KR100416739B1 - Method for fabricating silicon solar cell - Google Patents

Method for fabricating silicon solar cell Download PDF

Info

Publication number
KR100416739B1
KR100416739B1 KR1019970002966A KR19970002966A KR100416739B1 KR 100416739 B1 KR100416739 B1 KR 100416739B1 KR 1019970002966 A KR1019970002966 A KR 1019970002966A KR 19970002966 A KR19970002966 A KR 19970002966A KR 100416739 B1 KR100416739 B1 KR 100416739B1
Authority
KR
South Korea
Prior art keywords
silicon substrate
oxide film
conductive metal
photoresist pattern
forming
Prior art date
Application number
KR1019970002966A
Other languages
Korean (ko)
Other versions
KR19980067094A (en
Inventor
조은철
김동섭
민요셉
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019970002966A priority Critical patent/KR100416739B1/en
Publication of KR19980067094A publication Critical patent/KR19980067094A/en
Application granted granted Critical
Publication of KR100416739B1 publication Critical patent/KR100416739B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for fabricating a silicon solar cell is provided to reduce fabricating cost by decreasing the consumption of a material, and to increase adaptability by maintaining the efficiency of the solar cell. CONSTITUTION: An oxide layer(23) is formed on a p-type silicon substrate(21). A photoresist pattern is formed on the oxide layer formed on the silicon substrate. The oxide layer is etched by using the photoresist pattern. The photoresist pattern is removed and a texturing process is performed. The oxide layer on the silicon substrate is etched. Phosphorous ions are diffused to the front and rear surfaces of the silicon substrate to form an n¬+ semiconductor layer(22). An oxide layer is formed on the n¬+ semiconductor layer on the silicon substrate. Aluminum is deposited on the rear surface of the silicon substrate and is sintered to form a p¬+ semiconductor layer. A photolithography process is performed to form a conductive metal layer in a predetermined region of the front surface of the silicon substrate. A lift-off process is performed. A conductive metal layer is deposited on the rear surface of the silicon substrate to form a rear surface electrode(24). Silver is electroplated on the conductive metal layer on the front surface of the silicon substrate.

Description

실리콘 태양전지의 제조방법Method of manufacturing silicon solar cell

본 발명은 실리콘 태양전지의 제조방법에 관한 것으로서, 상세하기로는 고효율의 태양전지를 저렴한 제조비용으로 얻을 수 있는 실리콘 태양전지의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a silicon solar cell, and more particularly, to a method for manufacturing a silicon solar cell which can obtain a high efficiency solar cell at a low manufacturing cost.

지금까지 알려진 태양전지의 대표적인 예로서 호주 UNSW 대학에서 개발한 PERL(Passivated Emitter Rear Locally diffused) 태양전지, 상기 PERL과 유사한 LBSF(Locally Back Surface Field) 태양전지 및 미국 스탠포드대학에서 개발한 포인트 전극(point contact) 태양전지 등이 있다.As a representative example of solar cells known to date, Passive Emitter Rear Locally diffused (PERL) solar cells developed by UNSW University in Australia, LBSF (Locally Back Surface Field) solar cells similar to the PERL, and point electrodes developed by Stanford University in the United States contact) solar cells.

그런데 이러한 태양전지는 반도체 집적 회로(IC) 제조시 사용되는 반도체 제조공정의 반복으로 제조할 수 있으나, 제조비용이 비싸기 때문에 우주용 태양전지 등과 같이 가격이 제한되지 않으며 고효율이 요구하는 특수용도에만 제한적으로 사용되고 있다. 따라서 상용화가 가능한 태양전지를 얻기 위해서는 높은 효율을 유지하면서 제조비용이 절감될 수 있도록 단순화된 제조공정을 설계하는 것이 필수적이다.However, these solar cells can be manufactured by repeating the semiconductor manufacturing process used in the manufacture of semiconductor integrated circuits (IC), but because the manufacturing cost is expensive, the price is not limited, such as space solar cells are limited only to special applications that require high efficiency. Is being used. Therefore, in order to obtain a commercially available solar cell, it is essential to design a simplified manufacturing process so that manufacturing cost can be reduced while maintaining high efficiency.

도 1은 기존의 LBSF 태양전지의 구조를 나타낸 도면이다. 이를 참조하여, LBSF 태양전지의 제조방법을 살펴 보면 다음과 같다.1 is a view showing the structure of a conventional LBSF solar cell. Referring to this, looking at the manufacturing method of the LBSF solar cell is as follows.

먼저, p형 실리콘 기판 (11) 후면에 산화막을 형성한다.First, an oxide film is formed on the back surface of the p-type silicon substrate 11.

산화막이 형성된 실리콘 기판 (11) 후면의 상부에 포토레지스트를 도포한 다음 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 비노광부를 세척하여 현상한다. 이러한 과정을 거쳐 형성된 포토레지스트 패턴을 마스크로 하여 산화막을 에칭하고 포토레지스트를 제거하면 에칭된 산화막 부분에 부분확산창이 형성된다. 보론을 확산시킬 표면을 고온으로 유지하여 보론을 예비증착(predeposition)한 후, 본격적으로 보론을 증착시킨다. 이러한 과정으로 부분 확산된 p+반도체층 (15)이 형성된다.After the photoresist is applied on the upper surface of the silicon substrate 11 on which the oxide film is formed, only a predetermined portion is exposed using a shadow mask, and then the non-exposed portion is washed and developed. When the oxide film is etched using the photoresist pattern formed through this process as a mask and the photoresist is removed, a partial diffusion window is formed in the etched oxide film portion. The boron is diffused by predeposition by maintaining the surface where the boron is to be diffused at a high temperature. In this process, the partially diffused p + semiconductor layer 15 is formed.

그 후 마스크층인 산화막을 에칭한다.Then, the oxide film which is a mask layer is etched.

실리콘 기판 (11) 전면에 산화막을 형성하고 나서 그 산화막 상부에 포토레지스트를 도포한 다음 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 비노광부를 세척하여 현상한다. 이러한 과정을 거쳐 형성된 포토레지스트 패턴을 마스크로 하여 산화막을 에칭하고 포토레지스트를 제거한 다음, 텍스처링을 실시하여 실리콘 기판 전면에 역피라미드 구조를 형성한다. 그 후, 마스크층인 산화막을 에칭한다.After the oxide film is formed on the entire surface of the silicon substrate 11, a photoresist is applied on the oxide film, and then only a predetermined portion is exposed using a shadow mask, and then the non-exposed portion is washed and developed. The oxide film is etched using the photoresist pattern formed through this process as a mask, the photoresist is removed, and texturing is performed to form an inverse pyramid structure on the entire surface of the silicon substrate. Then, the oxide film which is a mask layer is etched.

이어서, 역피라미드 구조가 형성된 실리콘 기판 (11) 전면에 산화막을 형성하고 리소그래피공정을 이용하여 포토레지스트 패턴을 마스크로 하여 산화막의 소정영역을 에칭한다.Subsequently, an oxide film is formed over the entire silicon substrate 11 having the inverse pyramid structure, and a predetermined region of the oxide film is etched using a photoresist pattern as a mask using a lithography process.

상기 포토레지스트 패턴을 제거하고 n형 불순물을 깊게 확산하여 n++반도체층 (13)을 형성한다. 이렇게 형성된 에미터 영역에서 전자 또는 정공이 형성된다. 이 때 전자는 실리콘 기판 표면으로 정공은 벌크 영역을 지나 실리콘 기판 후면에 도달하여 외부 단자에 전류가 흐르게 된다.The photoresist pattern is removed and n-type impurities are deeply diffused to form an n ++ semiconductor layer 13. Electrons or holes are formed in the emitter region thus formed. At this time, the electrons reach the silicon substrate surface, the holes pass through the bulk region, and reach the rear surface of the silicon substrate so that current flows to the external terminals.

이어서, 마스크층인 산화막을 에칭한다. 그 후, 산화막을 다시 형성한 다음, 상기와 같은 리소그래피공정을 이용하여 n형 불순물을 얇게 확산하여 n+반도체층 (12)을 형성한다. 이어서, 마스크층인 산화막을 에칭한다.Next, the oxide film which is a mask layer is etched. Thereafter, the oxide film is formed again, and then n-type impurities are diffused thinly using the lithography process as described above to form the n + semiconductor layer 12. Next, the oxide film which is a mask layer is etched.

그리고 나서, 상기 결과물상에 반사방지막(antireflection layer)으로서 작용할 수 있는 산화막 (14)을 형성한다.An oxide film 14 is then formed on the resultant, which can act as an antireflection layer.

그 후 상술한 리소그래피공정을 반복하여 얻어진 포토레지스트 패턴을 이용하여 실리콘 기판 후면에 전도성 금속층을 증착하여 후면전극 (16)을 형성한다.Thereafter, a conductive metal layer is deposited on the back side of the silicon substrate using the photoresist pattern obtained by repeating the above-described lithography process to form the back electrode 16.

이어서, 상기 리소그래피공정을 반복하여 얻어진 포토레지스트 패턴을 이용하여 실리콘 기판의 전면상에 전도성 금속을 증착하여 전도성 금속층을 형성한다.Subsequently, a conductive metal layer is formed by depositing a conductive metal on the entire surface of the silicon substrate using the photoresist pattern obtained by repeating the lithography process.

상기 포토레지스트 패턴과 불필요한 전도성 금속층을 제거하는 리프트 오프(lift off) 공정을 실시하고 나서, 상기 전도성 금속층 상부에 전기도금을 실시하고 어닐링하면 전면전극 (17)이 형성됨으로써 도 1에 도시된 태양전지가 완성된다.After performing the lift off process of removing the photoresist pattern and the unnecessary conductive metal layer, electroplating and annealing the conductive metal layer, the front electrode 17 is formed to form the solar cell illustrated in FIG. 1. Is completed.

상기에서 알 수 있는 바와 같이, LBSF형 전지는 제조시 여러 단계의 산화공정과 포토리소그래피 공정 및 보론(boron) 및 인(phosphorous) 확산 공정을 거치기 때문에 야러차례의 고온공정을 포함하고 있을 뿐만 아니라 공정과정이 매우 복잡하다. 뿐만 아니라, 각 공정사이에 실리콘 기판의 오염 방지 및 캐리아 수명이 단축되는 것을 방지하기 위하여 세정공정을 거치는 것이 요구된다. 따라서 전지 제조에 대략 2 내지 3주간의 시간과 노동력이 필요하고, 보론의 확산시 고가의 확산 장비가 반드시 필요하다.As can be seen from the above, LBSF-type battery is subjected to various high-temperature processes because it undergoes several stages of oxidation process, photolithography process, and boron and phosphorous diffusion process in manufacturing. The process is very complicated. In addition, it is required to go through a cleaning process in order to prevent contamination of the silicon substrate and shorten the carry life between the processes. Therefore, it takes about two to three weeks of time and labor to manufacture the battery, and expensive diffusion equipment is necessary for the diffusion of boron.

상술한 바와 같은 이유로 인하여 전지의 제조가격이 상승되어 청정에너지 발전인 태양광 발전이 다른 범용 발전시스템 즉 화력이나 원자력 발전에 비하여 시장형성이 극히 제한된다는 문제점이 있다.Due to the above-mentioned reasons, the manufacturing price of the battery is increased, and there is a problem that the market formation is extremely limited compared to other general-purpose power generation systems, that is, thermal power or nuclear power generation, that is, solar power generation, which is clean energy generation.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 고효율이면서 제조비용이 저렴한 태양전지의 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to solve the above problems to provide a method of manufacturing a solar cell with high efficiency and low manufacturing cost.

도 1은 일반적인 LBSF 태양전지의 구조를 나타낸 도면이고,1 is a view showing the structure of a typical LBSF solar cell,

도 2 및 도 3은 본 발명에 따라 제조된 태양전지의 구조를 나타낸 도면이다.2 and 3 is a view showing the structure of a solar cell manufactured according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11, 21, 31... p형 실리콘 기판11, 21, 31 ... p-type silicon substrate

12, 22, 32... n+반도체층12, 22, 32 ... n + semiconductor layer

13... n++반도체층13 ... n ++ semiconductor layer

14, 14', 23, 33, 33'... 산화막14, 14 ', 23, 33, 33' ... oxide

15, 35... p+반도체층15, 35 ... p + semiconductor layer

16, 24, 36... 후면전극16, 24, 36 ... back electrode

17, 25, 37... 전면전극17, 25, 37.Front electrode

본 발명의 과제는 (a) p형 실리콘 기판상에 산화막을 형성하는 단계; (b) 실리콘 기판 전면상의 산화막 상부에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계; (d) 실리콘 기판 전면상의 산화막을 에칭하는 단계; (e) 실리콘 기판 전면과 후면에 인(P)을 확산하여 n+`반도체층을 형성하고 나서, 실리콘 기판 전면의 n+`반도체층 상부에 산화막을 형성하는 단계; (f) 실리콘 기판 후면 전체에 알루미늄(Al)을 증착한 다음, 소결하여 p+반도체층을 형성하는 단계; (g) 리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 전도성 금속층을 형성하는 단계; (i) 리프트 오프(lift off) 공정을 실시하는 단계; (j) 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극을 형성하는 단계; 및 (k) 상기 실리콘 기판 전면의 전도성 금속층 상부에 은을 전기도금을 하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법에 의하여 이루어진다.An object of the present invention is to form an oxide film on a p-type silicon substrate; (b) forming a photoresist pattern on the oxide film on the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) removing the photoresist pattern and performing texturing; (d) etching the oxide film on the entire surface of the silicon substrate; (e) diffusing phosphorus (P) on the front and rear surfaces of the silicon substrate to form an n + ` semiconductor layer, and then forming an oxide film on the n +` semiconductor layer on the front of the silicon substrate; (f) depositing aluminum (Al) on the entire back surface of the silicon substrate and then sintering to form a p + semiconductor layer; (g) forming a conductive metal layer on a predetermined region of the front surface of the silicon substrate using a lithography process; (i) performing a lift off process; (j) depositing a conductive metal on the back surface of the silicon substrate to form a back electrode; And (k) electroplating silver on the conductive metal layer on the front surface of the silicon substrate.

본 발명의 과제는 또한 (a) p형 실리콘 기판상에 산화막을 형성하는 단계; (b) 실리콘 기판 전면의 산화막 상부에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계; (d) 실리콘 기판 전면의 산화막을 에칭하는 단계; (e) 실리콘 기판 전면 전체와 실리콘 기판 후면의 소정영역에 인(P)을 확산하여 n+`반도체층을 각각 형성하고 나서, 실리콘 기판 전면 전체와 실리콘 기판 후면의 소정영역에 산화막을 형성하는 단계; (f) 상기 실리콘 기판 후면의 소정영역에 알루미늄(Al)을 확산한 후 소결하여 부분적인 p+반도체층을 형성하는 단계; (g) 리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 전도성 금속층을 형성하는 단계; (i) 리프트 오프(lift off) 공정을 실시하는 단계; (j) 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극을 형성하는 단계; 및 (k) 상기 실리콘 기판 전면의 전도성 금속층 상부에 은을 전기도금하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법에 의하여 이루어진다.The object of the present invention is also (a) forming an oxide film on a p-type silicon substrate; (b) forming a photoresist pattern on the oxide film over the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) removing the photoresist pattern and performing texturing; (d) etching the oxide film over the silicon substrate; (e) forming n + ` semiconductor layers by diffusing phosphorus (P) over the entire surface of the silicon substrate and the predetermined region behind the silicon substrate, and then forming an oxide film on the entire region of the silicon substrate and the predetermined region behind the silicon substrate. ; (f) diffusing aluminum (Al) in a predetermined region on the back surface of the silicon substrate and sintering to form a partial p + semiconductor layer; (g) forming a conductive metal layer on a predetermined region of the front surface of the silicon substrate using a lithography process; (i) performing a lift off process; (j) depositing a conductive metal on the back surface of the silicon substrate to form a back electrode; And (k) electroplating silver on top of the conductive metal layer on the front surface of the silicon substrate.

상기 전도성 금속이 니켈, 구리, 은, 알루미늄, 주석, 아연, 인듐, 티타늄, 팔라듐 및 그 산화물로 이루어진 군으로부터 선택된 적어도 하나이다.The conductive metal is at least one selected from the group consisting of nickel, copper, silver, aluminum, tin, zinc, indium, titanium, palladium and oxides thereof.

이하, 도 2를 참조하여 본 발명의 일실시예에 따른 실리콘 태양전지의 제조방법들을 상세히 살펴보기로 한다.Hereinafter, a method of manufacturing a silicon solar cell according to an embodiment of the present invention will be described in detail with reference to FIG. 2.

이를 참조하여, 실리콘 기판 (21) 전면과 후면상에 산화막을 형성한다. 그리고 나서, 산화막이 형성된 실리콘 기판 전면에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 상기 산화막을 에칭한다.Referring to this, oxide films are formed on the front and rear surfaces of the silicon substrate 21. Then, a photoresist pattern is formed over the entire silicon substrate on which the oxide film is formed, and the oxide film is etched using the photoresist pattern.

상기 포토레지스트 패턴을 제거해내고, 텍스처링을 실시하여 실리콘 기판 전면에 역피라미드(inverted pyramid)를 형성한다.The photoresist pattern is removed and texturized to form inverted pyramids on the entire surface of the silicon substrate.

실리콘 기판 (21) 전면에 형성되어 있는 산화막을 에칭해낸 후, 실리콘 기판 전면과 후면 전체에 걸쳐 인(P)을 확산하여 n+반도체층을 형성한다 (여기에서, 실리콘 기판 후면에 형성된 n+반도체층은 후에 형성하는 p+반도체층 (24)으로 중화되어 결과적으로 없어짐). 이 때 인의 도핑물질로는 POCl3이나 P2O5를 800 내지 900℃에서 도핑하여 도핑농도가 100 내지 200Ω/?가 되게 확산시킨다. 여기에서 n+반도체층의 접합두께는 0.5 내지 1㎛인 것이 바람직하다.After etching the oxide film formed on the front surface of the silicon substrate 21, phosphorus (P) is diffused over the entire surface and the back surface of the silicon substrate to form an n + semiconductor layer (here, the n + semiconductor formed on the back surface of the silicon substrate). Layer is neutralized with p + semiconductor layer 24 which is formed later, resulting in disappearance). At this time, as the doping material of phosphorus doped POCl 3 or P 2 O 5 at 800 to 900 ℃ to diffuse the doping concentration to 100 to 200Ω / ?. Here, it is preferable that the junction thickness of n + semiconductor layer is 0.5-1 micrometer.

상기 실리콘 기판의 전면은 상술한 바와 같이 역피라미드 구조가 형성되어 있어서 빛의 흡수가 좋게 되어 있으며, pn 접합면을 효율적으로 늘려 전류의 밀도를 증가시킨다.As described above, the front surface of the silicon substrate has an inverted pyramid structure to absorb light well, and the pn junction surface is efficiently increased to increase the current density.

이어서, 상기 실리콘 기판의 전면에 산화막 (23)을 형성한다.Next, an oxide film 23 is formed on the entire surface of the silicon substrate.

실리콘 기판 (21) 후면 전체에 걸쳐 알루미늄을 확산하고 소결하여 p+반도체층 (미도시)을 형성한다. 상기 p+반도체층은 전류의 수집을 향상시키는 후면전계(Back Surface Field : BSF)로서의 역할을 한다.Aluminum is diffused and sintered over the entire back surface of the silicon substrate 21 to form a p + semiconductor layer (not shown). The p + semiconductor layer serves as a back surface field (BSF) to improve the collection of current.

리소그래피공정을 이용하여 실리콘 기판 전면에 전도성 금속층을 형성한다. 이어서, 실리콘 기판 전면상의 레지스트 패턴과 불필요한 영역에 형성된 전도성 금속층을 제거한다(리프트 오프(lift off) 공정).A conductive metal layer is formed on the entire surface of the silicon substrate using a lithography process. Subsequently, the resist pattern on the front surface of the silicon substrate and the conductive metal layer formed in unnecessary areas are removed (lift off process).

그리고 나서, 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극 (24)을 형성하고, 상기 실리콘 기판 전면의 전도성 금속층 상부에 은(Ag)을 전기도금하여 전면전극 (25)을 형성한다.Then, a conductive metal is deposited on the back surface of the silicon substrate to form the back electrode 24, and silver (Ag) is electroplated on the conductive metal layer on the front surface of the silicon substrate to form the front electrode 25.

도 3을 참조하여, 본 발명의 다른 실시예에 따른 실리콘 태양전지의 제조방법을 설명하기로 한다.Referring to Figure 3, it will be described a method of manufacturing a silicon solar cell according to another embodiment of the present invention.

이를 참조하여, 실리콘 기판 (31) 전면과 후면상에 산화막을 형성한다. 그리고 나서, 산화막이 형성된 실리콘 기판 (31) 전면에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 상기 산화막을 에칭한다.Referring to this, oxide films are formed on the front and rear surfaces of the silicon substrate 31. Then, a photoresist pattern is formed over the entire silicon substrate 31 on which the oxide film is formed, and the oxide film is etched using the photoresist pattern.

상기 포토레지스트 패턴을 제거해내고, 텍스처링을 실시하여 실리콘 기판 전면에 역피라미드(inverted pyramid)를 형성한다.The photoresist pattern is removed and texturized to form inverted pyramids on the entire surface of the silicon substrate.

실리콘 기판 (31) 전면에 형성되어 있는 산화막을 에칭해낸 후, 실리콘 기판 전면과 후면의 소정영역에 걸쳐 인(P)을 확산하여 n+반도체층 (32) 및 (34)을 각각 형성한다. 그리고 나서 실리콘 기판 (31) 전면 상부에 산화막 (33)을 형성하고, 실리콘 기판 후면의 소정영역에 산화막 (33')을 형성한다.After etching the oxide film formed on the entire surface of the silicon substrate 31, phosphorus (P) is diffused over a predetermined region on the front surface and the rear surface of the silicon substrate to form n + semiconductor layers 32 and 34, respectively. Then, an oxide film 33 is formed over the entire surface of the silicon substrate 31, and an oxide film 33 ′ is formed in a predetermined region behind the silicon substrate 31.

이어서, 상기 n+반도체층 (34)과 산화막 (33')이 형성된 실리콘 기판 (21) 후면에 알루미늄을 금속 마스크(metal mask)를 이용하여 부분적으로 증착한다. 상기 결과물을 소결하여 부분적인 p+반도체층 (35)을 형성하면, 실리콘 기판 전면에서 후면까지 전류가 흐르는 통로가 만들어지게 된다.Subsequently, aluminum is partially deposited on the back surface of the silicon substrate 21 on which the n + semiconductor layer 34 and the oxide film 33 ′ are formed using a metal mask. When the resultant product is sintered to form a partial p + semiconductor layer 35, a passage through which a current flows from the front side to the back side of the silicon substrate is created.

상기 n+반도체층 (32) 및 (34)은 p형 실리콘 기판과 접촉하여 pn접합을 형성하는데, 이 접합은 외부의 단자와 격리되어 있는 접합(floating junction)으로서 전류의 흐름에 영향을 미치지 않는다. 그러나 이러한 접합은 태양광을 받아 태양전지가 동작을 할 때, 전자들을 축적하여 태양전지의 전면으로 전자들을 밀어내어 실리콘 표면의 재결합을 줄이게 된다. 그리고 이렇게 실리콘 표면의 재결합이 감소되면 태양전지 특성을 나타내는 중요상수인 개방전압(open circuit voltage: Voc)을 향상시킴으로써 효율이 증가하게 된다.The n + semiconductor layers 32 and 34 are in contact with a p-type silicon substrate to form a pn junction, which is a floating junction that is isolated from external terminals and does not affect the flow of current. . However, when the solar cell operates under sunlight, the junction accumulates electrons and pushes electrons toward the front of the solar cell, reducing the recombination of the silicon surface. In addition, the recombination of the silicon surface is reduced and the efficiency is increased by improving the open circuit voltage (V oc ), which is an important constant for solar cell characteristics.

상기 리소그래피공정을 이용하여 실리콘 기판 전면에 전도성 금속층을 형성한다. 이어서, 실리콘 기판 전면상의 레지스트 패턴과 불필요한 영역에 형성된 전도성 금속층을 제거한다(리프트 오프(lift off) 공정).By using the lithography process, a conductive metal layer is formed on the entire surface of the silicon substrate. Subsequently, the resist pattern on the front surface of the silicon substrate and the conductive metal layer formed in unnecessary areas are removed (lift off process).

그리고 나서, 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극 (36)을 형성하고, 상기 실리콘 기판 전면의 전도성 금속층 상부에 은(Ag)을 전기도금하여 전면전극 (37)을 형성한다.Then, a conductive metal is deposited on the back surface of the silicon substrate to form the back electrode 36, and silver (Ag) is electroplated on the conductive metal layer on the front surface of the silicon substrate to form the front electrode 37.

이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited only to the following Examples.

<실시예><Example>

p형 실리콘 기판의 전면과 후면에 약 1300Å 두께의 SiO2막을 형성하였다. 그리고 나서 상기 실리콘 기판의 전면의 산화막 상부에 포지티브 포토레지스트를 약 1㎛ 두께로 도포한 다음, 새도우마스크를 이용하여 소정부위만을 노광처리한 다음, 비노광부를 세척하여 현상하였다.An SiO 2 film having a thickness of about 1300 μs was formed on the front and rear surfaces of the p-type silicon substrate. Then, a positive photoresist was applied to the upper portion of the oxide film on the entire surface of the silicon substrate in a thickness of about 1 μm, and only a predetermined portion was exposed using a shadow mask, and then the non-exposed portion was washed and developed.

이러한 과정을 거쳐 형성된 포토레지스트 패턴을 마스크로 하고 7:1 BHF용액을 이용하여 SiO2막을 2분 30초동안 에칭한 다음, 포토레지스트를 제거하였다.The photoresist pattern formed through this process was used as a mask, and the SiO 2 film was etched for 2 minutes and 30 seconds using a 7: 1 BHF solution, and then the photoresist was removed.

그 후, 약 8% 수산화칼륨(KOH) 용액을 이용하여 70℃에서 8분동안 텍스처링하였다. 이어서, 실리콘 기판 전면상의 SiO2막을 7:1 BHF용액을 이용하여 2분 30초동안 에칭하였다.Thereafter, texturing was performed at 70 ° C. for 8 minutes using about 8% potassium hydroxide (KOH) solution. The SiO 2 film on the entire silicon substrate was then etched for 2 minutes 30 seconds using a 7: 1 BHF solution.

상기 실리콘 기판 전면과 후면에 POCl3을 약 840℃에서 20분동안 확산하여 약 150 내지 240Ω/? 정도의 시트 저항을 갖는 n+`반도체층을 형성하고 나서, 실리콘 기판 전면의 n+반도체층 상부에 SiO2막을 형성하였다.POCl 3 was diffused on the front and back of the silicon substrate for about 20 minutes at about 840 ° C. to about 150 to 240Ω /? After forming an n + ` semiconductor layer having a sheet resistance of a degree, a SiO 2 film was formed over the n + semiconductor layer on the entire silicon substrate.

실리콘 기판 후면 전체에 알루미늄을 증착하고 900 내지 980℃에서 1 내지 2시간동안 소결하여 약 2㎛ 접합 두께의 p+반도체층을 형성하였다.Aluminum was deposited on the entire back surface of the silicon substrate and sintered at 900 to 980 ° C. for 1 to 2 hours to form a p + semiconductor layer having a thickness of about 2 μm.

리소그래피공정을 이용하여 실리콘 기판 전면의 홈에 약 600Å 두께의 Td, 약 600Å 두께의 Pd 및 약 600Å 두께의 Ag을 순차적으로 증착하였다.Using a lithography process, Td, about 600 mm thick Pd and Ag about 600 mm thick were sequentially deposited in the grooves on the front surface of the silicon substrate.

그 후, 리프트 오프(lift off) 공정을 실시하여 레지스트와 불필요한 Td, Pd 및 Ag층을 제거하였다. 이어서 실리콘 기판 후면에 알루미늄을 증착하여 후면전극을 형성하였고 Ag을 전기도금하여 전면전극을 형성하였다.Thereafter, a lift off process was performed to remove the resist and unnecessary Td, Pd and Ag layers. Subsequently, aluminum was deposited on the back of the silicon substrate to form a back electrode, and Ag was electroplated to form a front electrode.

상술한 제조방법에 따르면, 텍스처링에 약 8시간이 소요되고, 인의 도핑 및 산화공정에 약 4시간, 알루미늄 증착 및 열처리에 약 4시간, 전면전극 형성에 약 4시간이 소요되었다. 그러므로 통상적인 태양전지의 제조시 2 내지 3주일이 소요되는 것에 비하여 제조시간이 매우 감소되어 전지 제조가격이 큰 폭으로 절감되었다.According to the above-described manufacturing method, it took about 8 hours for texturing, about 4 hours for phosphorus doping and oxidation process, about 4 hours for aluminum deposition and heat treatment, and about 4 hours for front electrode formation. Therefore, the manufacturing time is greatly reduced compared to the two to three weeks in the manufacture of a conventional solar cell significantly reduced the battery manufacturing price.

또한 상기 실시예에 따라 제조된 전지는 통상적인 경우보다 제조공정이 간단하여 제조하기가 용이하고 재료의 소모가 적었을 뿐만 아니라 전지의 효율이 매우 우수하였다.In addition, the battery manufactured according to the above embodiment was simpler to manufacture than the conventional case, was easy to manufacture and consumes less material, and the battery efficiency was very excellent.

본 발명에 따라 제조된 실리콘 태양전지는 제조하기가 용이하고 재료의 소모가 적어서 제조가격을 낮출 수 있다. 이렇게 종래보다 저렴한 제조가격으로 제조된 전지는 효율이 매우 우수하게 유지되므로 그 활용의 폭이 넓다.The silicon solar cell manufactured according to the present invention is easy to manufacture and low consumption of materials can lower the manufacturing price. Thus, a battery manufactured at a lower manufacturing price than the prior art has a wide range of utilization because of its excellent efficiency.

본 발명에 따라 제조된 실리콘 태양전지는 입사된 빛을 전기에너지로 변환하는 반도체 소자로 전기에너지가 필요한 모든 분야에 폭넓게 적용가능하다. 즉, 가정용의 소규모 가전제품 전원에서 태양광을 이용한 대규모 발전으로 화력발전소나 원자력 발전소와 같이 수 MW급의 발전소 건설에 이용할 수 있다. 이 밖에도 우주선이나 통신위성의 에너지원으로 위성체의 수명이상으로 전력을 공급할 수 있다.The silicon solar cell manufactured according to the present invention is a semiconductor device that converts incident light into electrical energy, and is widely applicable to all fields requiring electrical energy. In other words, large-scale power generation using solar power from small household electrical appliances can be used for the construction of several MW-class power plants such as thermal power plants and nuclear power plants. In addition, energy sources of spacecraft or communication satellites can supply power over the life of satellites.

Claims (4)

(a) p형 실리콘 기판상에 산화막을 형성하는 단계;(a) forming an oxide film on the p-type silicon substrate; (b) 실리콘 기판 전면상의 산화막 상부에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계;(b) forming a photoresist pattern on the oxide film on the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계;(c) removing the photoresist pattern and performing texturing; (d) 실리콘 기판 전면상의 산화막을 에칭하는 단계;(d) etching the oxide film on the entire surface of the silicon substrate; (e) 실리콘 기판 전면과 후면에 인(P)을 확산하여 n+`반도체층을 형성하고 나서, 실리콘 기판 전면의 n+`반도체층 상부에 산화막을 형성하는 단계;(e) diffusing phosphorus (P) on the front and rear surfaces of the silicon substrate to form an n + ` semiconductor layer, and then forming an oxide film on the n +` semiconductor layer on the front of the silicon substrate; (f) 실리콘 기판 후면 전체에 알루미늄(Al)을 증착한 다음, 소결하여 p+반도체층을 형성하는 단계;(f) depositing aluminum (Al) on the entire back surface of the silicon substrate and then sintering to form a p + semiconductor layer; (g) 리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 전도성 금속층을 형성하는 단계;(g) forming a conductive metal layer on a predetermined region of the front surface of the silicon substrate using a lithography process; (i) 리프트 오프(lift off) 공정을 실시하는 단계;(i) performing a lift off process; (j) 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극을 형성하는 단계; 및(j) depositing a conductive metal on the back surface of the silicon substrate to form a back electrode; And (k) 상기 실리콘 기판 전면의 전도성 금속층 상부에 은을 전기도금을 하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.(k) electroplating silver on the conductive metal layer on the front surface of the silicon substrate. 제1항에 있어서, 상기 전도성 금속이 니켈, 구리, 은, 알루미늄, 주석, 아연, 인듐, 티타늄, 팔라듐 및 그 산화물로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of claim 1, wherein the conductive metal is at least one selected from the group consisting of nickel, copper, silver, aluminum, tin, zinc, indium, titanium, palladium, and oxides thereof. (a) p형 실리콘 기판상에 산화막을 형성하는 단계;(a) forming an oxide film on the p-type silicon substrate; (b) 실리콘 기판 전면의 산화막 상부에 포토레지스트 패턴을 형성하고, 이 포토레지스트 패턴을 이용하여 산화막을 에칭하는 단계;(b) forming a photoresist pattern on the oxide film over the entire silicon substrate and etching the oxide film using the photoresist pattern; (c) 상기 포토레지스트 패턴을 제거하고 텍스처링을 실시하는 단계;(c) removing the photoresist pattern and performing texturing; (d) 실리콘 기판 전면의 산화막을 에칭하는 단계;(d) etching the oxide film over the silicon substrate; (e) 실리콘 기판 전면 전체와 실리콘 기판 후면의 소정영역에 인(P)을 확산하여 n+`반도체층을 각각 형성하고 나서, 실리콘 기판 전면 전체와 실리콘 기판 후면의 소정영역에 산화막을 형성하는 단계;(e) forming n + ` semiconductor layers by diffusing phosphorus (P) over the entire surface of the silicon substrate and the predetermined region behind the silicon substrate, and then forming an oxide film on the entire region of the silicon substrate and the predetermined region behind the silicon substrate. ; (f) 상기 실리콘 기판 후면의 소정영역에 알루미늄(Al)을 확산한 후 소결하여 부분적인 p+반도체층을 형성하는 단계;(f) diffusing aluminum (Al) in a predetermined region on the back surface of the silicon substrate and sintering to form a partial p + semiconductor layer; (g) 리소그래피공정을 이용하여 실리콘 기판 전면의 소정영역에 전도성 금속층을 형성하는 단계;(g) forming a conductive metal layer on a predetermined region of the front surface of the silicon substrate using a lithography process; (i) 리프트 오프(lift off) 공정을 실시하는 단계;(i) performing a lift off process; (j) 실리콘 기판 후면에 전도성 금속을 증착하여 후면전극을 형성하는 단계; 및(j) depositing a conductive metal on the back surface of the silicon substrate to form a back electrode; And (k) 상기 실리콘 기판 전면의 전도성 금속층 상부에 은을 전기도금하는 단계를 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.(k) a method of manufacturing a silicon solar cell, comprising electroplating silver on top of the conductive metal layer on the front surface of the silicon substrate. 제3항에 있어서, 상기 전도성 금속이 니켈, 구리, 은, 알루미늄, 주석, 아연, 인듐, 티타늄, 팔라듐 및 그 산화물로 이루어진 군으로부터 선택된 적어도 하나인 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of claim 3, wherein the conductive metal is at least one selected from the group consisting of nickel, copper, silver, aluminum, tin, zinc, indium, titanium, palladium, and oxides thereof.
KR1019970002966A 1997-01-31 1997-01-31 Method for fabricating silicon solar cell KR100416739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970002966A KR100416739B1 (en) 1997-01-31 1997-01-31 Method for fabricating silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970002966A KR100416739B1 (en) 1997-01-31 1997-01-31 Method for fabricating silicon solar cell

Publications (2)

Publication Number Publication Date
KR19980067094A KR19980067094A (en) 1998-10-15
KR100416739B1 true KR100416739B1 (en) 2004-05-17

Family

ID=37319103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970002966A KR100416739B1 (en) 1997-01-31 1997-01-31 Method for fabricating silicon solar cell

Country Status (1)

Country Link
KR (1) KR100416739B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844505B1 (en) * 2006-11-15 2008-07-08 준 신 이 Solar cell fabrication method of thin silicon wafer using the negative fixed charges in aluminum oxy-nitride on thin films
KR102205826B1 (en) 2019-08-13 2021-01-21 광주과학기술원 Integral type of Lithium secondary battery-Solar Cell pack and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038487B1 (en) 2008-02-13 2011-06-02 엘지전자 주식회사 Method for texturing of solar cell by wet etching using metallic catalyst
KR20100124660A (en) * 2009-05-19 2010-11-29 주성엔지니어링(주) Solar cell and method for manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451969A (en) * 1983-01-10 1984-06-05 Mobil Solar Energy Corporation Method of fabricating solar cells
JPS59194477A (en) * 1983-04-19 1984-11-05 Toshiba Corp Manufacture of solar battery
KR930003439A (en) * 1991-07-02 1993-02-24 이헌조 Manufacturing Process of Solar Cell
JPH05259488A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Silicon solar cell device and manufacture thereof
US5279682A (en) * 1991-06-11 1994-01-18 Mobil Solar Energy Corporation Solar cell and method of making same
KR940003106A (en) * 1992-07-23 1994-02-19 이헌조 Manufacturing method of polycrystalline silicon solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451969A (en) * 1983-01-10 1984-06-05 Mobil Solar Energy Corporation Method of fabricating solar cells
JPS59194477A (en) * 1983-04-19 1984-11-05 Toshiba Corp Manufacture of solar battery
US5279682A (en) * 1991-06-11 1994-01-18 Mobil Solar Energy Corporation Solar cell and method of making same
KR930003439A (en) * 1991-07-02 1993-02-24 이헌조 Manufacturing Process of Solar Cell
JPH05259488A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Silicon solar cell device and manufacture thereof
KR940003106A (en) * 1992-07-23 1994-02-19 이헌조 Manufacturing method of polycrystalline silicon solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844505B1 (en) * 2006-11-15 2008-07-08 준 신 이 Solar cell fabrication method of thin silicon wafer using the negative fixed charges in aluminum oxy-nitride on thin films
KR102205826B1 (en) 2019-08-13 2021-01-21 광주과학기술원 Integral type of Lithium secondary battery-Solar Cell pack and manufacturing method thereof

Also Published As

Publication number Publication date
KR19980067094A (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US6524880B2 (en) Solar cell and method for fabricating the same
KR100366349B1 (en) solar cell and method for manufacturing the same
KR101627217B1 (en) Sollar Cell And Fabrication Method Thereof
US8759140B2 (en) Solar cell and method for manufacturing the same
JP2009535845A (en) Solar cell with doped semiconductor heterojunction electrode
KR20070071060A (en) Manufacturing method of solar cell
KR20090091456A (en) Fabrication method of back contact solar cell
KR101597532B1 (en) The Manufacturing Method of Back Contact Solar Cells
CN111063761A (en) Preparation process of solar cell
KR102547804B1 (en) Bifacial silicon solar cell and method for manufacturing the same
KR100416739B1 (en) Method for fabricating silicon solar cell
KR101054985B1 (en) Method for fabricating solar cell
KR100416740B1 (en) Method for fabricating rear locally sintered silicon solar cell
EP1826825B1 (en) Solar cell structure comprising rear contacts and current collection by means of transistor effect and production method thereof
CN115528136A (en) Back contact battery, manufacturing method thereof, battery assembly and photovoltaic system
KR101198430B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
KR810001314B1 (en) Semiconductor device having a body of amorphous silicon
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR20020059186A (en) manufacturing method of silicon solar cell
KR101322628B1 (en) Fabrication method of back reflection layer of solar cell, fabrication method of back electrode part of solar cell, and fabrication method of solar cell
KR100397596B1 (en) Buried contact solar cell and manufacturing method thereof
Lennon et al. Manufacturing of various PV technologies
KR100351066B1 (en) Method for fabricating solar cell of depressed electrode shape
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
KR101163321B1 (en) Method for Fabricating Solar Cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091214

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee