JPS6266684A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6266684A
JPS6266684A JP60206951A JP20695185A JPS6266684A JP S6266684 A JPS6266684 A JP S6266684A JP 60206951 A JP60206951 A JP 60206951A JP 20695185 A JP20695185 A JP 20695185A JP S6266684 A JPS6266684 A JP S6266684A
Authority
JP
Japan
Prior art keywords
power generation
photoelectric conversion
series
generating
conversion output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60206951A
Other languages
Japanese (ja)
Other versions
JPH0528513B2 (en
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邉 金雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60206951A priority Critical patent/JPS6266684A/en
Publication of JPS6266684A publication Critical patent/JPS6266684A/en
Publication of JPH0528513B2 publication Critical patent/JPH0528513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To lead the maximum photoelectric conversion output even if the thicknesses and qualities of photoactive layers are irregular by deciding the generating areas of a plurality of generating regions electrically connected in series on the basis of the photoelectric conversion characteristic of generating region forming portions. CONSTITUTION:A monitoring generating region 5 made of a transparent photoreceiving electrode 2, a semiconductor active layer 3 and a back surface electrode 4 is formed on the entire light transmitting insulating substrate 1 without dividing. A beamlike quasi-solar light beam SB is scanned in two- dimension from the photoreceiving surface of the substrate to generate a photoelectric conversion output, which is sequentially led from electrodes 2, 4 to obtain a current distribution. The dividing width is decided to that the integrated values of the current values in the divided widths become equal. The generating regions divided by this width are connected in series to obtain the maximum photoelectric conversion output.

Description

【発明の詳細な説明】 3、発明の#P細なFa川 U) 産業上の利用分野 本発明は光照射を受Cすると起電力を発生する光層′成
力装置の製造方法(二関する。
[Detailed description of the invention] 3. Field of industrial application of the invention The present invention relates to a method for manufacturing a light layer forming device that generates an electromotive force upon receiving light irradiation (2) .

(ロ)従来の技術 所望の高起電圧を得るべく透元性絶縁基叛の・一方の主
面C;於いて支持されta叔の発電領域を電気的1;直
列接続せしめた光起電力装置tは例えば米国特許第4,
281,208号記載の如く既(;知られており、ま几
その構造は電卓、腕時計、ポナットラジオ等の小型民生
用電子機器の′iIt源として広く実用化され、最近で
は太陽光発電にも用^られつつある。
(b) Conventional technology In order to obtain a desired high electromotive voltage, a photovoltaic device in which the power generation areas supported on one main surface C of a transparent insulating substrate are electrically connected in series. t is, for example, U.S. Pat.
As described in No. 281,208, this structure has been widely used as an iIt source for small consumer electronic devices such as calculators, wristwatches, and PONAT radios, and recently it has been used for solar power generation. It is also being used.

この様な直列′接続型元起電力装[1:於いて留意しな
ければならないことは各発電領域の電流1ii1t−等
しくしなければならないことである。即ち、同一の光照
射条件の下で発生する電流値が各発電領域毎に相違する
(二も拘らず、それらを直列接続すると、出力される電
流値は最低の電流値C;規制される比め区;その電流値
以上の′1流は出力される【−至らず無効となる。そこ
で、従来から斯る電流規制≦二鑑み、各発電領・城の発
゛1面積を同一とすることにより等しい電流1直を実現
していた。
What must be kept in mind in such a series-connected source electromotive force system [1] is that the currents 1ii1t- in each power generation region must be equal. In other words, the current value generated under the same light irradiation conditions is different for each power generation area (Nevertheless, if they are connected in series, the output current value is the lowest current value C; the regulated ratio Note: A current exceeding that current value will be output [- and will be invalid.Considering that conventionally, such current regulation ≤ 2, the area of each power generation territory/castle should be made the same. This enabled one shift of equal current to be achieved.

一方、上述の如き先行技術!−開示され次元起α力装置
は、光照射を受けると電子及び又は正孔の光キャリアを
発生する光活性層としてシリコン化合物ガスのプラズマ
分解や光分解等≦:より得られる厚み11mIR後のア
モルファスシリコン系半導体を用いているために、大面
積化が図れる反面、大面積(二なればなる(−従りて、
M厚や膜質が僅かながう変動すると言う危惧を有する。
On the other hand, the prior art as mentioned above! - The disclosed dimensional α-force device has a photoactive layer that generates photocarriers of electrons and/or holes when irradiated with light, such as plasma decomposition or photodecomposition of a silicon compound gas. Since silicon-based semiconductors are used, it is possible to increase the area, but on the other hand, the area is large (2).
There is a concern that the M thickness and film quality may vary slightly.

更に;、斯るアモルファスシリコン系の半導体光活性層
は反応ガスの分解により得られる友めc;、斯る光活性
層の被看面は平坦面C;限定されることなく特開昭60
−555798公報i:開示され几如(波状の曲面を持
つ屋根瓦C二も形成することができるものの、この様な
曲面(二元活性層を均−i;形成することは橿めて難し
い。
Furthermore, such an amorphous silicon-based semiconductor photoactive layer is obtained by decomposition of a reactive gas; and the viewed surface of such a photoactive layer is a flat surface C; without limitation,
Although it is possible to form a roof tile C2 having a wavy curved surface, it is extremely difficult to form such a curved dual active layer evenly.

ところが斯る不均一な光活性層を持つ光起電力装置にあ
っても、複数の発電領域を直列受続するに際しては従来
と同様各発電領域の発電面積、即ち分割方向の@を同一
とする方法が採用されているだけで、光活性層の膜厚や
膜質の不揃いC:ついては何ら考慮されていないためC
,最高の光電変換出力を導出するに;至りていない。
However, even in a photovoltaic device having such a non-uniform photoactive layer, when connecting multiple power generation regions in series, the power generation area of each power generation region, that is, the @ in the dividing direction, should be the same as in the past. However, the uneven thickness and quality of the photoactive layer is not taken into account at all.
However, the best photoelectric conversion output has not yet been achieved.

G−9発明が解決しようとする問題点 本発明の目的は、上述の如き光活性層の膜厚や膜質の不
揃いがあっても、最高の光電変換出力を4出し得る光起
電力装置の製造方法を提供することにある。
G-9 Problems to be Solved by the Invention The purpose of the present invention is to manufacture a photovoltaic device that can output the highest photoelectric conversion output even if there are irregularities in the film thickness and film quality of the photoactive layer as described above. The purpose is to provide a method.

に)問題点を解決する九めの手段 本発明光層シカ装置の製造方法は、電気的に直列接続さ
れる複数の発電領域C二於ける各発電面積を1個別の発
電領域への分割≦二先立りて各発電領域予定箇所の元′
1を変換脣注C:基づき決定した後、個別の発電領域C
:分割してそれらを電気的ζ:直列接続することを特徴
とする。
Ninth Means for Solving the Problem The method for manufacturing the optical layer device of the present invention is to divide each power generation area in a plurality of power generation regions C2 electrically connected in series into one individual power generation region ≦ The source of each power generation area's planned location in advance
Convert 1 to Note C: After determining based on the individual power generation area C
: It is characterized by dividing them and electrically connecting them in series.

(ホ)作 用 上述の如く発電領域の各発電面積を、各発電領域予定箇
所の光電置換特性C:基づき決定することによりて、各
発電領域の出力電流値の均一化が図れる。
(E) Function As described above, by determining the power generation area of each power generation area based on the photoelectric substitution characteristic C: of the planned location of each power generation area, it is possible to equalize the output current value of each power generation area.

(へ)実 施 例 発を領域の光を置換特性の不揃いは、主として半導体光
活性層の膜厚や膜質の変動C;あることは従来の技術の
項で既区;述べ九通りである。斯る膜厚や膜質の変動は
製造装置固有の問題や微妙な形成条件≦:よりて左右さ
れるものの、概して同−筒ットで製造され九半導体元活
性層の変#lは少ない。そこで多数の半導体光活性層を
同時或いは連続的に:製造する際、発電領域の光電変換
特性の分布を測定するモニタを同時I:影形成る。
(F) Implementation As an example, the unevenness in the light displacement characteristics of the region is mainly caused by variations in the film thickness and film quality of the semiconductor photoactive layer; Although such variations in film thickness and film quality depend on problems inherent to the production equipment and delicate formation conditions, they are generally produced in the same batch and there are few variations in the active layer made of nine semiconductors. Therefore, when manufacturing a large number of semiconductor photoactive layers simultaneously or successively, a monitor for measuring the distribution of photoelectric conversion characteristics in the power generation region is simultaneously formed.

第1図は上記充電置換特性の分布を測定する測定方法を
模式的(;示すものである。第1図直二於いて、(1)
は絶縁性且つ透光性を有する基板、(2)は該基板(1
)O−4面上≦;配置され72,5noz、ITOC;
代表される送元性導電酸化*(’I’CO)からなる受
光面を極、(3)は上記受光面電極(2)の端子部分(
2t)を除いてその全面i;被看され例えば膜面に平行
なpin接会、pn接合、pinpin接合のyΩき半
導体接合を有するアモルファスシリコン系の半導体光活
性層、(4)は上記光活性層(3Jの背面に設けられた
背面電極で、斯る受光面電極(2)乃至背面電極(4)
の積層体からなるモニタ用発電領域(5)は基板(1)
のほぼ全面1;分割することなく設けられている。
Figure 1 schematically shows the measurement method for measuring the distribution of the above-mentioned charge displacement characteristics.
(2) is an insulating and translucent substrate, and (2) is the substrate (1).
) On O-4 plane ≦; placed 72,5noz, ITOC;
The light-receiving surface made of a typical transmitting conductive oxide* ('I'CO) is the pole, and (3) is the terminal portion of the light-receiving surface electrode (2) (
(4) is an amorphous silicon-based semiconductor photoactive layer having yΩ semiconductor junctions such as pin junctions, pn junctions, and pinpin junctions parallel to the film surface; layer (a back electrode provided on the back of 3J, such light-receiving surface electrode (2) to back electrode (4)
The monitor power generation area (5) consisting of a laminate of the substrate (1)
Almost the entire surface 1: Provided without division.

例えば半導体光活性層(3)が水素化アモルファスシリ
コン(a−8i:H)でありて、光入射@ρ1ら膜面i
;平行なpln接合を備えている場合、先ずシjy(S
iH4)、シシラ7(S L zHs )等のシリコン
化会物雰囲気区二p型決定不純物を含むジボラン(Bz
Ha)を少量添加し、斯る原料ガスをプラズマ分解や光
分解C:より分解して膜厚50A〜200“へ程度のp
型層を形成し、次いでIll久5if(4又はS t 
2H6ガスのみ≦:より膜厚4000〜6000A程波
の真性(ノンドープ)層と、SiH4又H81zHaガ
スt;m g決定不純物を含むホスフィン(PH3)を
添加し膜厚100A〜500A程度のn型層とを積層す
る。
For example, if the semiconductor photoactive layer (3) is hydrogenated amorphous silicon (a-8i:H), the film surface i
; When equipped with parallel pln junctions, first shi jy(S
diborane (Bz
A small amount of Ha) is added, and the raw material gas is decomposed by plasma decomposition or photodecomposition C: to a film thickness of 50A to 200".
Form a mold layer, then Illiku 5if (4 or St
2H6 gas only ≦: an intrinsic (non-doped) layer with a film thickness of about 4000 to 6000 A, and an n-type layer with a film thickness of about 100 A to 500 A by adding phosphine (PH3) containing SiH4 or H81zHa gas t; mg determined impurities. laminate them.

この様にして得られ九半導4.+元活性層(3)の膜厚
は1μm以下と肉薄であり、僅かな膜厚変動でありても
光電変換特注【:与える影響は大きい。従りて、直列接
続型光起電力装置を形成する基板と同一サイズの基板(
1)のほぼ全面C部分111JTることなく設(すられ
友モニタ用発電領域(5)≦;対し、基板(1)の受光
面側からビーム状の擬似太陽光線(SR)をM1図C;
示す如<2iX元的に走査して斯る太、1#!元M(S
R)の照射−二より発生した光電変換出力を受光面電極
(2)及び背面電極(4)から逐次導出する。
The nine semiconductors obtained in this way 4. + The film thickness of the original active layer (3) is as thin as 1 μm or less, and even a slight change in film thickness has a large effect on the photoelectric conversion custom made. Therefore, a substrate of the same size as the substrate forming the series-connected photovoltaic device (
1) Almost the entire C part 111JT is installed (passing friend monitor power generation area (5) ≦; on the other hand, a beam-shaped pseudo solar ray (SR) is applied from the light-receiving surface side of the substrate (1) M1 Figure C;
As shown in <2iX elemental scanning, such a thickness is 1#! Former M(S
The photoelectric conversion output generated from irradiation-2 of R) is sequentially derived from the light-receiving surface electrode (2) and the back electrode (4).

その結果、発wL@域の分割予定方向C;例えば第2図
に示す如き中央部分が低い電流分布が得られると、横軸
の分割幅内に於ける電流値の積分値が等しくなるよう区
二厘列段数1一応じた各分割@(W)を決定すれば、直
列接続のために発電領域を分割してもそれら発電領域の
光電変換出力は等しくなる。
As a result, if a current distribution in the planned division direction C of the emission wL@ region is obtained, for example, where the central part is low as shown in FIG. If each division @(W) is determined according to the number of stages in the two-row array (11), even if the power generation regions are divided for series connection, the photoelectric conversion outputs of the power generation regions will be equal.

尚、分割方向1:直交する方向の発電領域の長さは全て
等しい◇ 例えば上記中央部分が低くなる第2図の電流分布を持つ
モニタ用発電領域(5Jと同じロツFで製造され7tl
Oa*X10asの半導体光活性層(3)を用いて第3
図の如!!7段直列型元起電力装置を形成する場合、各
発電領域(5a)〜(5g)間g:存在する無効領域(
6Lb)〜(6gg3の無効幅(Wt)を14鰭とする
と、各発電領域(5a)〜(5g)の有効幅(W!L)
〜(Wg)は従来の等間隔監;あっては各々t4asと
なる。この時の各発電領域(5a)〜(5g)の出力電
流はJ順次、150mA、150mA、1 !1511
A、120mA1135mA、150j71A、15Q
mAとなり、一段当りの動作電圧がQ、6Vとすると、
斯る光起電力装置の総合光電変換出力は0.6VX7段
×120mA−504mWと々る。
Division direction 1: The lengths of the power generation regions in the orthogonal directions are all equal.
Using the semiconductor photoactive layer (3) of Oa*X10as, the third
As shown! ! When forming a 7-stage series type original electromotive force device, g between each power generation area (5a) to (5g): existing invalid area (
6Lb) ~ (If the effective width (Wt) of 6gg3 is 14 fins, the effective width (W!L) of each power generation area (5a) ~ (5g)
~(Wg) is a conventional equal interval monitor; otherwise, each becomes t4as. At this time, the output currents of each power generation area (5a) to (5g) are J sequentially: 150mA, 150mA, 1! 1511
A, 120mA1135mA, 150j71A, 15Q
mA, and the operating voltage per stage is Q and 6V,
The total photoelectric conversion output of such a photovoltaic device is 0.6V x 7 stages x 120mA - 504mW.

ところが本発明製造方法によれば、各発電領域(5a)
〜(5g)の予定箇所の光電変換特性が予めモニタ用発
電領域(5)cより測定され、その特性結果C;基づき
各発電領域(5a)〜(5g)の光電変換出力がほぼ等
しくなるべく分割41i (W a)〜(Wg)が例え
ばWaから順次131国、15151%146cm、 
 164cm、t46am% t31ax、t31am
と光電変換特性の低い中央部分はど幅広に設定されると
、各発電領域(51)〜(5g)の出力電流はほぼ14
0屑人となり、斯る構造の光起電力装置の総合光電変換
出力はα6vX7段x140sgA−588mWとなる
。従って、個yjIIに分割される発電領域(51〜(
5g)の発電面積、即ち分割44!(Wl〜(Wa3を
予定箇所の光電変換特性に基づき決定することC二よっ
て本実施例弧二ありては17嘴の総合光電変換出力の上
昇が見られ次。
However, according to the manufacturing method of the present invention, each power generation area (5a)
The photoelectric conversion characteristics of the planned locations of ~ (5g) are measured in advance from the monitoring power generation area (5) c, and based on the characteristic result C, the photoelectric conversion output of each power generation area (5a) ~ (5g) is divided as much as possible so that it is approximately equal. 41i (W a) to (Wg) are, for example, 131 countries sequentially from Wa, 15151% 146 cm,
164cm, t46am% t31ax, t31am
If the central part with low photoelectric conversion characteristics is set wide, the output current of each power generation area (51) to (5g) will be approximately 14
The total photovoltaic conversion output of the photovoltaic device having such a structure is α6v x 7 stages x 140sgA - 588mW. Therefore, the power generation area (51 to (
5g) power generation area, that is, division 44! (Wl~(Wa3 is determined based on the photoelectric conversion characteristics of the planned location C2) According to this example, an increase in the total photoelectric conversion output of the arc 2 and 17 beaks was observed.

尚、上記各発明領域(5a)〜(5g)の分割@(Wa
 )〜(Wa3が種々変化しても特開昭57−1256
8号公報や特開昭60−59786号公報(二開示され
たシーサスクライブ法を用いれば、斯る分割幅(Wa)
〜(Wg)の数値データを供給するだfすでそれらのパ
ターニングを容易に実現することができる。
In addition, the division of each of the above invention areas (5a) to (5g) @ (Wa
) ~ (Even if Wa3 changes variously, JP-A-57-1256
8 and Japanese Patent Application Laid-open No. 60-59786 (2), the dividing width (Wa)
By supplying numerical data of ~(Wg), such patterning can be easily realized.

(ト)発明の効果 本発明製造方法は以上の説明から明らかな如く、直列接
続される発を領域の各発電面積を、各発電領域予定箇所
の′)を電変換特性に基づき決定することC;よりて、
各発電領域の出力電流値の均一化が図れるので、半導体
光活性層の膜厚やM質の不倫があっても最高の光電変換
出力を導出することができる。特(二半導体尤活注層と
してアモルファスシリコン系の膜厚サブミクロンや数ミ
クロン8度の薄膜半導体を利用した太陽光発電用の大面
積光起電力装置C;本発発明造方法を適用しt場合!=
効果が大きく、半導体光活性層を支持する基板表面が曲
面状のと@より一層の効果を奏する。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention determines the power generation area of each region of the series-connected generators and the area of each power generation region planned based on the electric conversion characteristics. ;By the way,
Since the output current value of each power generation region can be made uniform, the highest photoelectric conversion output can be derived even if there is an irregularity in the film thickness or M quality of the semiconductor photoactive layer. Particularly (Large-area photovoltaic device C for solar power generation using an amorphous silicon-based thin film semiconductor with a film thickness of submicron or several microns 8 degrees C as the active injection layer of two semiconductors; applying the manufacturing method of the present invention) case!=
The effect is great, and the effect is even greater when the surface of the substrate supporting the semiconductor photoactive layer is curved.

【図面の簡単な説明】[Brief explanation of drawings]

8g1図は本発明の要部である光電変換特性の測定を1
5!明する九めの斜視図、第2図は斯る測定により得ら
れた#を流分布図、第6図は本発由#遣方法!二より裏
道される直列接d型元起電力装置の断面図、を夫々示し
ている。 (1)・・・基板、(3)・・・半導体光活性4、(5
)・・・モニタ用発電領域、(5a)〜(5g)・・・
発を領域。
Figure 8g1 shows the measurement of photoelectric conversion characteristics, which is the main part of the present invention.
5! The ninth perspective view to clarify, Figure 2 is a flow distribution diagram of # obtained by such measurement, and Figure 6 is the method of # distribution based on this invention! 2A and 2B respectively show cross-sectional views of a series-connected D-type source electromotive force device that is back-channeled from two sides. (1)...Substrate, (3)...Semiconductor photoactive 4, (5
)...Monitor power generation area, (5a) to (5g)...
The area of origin.

Claims (1)

【特許請求の範囲】[Claims] (1)基板の絶縁表面に複数の発電領域を配置せしめ、
それらの素子を電気的に直列接続せしめた光起電力装置
の製造方法であつて、上記発電領域の各発電面積は個別
の発電領域への分割に先立つ各発電領域予定箇所の光電
変換特性に基づき決定された後、個別の発電領域に分割
されることを特徴とした光起電力装置の製造方法。
(1) A plurality of power generation regions are arranged on the insulating surface of the substrate,
A method for manufacturing a photovoltaic device in which these elements are electrically connected in series, wherein the power generation area of each power generation area is determined based on the photoelectric conversion characteristics of each planned power generation area prior to division into individual power generation areas. A method for manufacturing a photovoltaic device, characterized in that the photovoltaic device is divided into individual power generation regions after the determination is made.
JP60206951A 1985-09-19 1985-09-19 Manufacture of photovoltaic device Granted JPS6266684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206951A JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206951A JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6266684A true JPS6266684A (en) 1987-03-26
JPH0528513B2 JPH0528513B2 (en) 1993-04-26

Family

ID=16531720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206951A Granted JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6266684A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168995U (en) * 1988-05-18 1989-11-29
JPH036848U (en) * 1989-06-05 1991-01-23
WO2007004501A1 (en) * 2005-07-01 2007-01-11 Honda Motor Co., Ltd. Solar cell module
EP2058869A1 (en) * 2007-11-06 2009-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell module with customised solar cell width
EP2122691A1 (en) * 2007-02-16 2009-11-25 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
EP2309540A1 (en) * 2009-10-12 2011-04-13 Inventux Technologies AG Photovoltaic module
EP2876691A1 (en) * 2013-11-20 2015-05-27 Samsung SDI Co., Ltd. Solar cell array

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168995U (en) * 1988-05-18 1989-11-29
JPH036848U (en) * 1989-06-05 1991-01-23
WO2007004501A1 (en) * 2005-07-01 2007-01-11 Honda Motor Co., Ltd. Solar cell module
EP2122691A1 (en) * 2007-02-16 2009-11-25 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
EP2122691A4 (en) * 2007-02-16 2011-02-16 Nanogram Corp Solar cell structures, photovoltaic modules and corresponding processes
JP2013168661A (en) * 2007-02-16 2013-08-29 Nanogram Corp Solar cell structure, photovoltaic module and method corresponding to these
EP2058869A1 (en) * 2007-11-06 2009-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell module with customised solar cell width
WO2009059773A2 (en) * 2007-11-06 2009-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell module with matched solar cell width
WO2009059773A3 (en) * 2007-11-06 2009-10-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell module with matched solar cell width
EP2309540A1 (en) * 2009-10-12 2011-04-13 Inventux Technologies AG Photovoltaic module
EP2876691A1 (en) * 2013-11-20 2015-05-27 Samsung SDI Co., Ltd. Solar cell array

Also Published As

Publication number Publication date
JPH0528513B2 (en) 1993-04-26

Similar Documents

Publication Publication Date Title
US7498508B2 (en) High voltage solar cell and solar cell module
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US4605813A (en) Amorphous silicon solar battery
JPS60154521A (en) Manufacture of silicon carbide film
JPH025576A (en) Thin film solar cell device
EP0189636A1 (en) Fluorinated p-doped microcrystalline semiconductor alloys and method of preparation
JPS6266684A (en) Manufacture of photovoltaic device
JPWO2015151422A1 (en) Solar cell and method for manufacturing solar cell
JP2004221437A (en) Photovoltaic device and manufacturing method thereof
US3928073A (en) Solar cells
JPH0377382A (en) Solar battery cell
JPS6173386A (en) Manufacture of photovoltaic device
JPS58196060A (en) Thin film semiconductor device
JPH09148600A (en) Solar battery and its manufacture
JP3540149B2 (en) Thin film deposition method by plasma CVD
JPS62106670A (en) Semiconductor device
KR930009596B1 (en) Silicon solar cell and manufacturing method thereof
JPH07211928A (en) Manufacture of integrated photoelectric conversion element
JP3358164B2 (en) Method for manufacturing photovoltaic device
JPS58116780A (en) Photovoltaic device
JPS59213175A (en) Semiconductor photovoltaic device
JPS60239068A (en) Photovoltaic device
JPS63318170A (en) Semiconductor multilayered thin film element
JPS59211289A (en) Manufacture of amorphous silicon solar battery
JPH0793269B2 (en) Amorphous semiconductor manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term