部タンクの連絡坑を閉鎖し、下部タンクにガスを上部タンクに圧縮蓄積したガスを配管を通じて気泡状に満水になった下部タンク底部の配管から水中から再度循環放出して、ガス内の放射能を満水状態の下部トンネルの除染水に放射能を転移させるとともに前記2段状タンクが満水状態になるまで散水して下部タンクに放出したガスを前記2段状タンクの上のタンクのフィルター除染室を複数備えるタンクに放出してガス内残留放射能をフィルター除染を行うと同時に、前記2段状タンクに満水に蓄積した汚染水は前記2段状の下部に配置したトンネルのタンクにバルブを開放して流出し、油分分離装置を通過して凝集沈殿装置を通過後、複数の除染システムを通して汚染水を低濃度に除染し、更にその下部にあるタンクに原子炉循環水として再使用するために貯留する構造をした各層トンネルが交互に傾斜角を持たせ重力により自然に降下流出する事を特徴とするタワー構造の原子力発電所内で発生した放射能を内部処理する除染システム。  In the structure of a vented exhaust gas decontamination system in a nuclear power plant, the tunnel storing the exhaust gas has an inclination angle alternately so that water flows down from the upper stage to the lower stage by the action of gravity in two upper and lower stages. A storage tank is arranged, two stages of tunnels having a capacity satisfying the inside of the two-stage tunnel are arranged on one stage of the two-stage tunnel, and the inside is filled with fresh water that decontaminates radioactivity. After the gas discharged from the reactor containment vessel is stored in the two-stage tunnel on the lower stage side of the two-stage tunnel, the fresh water stored in the upper tunnel of the two-stage tunnel is laid on the ceiling in the two-stage tunnel The decontaminated water sprayed in the shower shape is accumulated in the bottom of the lower tunnel of the two-stage tunnel, and the lower tank gas is compressed and stored in the upper tank, and then the lower tank and upper tank are connected. The gas that has been compressed and accumulated in the lower tank is circulated and discharged again from the bottom of the lower tank, which is filled with bubbles through the piping, and the radioactivity in the gas is reduced to the lower Provided with a plurality of filter decontamination chambers for the tank above the two-stage tank that transfers the radioactivity to the decontamination water of the tunnel and sprinkles water until the two-stage tank becomes full and discharges it to the lower tank. At the same time that the residual radioactivity in the gas is decontaminated by discharging into the tank, the contaminated water accumulated in the full water in the two-stage tank opens a valve in the tunnel tank located in the lower part of the two-stage. After flowing out, passing through the oil separator and passing through the coagulation sedimentation device, the contaminated water is decontaminated to a low concentration through multiple decontamination systems, and further reused as reactor circulation water in the tank below it. Decontamination systems each tunnel has a structure for storing to internal processing radioactivity generated in the nuclear power plant of the tower structure, characterized in that naturally drops outflow by gravity to have a tilt angle alternately.
JP2011239579A 2011-10-14 2011-10-14 Nuclear power plant with radioactive decontamination facility Expired - Fee Related JP4974258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239579A JP4974258B1 (en) 2011-10-14 2011-10-14 Nuclear power plant with radioactive decontamination facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239579A JP4974258B1 (en) 2011-10-14 2011-10-14 Nuclear power plant with radioactive decontamination facility

Publications (2)

Publication Number Publication Date
JP4974258B1 JP4974258B1 (en) 2012-07-11
JP2013088419A true JP2013088419A (en) 2013-05-13

Family

ID=46650196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239579A Expired - Fee Related JP4974258B1 (en) 2011-10-14 2011-10-14 Nuclear power plant with radioactive decontamination facility

Country Status (1)

Country Link
JP (1) JP4974258B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117945A (en) * 2013-12-16 2015-06-25 信吉 森元 Radioactive contaminated water treatment method and seal treatment method of reactor facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150063B1 (en) * 2007-07-18 2008-09-17 芳人 小林 Method for constructing underground structure, underground structure obtained by the method, and underground power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117945A (en) * 2013-12-16 2015-06-25 信吉 森元 Radioactive contaminated water treatment method and seal treatment method of reactor facility

Also Published As

Publication number Publication date
JP4974258B1 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2096644A2 (en) Passive cooling and depressurization system and pressurized water nuclear power plant
CN104409112B (en) Containment recirculating system
CN104464846A (en) Passive high-order emergency cooling water supply system for nuclear power plant
JP2010101144A (en) Energy supply system reusing existing underground cavity
CN104036838A (en) Moving platform type floating nuclear power plant and refueling method
EP0495103B1 (en) Atomic power generation system and its construction method
JP2012141324A (en) Seismic isolation/aseismic/tsunami-proof mechanism of nuclear power plant
CN104051037A (en) Terrace embedded type underground nuclear power station
CN105427910B (en) A kind of integrated cooling water source system based on massif deep embeded type nuclear power station
JP5775370B2 (en) Nuclear power plant installation structure
CN104064236A (en) Terrace flatly-buried type underground nuclear power station
WO2019183575A1 (en) Systems and methods for rapid establishment of offshore nuclear power platforms
JP4974258B1 (en) Nuclear power plant with radioactive decontamination facility
RU2273901C2 (en) Underground nuclear power station
US10446279B2 (en) Boiling water type nuclear power plant
CN205230606U (en) Integrated cooling water source system based on massif deeply buried type nuclear power station
CN203826015U (en) Movable platform type floating nuclear power plant
CN103397681B (en) A kind of high sediment seawater joint pump house in nuclear power plant method for arranging
JP2522703B2 (en) Nuclear power generation system and construction method thereof
CN206021917U (en) Underground nuclear power station low pressure safety injection system
JP2009180685A (en) Fuel pool makeup water system and nuclear power plant
CN204010710U (en) Under terrace, bury type underground nuclear power station
KR20130077731A (en) Module-structured marine nuclear power plant
CN109898900B (en) Nuclear reactor plant and arrangement method thereof
Yasuda et al. Measures taken at hamaoka nuclear power station for further safety

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees