KR930009596B1 - Silicon solar cell and manufacturing method thereof - Google Patents

Silicon solar cell and manufacturing method thereof Download PDF

Info

Publication number
KR930009596B1
KR930009596B1 KR1019900006305A KR900006305A KR930009596B1 KR 930009596 B1 KR930009596 B1 KR 930009596B1 KR 1019900006305 A KR1019900006305 A KR 1019900006305A KR 900006305 A KR900006305 A KR 900006305A KR 930009596 B1 KR930009596 B1 KR 930009596B1
Authority
KR
South Korea
Prior art keywords
amorphous silicon
solar cell
layer
silicon solar
conductive film
Prior art date
Application number
KR1019900006305A
Other languages
Korean (ko)
Other versions
KR910020948A (en
Inventor
신경상
Original Assignee
신경상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신경상 filed Critical 신경상
Priority to KR1019900006305A priority Critical patent/KR930009596B1/en
Publication of KR910020948A publication Critical patent/KR910020948A/en
Application granted granted Critical
Publication of KR930009596B1 publication Critical patent/KR930009596B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

내용 없음.No content.

Description

비결정실리콘태양전지 및 그 제조방법Amorphous Silicon Solar Cell and Manufacturing Method Thereof

제 1 도는 태양광과 형광등의 스펙트롬분포에 대응한 비결정실리콘 태양전지와 단결정실리콘태양전지에 관한 광-전기전환특성을 비교해서 도시해 놓은 그래프.1 is a graph comparing photoelectric conversion characteristics of an amorphous silicon solar cell and a monocrystalline silicon solar cell corresponding to spectroscopic distribution of solar light and fluorescent light.

제 2 도는 일반적으로 사용되고 있는 비결정실리콘태양전지의 내부구조를 도시해 놓은 단면도.2 is a cross-sectional view showing the internal structure of a conventional amorphous silicon solar cell.

제 3 도는 집적회로에 내포시킨 종래의 비결정실리콘태양전지의 내부구조를 도시해 놓은 단면도.3 is a cross-sectional view showing the internal structure of a conventional amorphous silicon solar cell embedded in an integrated circuit.

제 4a 도 내지 제 4c 도는 본 발명의 1실시예에 관한 비결정실리콘태양전지의 제조과정을 설명하기 위한 도면.4A to 4C are views for explaining a manufacturing process of an amorphous silicon solar cell according to an embodiment of the present invention.

제 5 도는 본 발명에 의한 완성된 비결정실리콘태양전지와 ITO의 비결정실리콘태양전지와의 전압-전류 특성을 측정한 결과를 나타낸 그래프.5 is a graph showing the results of measuring the voltage-current characteristics between the amorphous silicon solar cell and the amorphous silicon solar cell of ITO according to the present invention.

제 6 도는 본 발명으로 완성된 비결정실리콘태양전지와 ITO의 비결정실리콘태양전지와의 광-전기특성을 측정한 결과를 나타낸 그래프.Figure 6 is a graph showing the results of measuring the photo-electric properties of the amorphous silicon solar cell and ITO amorphous silicon solar cell completed with the present invention.

제 7 도는 본 발명에 의해 완성된 비결정실리콘태양전지의 실제적인 앞평면도 및 Al전극층의 보호층을 형성시킨 다음의 실제적인 뒤평면도이다.7 is an actual front plan view of the amorphous silicon solar cell completed by the present invention and the actual back plan view after forming the protective layer of the Al electrode layer.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1, 32 : SnO2전도막 2 :

Figure kpo00001
형태1, 32: SnO 2 conductive film 2:
Figure kpo00001
shape

3 : 직사각형부 4 : 섬부3: rectangular part 4: island part

5 : Al박막 21, 31 : 유리기판5: Al thin film 21, 31: glass substrate

22 : 전도박막 23 : P형박막22: conductive thin film 23: P-type thin film

24 : I형박막 25 : N형박막24: I type thin film 25: N type thin film

26, 34 : 알루미늄박막 33 : PIN박막층26, 34: aluminum thin film 33: PIN thin film layer

본 발명은 예컨대 휴대용 전자계산기등의 밧데리로 이용되어지는 비결정실리콘태양전지 및 그 제조방법에 관한 것으로, 특히 전기전도도가 높은 Sno2전도유리를 기판으로 사용하여 실내의 약한 조명하에서도 개선된 효율의 광-전기특성을 기할 수 있을 뿐만 아니라 횡종방향의 배열로 해서 동시에 수백개이상 양산함으로써 저렴한 가격으로 제조할 수 있도록 된 비결정실리콘태양전지 및 그 제조방법에 관한 것이다.The present invention relates to an amorphous silicon solar cell used as a battery, such as a portable electronic calculator, and a method for manufacturing the same. Particularly, the present invention uses Sno 2 conductive glass having high electrical conductivity as a substrate, thereby improving light efficiency even under low light indoors. The present invention relates to an amorphous silicon solar cell and a method for manufacturing the same, which can be manufactured at low price by mass production of several hundreds at the same time in the horizontal and longitudinal arrangement.

일반적으로 태양전지의 발전원리는 적당한 에너지를 갖는 광이 예컨대 단결정실리콘 또는 비결정실리콘반도체에 입사된다면 광기 상기 반도체와의 상호작용에 의해 전자와 정공이 발생되어, 상기 반도체중에 PN 접합에 따른 전계가 있다면 전자와 정공이 각기 n형반도체와 p형반도체에 확산하게 된다. 여기서 양전극을 결선하게 된다면 전력이 나오게 된다. 이상과 같은 발전원리의 태양전지를 소형밧데리로 이용해서 휴대용 소형전자계산기의 전원으로 적용하여 왔는데, 최근 전자 및 반도체기술등이 급격히 진보됨에 따라 태양전지의 특성향상과 저코스트화를 중심으로 활발한 연구개발이 이루어져 왔다. 이와같은 연구개발중 여러 제조방법의 단결정실리콘 및 비결정실리콘태양전지가 개발되어 왔으나 맑은날과 실내조명하에서 광-전기전환특성이 제 1 도에 도시된 바와 같이 상기 단결정실리콘태양전지보다 상기 비결정실리콘태양전지가 향상되고 있어 휴대용 전자계산기에 점차적으로 많이 사용되고 있다.In general, the principle of power generation of a solar cell is that if light having a suitable energy is incident on, for example, monocrystalline silicon or amorphous silicon semiconductor, electrons and holes are generated by interaction with the photonic semiconductor, and if there is an electric field due to PN junction in the semiconductor, Electrons and holes diffuse into n- and p-type semiconductors, respectively. If you connect the two electrodes here, the power comes out. The solar cell of the above-mentioned power generation principle has been applied as a power source of a portable small electronic calculator using a small battery. As the electronic and semiconductor technologies are rapidly advanced recently, an active research focusing on the improvement of the solar cell characteristics and the low cost. Development has been done. During the research and development, monocrystalline silicon and amorphous silicon solar cells of various manufacturing methods have been developed, but the photo-electric conversion characteristics of the amorphous silicon solar cell are higher than those of the single crystal silicon solar cell as shown in FIG. As batteries improve, they are increasingly used in portable electronic calculators.

한편, 태양전지 재료로서 비결정실리콘인 a-si재료를 이용한 종래의 비결정실리콘태양전지는, 제 2 도에 도시된 바와같이 기판인 유리판(21)의 위면에 전도박막(22)을 형성시켜 (+)전극으로 이용하게 되고 상기 전도박막(22)위에 비결정실리콘의 PIN반도체다이오드박막을 형성시킨 다음 알루미늄(Al)박막(26)을 증착시켜 (-)전극을 구성하게 된다. 여기서 상기 PIN반도체다이오드박막은 P형박막(23)과 진성층(Intrinsic layer)인 I형박막(24) 및 N형박막(25)이 차례로 형성되어져 있다.On the other hand, in the conventional amorphous silicon solar cell using the a-si material of amorphous silicon as the solar cell material, as shown in FIG. 2, the conductive thin film 22 is formed on the upper surface of the glass plate 21 serving as the substrate (+ It is used as an electrode, and a PIN semiconductor diode thin film of amorphous silicon is formed on the conductive thin film 22, and then an aluminum (Al) thin film 26 is deposited to form a negative electrode. In the PIN semiconductor diode thin film, a P-type thin film 23, an I-type thin film 24 and an N-type thin film 25, which are intrinsic layers, are formed in this order.

그러나 제 2 도와 같이 제조된 일반적구조의 비결정실리콘태양전지는 상기 비결정실리콘이 실제적으로 반도체로서 내부저항이 매우 커지는 것(예컨대~MΩ)을 고려해서 제 3 도에 도시된 바와 같이 대면적의 비결정실리콘태양전지에 적용하여 왔는바, 이는 어떤 제조방법으로 유기기판(31)위에 설치된 (+)전극의 전도박막층(32)위로 형성되어질 PIN박막층(33)을 보다 더 좋게 형성시킴으로서, 어떤 내부회로구성으로 부터 광을 받아 발생한 내부 광전기를 손실없이 외부회로로 쉽게 제공할 수 있다.However, the amorphous silicon solar cell of the general structure manufactured as shown in FIG. 2 has a large area of amorphous silicon as shown in FIG. 3 in consideration of the fact that the amorphous silicon is actually a semiconductor and the internal resistance becomes very large (e.g. It has been applied to solar cells, which by forming a better PIN thin film layer 33 to be formed on the conductive thin film layer 32 of the (+) electrode installed on the organic substrate 31 by any manufacturing method, to any internal circuit configuration It can be easily provided to the external circuit without losing the internal photoelectric generated by the light.

또 제 3 도에 도시된 대면적의 비결정실리콘태양전지는 전술한 바 있는 PIN박막층(33)위에 (-)전극의 Al박막층(34)을 증착시키게 되고, 도면중 부호 A 내지 C는 박막층들을 레이져로 식각해서 해당 박막층을 분리시켜 놓은 위치로서 집적회로를 내포하게 된다. 이상과 같은 제조구조를 보통 내부연결회로라고 불리우고 있는데 보통 직접 태양광을 받아 높은 전류를 출력시키게 되는 대면적파워식 비결정실리콘태양전지에서 유용하게 이용될 수 있다. 그러나 제 3 도와 같은 제조구조를 몇개의 단원(單元)전지로 연결된 작은 규격의 태양전지를 밧데리로서 정착한 예컨대 휴대용 전자계산기에 이용한다면, 즉 실내의 약한조도밑에서 작은 규격의 비결정실리콘태양전지로서 상기 내부연결회로를 사용하게 된다면 수광면적의 축소라든지 내부회로의 단락가능성에 의한 출력전력이 감소하게 된다는 결점이 있었다.In addition, in the large-area amorphous silicon solar cell shown in FIG. 3, the Al thin film layer 34 of the (-) electrode is deposited on the PIN thin film layer 33 described above, and reference numerals A to C in the drawings denote lasers. It is embedded in the integrated circuit as a position where the thin film layer is separated by etching. The fabrication structure as described above is commonly called an internal connection circuit, and can be usefully used in large area power amorphous silicon solar cells that usually output high current by receiving direct sunlight. However, if the manufacturing structure, such as the third diagram, is used in a portable electronic calculator in which a small standard solar cell connected by several unit cells is settled as a battery, that is, as an amorphous silicon solar cell of a small standard under weak illumination in the room, If the internal connection circuit is used, the output power is reduced due to the reduction of the light receiving area or the possibility of short circuit of the internal circuit.

이에 본 발명은 상기한 같은 사정을 감안해서 발명된 것으로, 전기 전도도가 높은 Sno2전도유리를 기판으로 사용하여 횡종방향의 배열로 동시에 수백개이상 양산한다할지라도 대기중의 습기나 물성분에 의해 집적회로의 접속패드들이 전해부식되지 않을 뿐만 아니라 외계와의 단면접촉등에 의해 회로단락되지 않도록 제조구성을 갖출 수 있고, 또 종래와 같은 동일한 규격하에서 수광면적을 최대한으로 크게하여 광출력전력을 보다 더 향상시켜 주는 구조를 갖춤으로서 제조가격을 최소한으로 감소시켜 양산할 수 있으며, 종래의 비결정실리콘태양전지 기판으로 많이 쓰이던 투명진도막이 ITO전도유리 대신에 전기 전도도가 높은 Sno2전도유리를 이용함으로써 약한 실내조명하에서도 광-전기특성을 대폭적으로 향상시킬 수 있도록 된 비결정실리콘태양전지 및 그 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been invented in view of the above-described circumstances. Even though Sno 2 conductive glass having high electrical conductivity is used as a substrate, even if it mass-produces hundreds or more at the same time in an array in the transverse longitudinal direction, it is caused by moisture or water in the atmosphere The connection pads of the integrated circuit are not only electrolytically corroded, but also have a manufacturing configuration so as not to be short-circuited by cross-sectional contact with the outside, and further increase the light output power by increasing the light receiving area to the maximum under the same standard as before. It can be mass-produced by minimizing the manufacturing cost by improving the structure, and the transparent transparent film, which was widely used as a conventional amorphous silicon solar cell substrate, is weak in the room by using Sno 2 conductive glass with high electrical conductivity instead of ITO conductive glass. Amorphous silicon pattern that can significantly improve the photo-electric properties even under lighting Its purpose is to provide a positive battery and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 비결정실리콘태양전지는, 1mm두께의 유리기판위에 ITO전도막을 형성시키고, 이 ITO전도막위에 비결정실리콘층인 PIN층을 형성시킨 다음 Al박막을 형성시켜서 된 휴대용 전자계산기의 밧데리로 이용하는 비결정실리콘태양전지에 있어서, 상기 ITO전도막 대신에, Sno2전도막(1)을 반응기체에 의해 탄소층과 불소층으로 형성시켜 주는 수단과, 상기 Sno2전도막(1)위에 상기 PIN층을 전면퇴적시켜 단원전지내 상하전극의 접촉을 제거함으로서 상기 PIN층위에 Al박막(5)을 증착시키는 수단을 구비해서 각 단원전지간의 외부연결집적회로를 구성하도록 된것을 그 특징으로 한다.In the amorphous silicon solar cell of the present invention for achieving the above object, a portable electron formed by forming an ITO conductive film on a glass substrate having a thickness of 1 mm, forming a PIN layer as an amorphous silicon layer on the ITO conductive film, and then forming an Al thin film. in the amorphous silicon solar cell used in the calculator's battery, in place of the ITO conductive film, Sno 2 means that by forming a carbon layer and a fluorine layer by a conductive film (1) to the reaction gas and the Sno 2 conductive film (1 And a means for depositing Al thin film 5 on the PIN layer by completely depositing the PIN layer on the PIN layer so as to form an external connection integrated circuit between the unit cells. It is done.

또 본 발명의 비결정실리콘태양전지의 제조방법은, 탄소층과 불소층으로 형성시킨 Sno2전도막(1)을 사진식각법에 의해

Figure kpo00002
형태 2로 형성시키는 단계와, CVD방법으로 형성된 비결정실리콘층인 PIN층을 사진 식각법에 의해 섬부(4)로 노출시키는 단계 및, 상기 PIN층위에 일루미늄을 증착시킨 다음 사진식각법에 의해 Al박막(5)을 형성시키는 단계로 이루어져서 제조되는 것을 특징으로 한다.In addition, in the method for producing an amorphous silicon solar cell of the present invention, a Sno 2 conductive film 1 formed of a carbon layer and a fluorine layer is formed by photolithography.
Figure kpo00002
Forming the form 2, exposing the PIN layer, which is an amorphous silicon layer formed by the CVD method, to the island portion 4 by photolithography; and depositing aluminum on the PIN layer, followed by Al by photolithography. It is characterized by being made of a step of forming a thin film (5).

이하 본 발명의 1실시예를 예시도면에 의거 상세히 설명한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

제 4a 도 내지 제 4c 도는 본 발명의 1실시예에 관한 비결정실리콘태양전지의 제조과정을 설명해 놓은 것으로, 본 발명의 비결정실리콘(예컨대 a-si) 태양전지는 횡종방향의 배열로해서 동시에 수백개이상을 제조하기 위해 제 4a 도에 도시된 바와 같이 예컨대 1mm두께의 유리기판위에 Sno2전도막(1)을 형성시킨다. 그 형성조건은 침적로의 유효길이가 예컨대 120cm이고 넓이가 42cm이며 길이의 방향에 따라 일정한 온도분포를 갖고 평균온도가 예컨대 500℃-600℃로서 온도구역의 길이가 예컨대 80cm로 이루어진다. 즉, 상기 Sno2전도막(1)의 제조방법은 도시되지 않는 전기로 상부에 2개의 특별한 분출구가 설치되어 있어 각종 반응기체가 상기 분출구를 통하여 상기 전기로내로 들어가서 고온하에서 상기 반응기체가 일정크기의 유리표면에서 화학반응을 거쳐 Sno2전도막(1)을 형성시키게 된다. 상기 Sno2전도막(1)을 형성시키기 위해 일정크기의 유리가 도시되지 않는 전송대에 의해 연속적으로 상기 전기로내로 들어가게 되고, 화학반응을 통해 상기 유리표면에 Sno2전도막(1)을 형성시킨 다음 연속적으로 상기 전송대의 동작에 의해 상기 전기로 밖으로 나오게 된다.4A to 4C illustrate a manufacturing process of an amorphous silicon solar cell according to an embodiment of the present invention, wherein the amorphous silicon (eg, a-si) solar cell of the present invention is arranged in the transverse longitudinal direction at the same time. In order to manufacture the above, as shown in FIG. 4A, for example, a Sno 2 conductive film 1 is formed on a glass substrate having a thickness of 1 mm. The formation conditions are that the effective length of the immersion furnace is, for example, 120 cm, the width is 42 cm, has a constant temperature distribution along the length direction, the average temperature is, for example, 500 ° C.-600 ° C., and the length of the temperature zone is 80 cm, for example. That is, in the manufacturing method of the Sno 2 conductive membrane 1, two special ejection outlets are installed on the upper part of an electric furnace (not shown), so that various reactor bodies enter the electric furnace through the ejection outlets, and the reactor bodies have a predetermined size under high temperature. On the glass surface, a chemical reaction is performed to form a Sno 2 conductive film (1). In order to form the Sno 2 conductive film 1, a glass having a predetermined size is continuously introduced into the electric furnace by a transmission band not shown, and a Sno 2 conductive film 1 is formed on the glass surface through a chemical reaction. It is then subsequently exited into the electricity by the operation of the transmitter.

이어 도시되지 않는 제 1 분출구를 통해 전기로로 들어가는 증기는 물, Sncl4과 CH3CH의 증기로서 이들 증기가 산소와 질소에 의해 분출된 다음, 도시되지 않는 제 2 분출구를 통해 전기로로 들어가는 증기는 물, Sncl4과 F152A(C2H4F2)증기로서 상기 물과 Sncl4증기가 산소와 질소에 의해 분출되게 된다. 따라서, 제 1 분출구 및 제 2 분출구는 도시되지 않는 전기로 길이가 다른 위치에 설치되어 있으므로 실제상 유리표면에 2층의 Sno2전도막(1)이 형성되게 된다. 여기서 제 1 층의 Sno2전도막은 탄소를 제 2 층의 Sno2전도막은 불소를 각각 내포하게 된다.The steam that enters the furnace through a first unshown outlet is then steam of water, Sncl 4 and CH 3 CH, which are ejected by oxygen and nitrogen, and then into the furnace through a second unshown outlet. As water, Sncl 4 and F152A (C 2 H 4 F 2 ) steam, the water and Sncl 4 vapor are ejected by oxygen and nitrogen. Thus, the first air outlet and a second air outlet, so that as the electrical length that is not shown is installed in a different location on the Sno second conductive film (1) of the second layer on the glass surface actually is to be formed. Here is Sno 2 contains the fluorine-conductive film of the first layer of Sno 2 conductive film a second layer of carbon, respectively.

그리고, Sno2전도막의 화학반응은 예컨대 500°-600℃ 온도하에서 다음과 같이 진행되는 바, 즉In addition, the chemical reaction of the Sno 2 conductive film proceeds as follows, for example, at a temperature of 500 ° -600 ° C.

Sncl4+O2=Sno2+2Cl2 Sncl 4 + O 2 = Sno 2 + 2Cl 2

Sncl4+2H2O=Sno2+4HClSncl 4 + 2H 2 O = Sno 2 + 4HCl

로 반응되게 된다.Will react.

전술한 바와 같이 제조된 Sno 전도막(1)의 제 4a 도에 도시된 바와 같이 CVD(Chemical Vapor Deposition) 방법으로 형성되어 사진식각법에 의해

Figure kpo00003
형태(2)로 이루어지게 된다.(여기서
Figure kpo00004
형태로 설명했지만 경우에 따라 凸,
Figure kpo00005
형태로도 이룰수 있다) 이어 제 4b 도에 도시된 바와 같이 직사각형부(3)는 제 4a 도에 도시된 Sno2전도막(1)위에 상기 CVD방법으로 비결정실리콘층인 PIN층을 형성시킨 다음 사진식각법에 의해 노출된 부분이고, 섬부(4)는 사진식각법에 의해 비결정실리콘을 제거한 다음 노출된 (+)전극의 Sno2전도전극부분을 나타낸다. 그리고 제 4b 도에 도시된 비결정실리콘층인 PIN층의 형성중에서 P층은 막두께가 100Å로서 a-sic : H이고, 1층은 막두께가 5000Å로서 a-si : H이며, N층은 막두께가 400Å로서 a-si : H이며 침적온도가 예컨대 200℃-250℃이다. 또 상기 P층의 도우핑 불순물은 B2H6과 CH4이고 N층의 도우핑불순물은 PH3이다.As shown in FIG. 4A of the Sno conductive film 1 manufactured as described above, it was formed by a chemical vapor deposition (CVD) method, and
Figure kpo00003
Form (2) (where
Figure kpo00004
In some cases, but in some cases
Figure kpo00005
As shown in FIG. 4B, the rectangular part 3 is formed on the Sno 2 conductive film 1 shown in FIG. 4A by forming the PIN layer, which is an amorphous silicon layer, by the CVD method. The portion exposed by the etching method, and the island portion 4 represents the Sno 2 conducting electrode portion of the exposed (+) electrode after removing the amorphous silicon by the photolithography method. In the formation of the PIN layer, which is the amorphous silicon layer shown in FIG. 4B, the P layer has a film thickness of 100 GPa and a-sic: H. The thickness is 400 kPa, a-si: H and the deposition temperature is, for example, 200 ° C-250 ° C. The doping impurities of the P layer are B 2 H 6 and CH 4 and the doping impurities of the N layer are PH 3 .

제 4c 도에 도시된 Al박막(5)은 제 4b 도에 도시된 비결정실리콘층위에 알루미늄을 증착시킨 다음 사진식각법에 의해 노출된(-)전극부분으로 태양전지집적회로의 외부연결을 할 수 있게 된다. 또 제 4b 도에 도시된 바와 같이 비결정실리콘층은 4개의 직렬전기로서 서로 분리되어 있지 않는 상태로 있지만 그 자체의 내부저항이 상당히 MΩ으로 커져서 약한 실내조도하에서 발생하는 전류가 일반적으로 μA로 매우 작아지므로 단원전지간을 분리시키지 않아도 좋다. 상기한 바와 같이 제조된 본 발명의 비결정실리콘태양전지는 제 7 도에 도시된 완제품으로서 단원전지내에서 상하전극이 접촉되지 않도록 비결정실리콘층이 형성되어 있으므로 회로단락에 의한 출력전력의 손실을 방지하게 되어 개선된 효율의 광-전기특성을 얻을 수 있게 된다.The Al thin film 5 shown in FIG. 4C is capable of depositing aluminum on the amorphous silicon layer shown in FIG. 4B and then externally connecting the solar cell integrated circuit to the exposed (-) electrode portion by photolithography. Will be. In addition, as shown in FIG. 4B, the amorphous silicon layers are four series electrics, which are not separated from each other, but their internal resistance is considerably increased to MΩ so that the current generated under weak room illumination is generally very small as μA. It does not need to be separated between unit cells. The amorphous silicon solar cell of the present invention manufactured as described above is a finished product as shown in FIG. 7 so that the amorphous silicon layer is formed so that the upper and lower electrodes do not contact in the unit cell, thereby preventing loss of output power due to a short circuit. Thus, improved efficiency of the opto-electrical properties can be obtained.

제 5 도는 본 발명에 의해 완성된 Sno 전도막을 기판의 비결정실리콘태양전지와 ITO전도막을 기판으로한 비결정실리콘태양전지와의 전압-전류특성을 측정한 결과를 나타낸 것으로, 상기 2종류의 비결정실리콘태양전지가 실내조명하에서 예컨대 120LUX와 150LUX 및 200LUX 등에서의 전류특성차이를 나타내고 있음으로, 전술한 바와 같이 제조한 본 발명의 Sno2전도막을 태양전지기판으로 사용함으로서 개선된 효율의 전압-전류특성을 도모할 수 있어 양산단계에서 상품합격률을 다음 표 1과 같이 제고시켜 저렴한 가격으로 본 발명의 비결정실리콘태양전지를 제조할 수 있게 된다.5 shows the results of measuring the voltage-current characteristics of the amorphous silicon solar cell of the substrate and the amorphous silicon solar cell of the substrate of the Sno conductive film completed by the present invention, wherein the two types of amorphous silicon solar Since the battery exhibits a difference in current characteristics at indoor lighting, for example, 120LUX, 150LUX and 200LUX, the Sno 2 conductive film of the present invention prepared as described above can be used as a solar cell substrate for improved voltage-current characteristics. It is possible to manufacture the amorphous silicon solar cell of the present invention at a low price by improving the product pass rate in the mass production step as shown in Table 1 below.

[표 1]TABLE 1

본 발명에 의한 제조된 비결정실리콘태양전지가 실내조명 예컨대 200LUX에서 측정한 전압 및 전류의 합격률.The amorphous silicon solar cell produced according to the present invention, the pass rate of the voltage and current measured in indoor lighting, such as 200LUX.

Figure kpo00006
Figure kpo00006

상기 표 1에서와 같이 예컨대 휴대용 전자계산기에 밧데리로 본 발명의 비결정실리콘태양전지를 사용할 경우 인정표준은 200LUX의 실내조명하에서 1.5V의 전압과 6μA의 전류가 나오게 됨으로, 총 120개의 완성품중 109개의 합격품과 11개의 불합격품으로 90.8%의 합격률로서 높은 양산성과 높은 합격률을 나타내어 저렴한 가격으로 비결정실리콘태양전지를 제조할 수 있게 된다.As shown in Table 1, for example, when the amorphous silicon solar cell of the present invention is used as a battery in a portable electronic calculator, the recognized standard is that a voltage of 1.5 V and a current of 6 μA are output under indoor lighting of 200 LUX. Passed products and 11 rejected products, 90.8% pass rate, high mass production rate and high pass rate, it is possible to manufacture amorphous silicon solar cell at low price.

제 6 도는 본 발명에 의해 완성된 Sno2젠도막의 비결정실리콘태양전지와 ITO전도막의 비결정실리콘태양전지를 1.5V의 구동전압으로 고정시켜 놓은 다음 실내조명하에서 다른 LUX하에서 발생하는 광-전기특성을 측정한 결과를 나타낸 것으로, 도면에 나타나듯이 동등한 실내조명하에서 본 발명의 Sno2전도막을 기판으로 한 비결정실리콘태양전지가 ITO전도막을 기판으로 한 비결정실리콘태양전지 보다 광출력전류가 개선된 효율로 나타나게 된다.6 shows the photo-electric characteristics generated under different LUX under indoor lighting after fixing the amorphous silicon solar cell of the Sno 2 gen-conductor film and the amorphous silicon solar cell of the ITO conductive film at a driving voltage of 1.5V. As shown in the drawing, the amorphous silicon solar cell using the Sno 2 conductive film of the present invention as the substrate under the equivalent indoor illumination showed better efficiency in light output current than the amorphous silicon solar cell using the ITO conductive film as the substrate. do.

따라서, 본 발명의 비결정실리콘태양전지는 양산성을 제고하기 위해 종래의 제조방법과 같이 1개씩 비결정실리콘태양전지를 제조하는 방법을 개선해서 예컨대 1mm두께와 180mm의 넓이 및 305mm의 길이인 Sno2전도막위에 횡종방향으로 120개를 배열하여 놓은 다음 동시에 제 4a 도 내지 제 4c 도와 같은 제조공정을 행해 다량의 비결정실리콘태양전지를 제조하는 방법을 채용하도록 되어 있다.Therefore, the amorphous silicon solar cell of the present invention improves the manufacturing method of amorphous silicon solar cells one by one as in the conventional manufacturing method in order to improve mass production, for example, Sno 2 conduction having a thickness of 1 mm, a width of 180 mm and a length of 305 mm. A method of manufacturing a large amount of amorphous silicon solar cells is adopted by arranging 120 pieces in a transverse longitudinal direction on a film and then performing a manufacturing process as shown in FIGS. 4A to 4C.

이상 설명한 바와 같이 본 발명에 의하면, 전기 전도도가 높은 Sno2전도유리를 기판으로 사용하여 횡종방향의 배열로 동시에 수백개 이상 양산한다 할지라도 대기중의 습기나 물성분에 의해 집적회로의 접속패드들이 전해부식되지 않을 뿐만 아니라 외계와의 단면접촉등에 의해 회로단락되지 않도록 제조구성을 갖출 수 있고, 또 종래와 같은 동일한 규격하에서 수광면적을 최대한으로 크게하여 광출력전력을 보다 더 향상시켜주는 구조를 갖춤으로서 제조가격을 최소한으로 감소시켜 양산할 수 있으며, 종래의 비결정실리콘태양전지기판으로 많이 쓰이던 투명전도막인 1ITP전도유리 대신에 전기 전도도가 높은 Sno2전도유리를 이용함으로써 약한 실내조명하에서도 광-전기특성을 대폭적으로 향상시킬 수 있도록 된 비결정실리콘태양전지 및 그 제조방법을 제공할 수 있게 된다. 또 본 발명은 그 기술적요지가 벗어나지 않는 범위내에서 여러형태로 변형해서 실시할 수 있다.As described above, according to the present invention, even though the Sno 2 conductive glass having high electrical conductivity is used as a substrate, even if the mass production of several hundred or more at the same time in the transverse longitudinal arrangement, the connection pads of the integrated circuit are caused by moisture or water in the air. Not only does it have electrolytic corrosion, but it can be manufactured to prevent short circuit due to cross-contact with the outside world. Also, it has the structure to improve the light output power by increasing the light receiving area to the maximum under the same standard as before. It can be mass-produced by reducing the manufacturing cost to a minimum, and by using Sno 2 conductive glass with high electrical conductivity instead of 1ITP conductive glass, which is a transparent conductive film commonly used as a conventional amorphous silicon solar cell substrate, photo-electricity under weak indoor lighting Amorphous silicon solar cell capable of significantly improving its characteristics and its manufacture It is possible to provide the law. Moreover, this invention can be implemented in various forms within the range which does not deviate from the technical summary.

Claims (4)

1mm두께의 유리기판위에 ITO전도막을 형성시키고, 이 ITO전도막위에 비결정실리콘층인 PIN층을 형성시킨 다음 Al박막을 형성시켜서 된 휴대용 전자계산기의 밧데리로 이용하는 비결정실리콘태양전지에 있어서, 상기 ITO전도막 대신에, Son2전도막(1)을 반응기체에 의해 탄소층과 불소층으로 형성시켜 주는 수단과, 상기 Sno2전도막(1)위에 상기 PIN층을 전면퇴적시켜 단원전지내 상하전극의 접촉을 제거함으로서 상기 PIN층위에 Al박막(5)을 증착시키는 수단을 구비해서 각 단원전지간이 외부연결집적회로를 구성하도록 된것을 그 특징으로 하는 비결정실리콘태양전지.In the amorphous silicon solar cell used as a battery of a portable electronic calculator formed by forming an ITO conductive film on a glass substrate having a thickness of 1 mm, forming a PIN layer which is an amorphous silicon layer on the ITO conductive film, and then forming an Al thin film. Instead of the film, a means for forming the Son 2 conductive film 1 into the carbon layer and the fluorine layer by the reactor body, and the PIN layer on the Sno 2 conductive film 1 are deposited all over the upper and lower electrodes in the unit cell. And a means for depositing an Al thin film (5) on the PIN layer by removing contact so that each unit cell constitutes an external connection integrated circuit. 제 1 항에 있어서, 상기 Sno2전도막(1)위에 120개 이상의 단원전지를 횡방향 및 종방향으로 배열해서 외부 연결집적회로가 설치되도록 구성된 것을 특징으로 하는 비결정실리콘태양전지.2. The amorphous silicon solar cell of claim 1, wherein an external connection integrated circuit is installed by arranging at least 120 single cells on the Sno 2 conductive film (1) in the lateral and longitudinal directions. 탄소층과 불소층으로 형성시킨 Sno2전도막(1)을 사진식각법에 의해 형태(2)로 형성시키는 단계와, CVD 방법으로 형성된 비결정실리콘인 PIN층을 사진식각법에 의해 섬부(4)로 노출시키는 단계 및, 상기 PIN층 위에 알루미늄을 증착시킨 다음 사진식각법에 의해 AI박막(5)을 형성시키는 단계로 이루어져서 제조되는 것을 특징으로 하는 비결정실리콘태양전지의 제조방법.Forming a Sno 2 conductive film 1 formed of a carbon layer and a fluorine layer into a shape 2 by photolithography; and forming a PIN layer, which is amorphous silicon formed by the CVD method, by photolithography. And depositing aluminum on the PIN layer and then forming the AI thin film (5) by photolithography. 제 3 항에 있어서, 상기 PIN층이 막두께가 각각 100Å, 5000Å, 400Å인 것을 특징으로 하는 비결정실리콘태양전지의 제조방법.The method of manufacturing an amorphous silicon solar cell according to claim 3, wherein the PIN layer has a film thickness of 100 kPa, 5000 kPa and 400 kPa, respectively.
KR1019900006305A 1990-05-03 1990-05-03 Silicon solar cell and manufacturing method thereof KR930009596B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900006305A KR930009596B1 (en) 1990-05-03 1990-05-03 Silicon solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900006305A KR930009596B1 (en) 1990-05-03 1990-05-03 Silicon solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR910020948A KR910020948A (en) 1991-12-20
KR930009596B1 true KR930009596B1 (en) 1993-10-07

Family

ID=19298682

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900006305A KR930009596B1 (en) 1990-05-03 1990-05-03 Silicon solar cell and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR930009596B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019829A1 (en) * 2008-08-13 2010-02-18 Robert Stancel Impact resistant thin-glass solar modules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019829A1 (en) * 2008-08-13 2010-02-18 Robert Stancel Impact resistant thin-glass solar modules

Also Published As

Publication number Publication date
KR910020948A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
US6870088B2 (en) Solar battery cell and manufacturing method thereof
EP2219222B1 (en) Solar cell and method for manufacturing the same
US8759140B2 (en) Solar cell and method for manufacturing the same
US8354585B2 (en) Solar cell and method of fabricating the same
US4644091A (en) Photoelectric transducer
EP3719852A1 (en) Solar cell
CN102013442A (en) Photovoltaic cell substrate and method of manufacturing the same
KR20130082066A (en) Photovoltaic device
US20110061729A1 (en) Solar Cell and Method of Manufacturing the Same
GB2060251A (en) Solar Battery
KR20180018895A (en) Bifacial silicon solar cell
KR930009596B1 (en) Silicon solar cell and manufacturing method thereof
KR101863068B1 (en) Solar Cell and method of manufacturing the same
KR810001314B1 (en) Semiconductor device having a body of amorphous silicon
KR101195040B1 (en) A solar cell and a method for making the solar cell
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
KR100416739B1 (en) Method for fabricating silicon solar cell
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
JP2003298090A (en) Solar cell element and its fabricating method
KR102165004B1 (en) A photovoltaic particle unit and a transparent solar battery with the unit
CN114744063B (en) Solar cell, production method and photovoltaic module
CN115274871B (en) Contact structure applied to tunneling solar cell, solar cell with contact structure and manufacturing method of solar cell
KR20120062432A (en) Solar cell and method for manufacturing the same
WO2015016480A1 (en) Silicon substrate for solar cell and manufacturing method therefor
US20120132244A1 (en) Solar cell module with current control and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19961004

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee