JPH0528513B2 - - Google Patents

Info

Publication number
JPH0528513B2
JPH0528513B2 JP60206951A JP20695185A JPH0528513B2 JP H0528513 B2 JPH0528513 B2 JP H0528513B2 JP 60206951 A JP60206951 A JP 60206951A JP 20695185 A JP20695185 A JP 20695185A JP H0528513 B2 JPH0528513 B2 JP H0528513B2
Authority
JP
Japan
Prior art keywords
power generation
photoelectric conversion
photovoltaic device
photoactive layer
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60206951A
Other languages
Japanese (ja)
Other versions
JPS6266684A (en
Inventor
Yukio Nakajima
Hisao Haku
Kaneo Watanabe
Tsugufumi Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60206951A priority Critical patent/JPS6266684A/en
Publication of JPS6266684A publication Critical patent/JPS6266684A/en
Publication of JPH0528513B2 publication Critical patent/JPH0528513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は光照射を受けると起電力を発生する光
起電力装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device that generates an electromotive force when irradiated with light.

(ロ) 従来の技術 所望の高起電圧を得るべく透明性絶縁基板の一
方の主面に於いて支持された複数の発電領域を電
気的に直列接続せしめた光起電力装置は例えば米
国特許第4281208号記載の如く既に知られており、
またその構造は電卓、腕時計、ポケツトラジオ等
の小型民生用電子機器の電源として広く実用化さ
れ、最近では太陽光発電にも用いられつつある。
(b) Prior Art A photovoltaic device in which a plurality of power generation regions supported on one main surface of a transparent insulating substrate are electrically connected in series in order to obtain a desired high electromotive voltage is disclosed in, for example, US Pat. It is already known as described in No. 4281208,
Moreover, this structure has been widely put into practical use as a power source for small consumer electronic devices such as calculators, wristwatches, and pocket radios, and has recently been used for solar power generation.

この様な直列接続型光起電力装置に於いて留意
しなければならないことは各発電領域の電流値を
等しくしなければならないことである。即ち、同
一の光照射条件の下で発生する電流値が各発電領
域毎に相違するにも拘らず、それらを直列接続す
ると、出力される電流値は最近の電流値に規制さ
れるためにその電流値以上の電流は出力されるに
至らず無効となる。そこで、従来から斯る電流規
制に鑑み、各発電領域の発電面積を同一とするこ
とにより等しい電流値を実現していた。
What must be kept in mind in such a series-connected photovoltaic device is that the current values in each power generation region must be made equal. In other words, even though the current value generated under the same light irradiation conditions differs for each power generation area, if they are connected in series, the output current value will be regulated by the recent current value, so the current value will be different. A current exceeding the current value is not outputted and becomes invalid. Therefore, in view of such current regulations, equal current values have been achieved by making the power generation area of each power generation region the same.

一方、上述の如き先行技術に開示された光起電
力装置は、光照射を受けると電子及び又は正孔の
光キヤリアを発生する光活性層としてシリコン化
合物ガスのプラズマ分解や光分解等により得られ
る厚み1μm前後のアモルフアスシリコン系半導体
を用いているために、大面積化が図れる反面、大
面積になればなるに従つて、膜厚や膜質が僅かな
がら変動すると言う危惧を有する。更に、斯るア
モルフアスシリコン系の半導体光活性層は反応ガ
スの分解により得られるために、斯る光活性層の
被着面は平坦面に限定されることなく特開昭60−
35579号公報に開示された如く波状の曲面を持つ
屋根瓦にも形成することができるものの、この様
な曲面に光活性層を均一に形成することは極めて
難しい。
On the other hand, in the photovoltaic device disclosed in the prior art as described above, a photoactive layer that generates photocarriers of electrons and/or holes when irradiated with light is obtained by plasma decomposition or photodecomposition of a silicon compound gas. Since an amorphous silicon semiconductor with a thickness of around 1 μm is used, it is possible to increase the area, but there is a concern that the film thickness and film quality may vary slightly as the area increases. Furthermore, since such an amorphous silicon-based semiconductor photoactive layer is obtained by decomposing a reactive gas, the surface to which such a photoactive layer is adhered is not limited to a flat surface;
Although it can be formed on a roof tile with a wavy curved surface as disclosed in Japanese Patent No. 35579, it is extremely difficult to uniformly form a photoactive layer on such a curved surface.

ところが斯る不均一な光活性層を持つ光起電力
装置にあつても、複数の発電領域を直列接続する
に際しては従来と同様各発電領域の発電面積、即
ち分割方向の幅を同一とする方法が採用されてい
るだけで、光活性層の膜厚や膜質の不揃いについ
ては何ら考慮されていないために、最高の光電変
換出力を導出するに至つていない。
However, even in a photovoltaic device having such a non-uniform photoactive layer, when connecting multiple power generation regions in series, there is a method in which the power generation area of each power generation region, that is, the width in the dividing direction, is made the same as in the past. However, since no consideration is given to irregularities in the film thickness or film quality of the photoactive layer, it has not been possible to derive the highest photoelectric conversion output.

(ハ) 発明が解決しようとする問題点 本発明の目的は、上述の如き光活性層の膜厚や
膜質の不揃いがあつても、最高の光電変換出力を
導出し得る光起電力装置の製造方法を提供するこ
とにある。
(c) Problems to be Solved by the Invention The purpose of the present invention is to manufacture a photovoltaic device that can derive the highest photoelectric conversion output even when there are irregularities in the film thickness and film quality of the photoactive layer as described above. The purpose is to provide a method.

(ニ) 問題点を解決するための手段 本発明光起電力装置の製造方法は、電気的に直
列接続される複数の発電領域に於ける各発電面積
を、個別の発電領域への分割に先立つて各発電領
域予定筒所の光電変換特性に基づき決定した後、
個別の発電領域に分割してそれらを電気的に直列
接続することを特徴とする。
(d) Means for Solving the Problems The method for manufacturing a photovoltaic device of the present invention involves dividing each power generation area in a plurality of power generation regions electrically connected in series into individual power generation regions. After determining the photoelectric conversion characteristics of each planned power generation area,
It is characterized by dividing into individual power generation areas and electrically connecting them in series.

(ホ) 作用 上述の如く発電領域の各発電面積を、各発電領
域予定箇所の光電変換特性に基づき決定すること
によつて、各発電領域の出力電流値の均一化が図
れる。
(E) Effect As described above, by determining the power generation area of each power generation region based on the photoelectric conversion characteristics of the planned location of each power generation region, it is possible to equalize the output current value of each power generation region.

(ヘ) 実施例 発電領域の光電変換特性の不揃いは、主として
半導体光活性層の膜厚や膜質の変動にあることは
従来の技術の項で既に述べた通りである。斯る膜
厚や膜質の変動は製造装置固有の問題や微妙な形
成条件によつて左右されるものの、概して同一ロ
ツトで製造された半導体光活性層の変動は少な
い。そこで多数の半導体光活性層を同時或いは連
続的に製造する際、発電領域の光電変換特性の分
布を測定するモニタを同時に形成する。
(F) Example As already stated in the prior art section, the unevenness of photoelectric conversion characteristics in the power generation region is mainly due to variations in the film thickness and film quality of the semiconductor photoactive layer. Although such variations in film thickness and film quality are influenced by problems inherent to the manufacturing equipment and delicate formation conditions, there is generally little variation in semiconductor photoactive layers manufactured in the same lot. Therefore, when manufacturing a large number of semiconductor photoactive layers simultaneously or continuously, a monitor for measuring the distribution of photoelectric conversion characteristics in the power generation region is formed at the same time.

第1図は上記光電変換特性の分布を測定する測
定方法を模式的に示すものである。第1図に於い
て、1は絶縁性且つ透明性を有する基板、2は該
基板1の一主面上に配置されたSnO2、ITOに代
表される透光性導電酸化物(TCO)からなる受
光面電極、3は上記受光面電極2の端子部分2t
を除いてその全面に被着され例えば膜面に平行な
pin接合、pn接合、pinpin接合の如き半導体接合
を有するアモルフアスシリコン系の半導体光活性
層、4は上記光活性層3の背面に設けられた背面
電極で、斯る受光面電極2乃至背面電極4の積層
体からなるモニタ用発電領域5は基板1のほぼ全
面に分割することなく設けられている。
FIG. 1 schematically shows a measurement method for measuring the distribution of the photoelectric conversion characteristics. In Fig. 1, 1 is an insulating and transparent substrate, 2 is made of a transparent conductive oxide (TCO) such as SnO 2 and ITO disposed on one main surface of the substrate 1. 3 is the terminal portion 2t of the light-receiving surface electrode 2.
For example, it is coated on the entire surface except for the film surface.
An amorphous silicon semiconductor photoactive layer having a semiconductor junction such as a pin junction, a pn junction, or a pinpin junction; 4 is a back electrode provided on the back side of the photoactive layer 3; The monitoring power generation area 5 made of a laminate of 4 is provided on almost the entire surface of the substrate 1 without being divided.

例えば半導体光活性層3が水素化アモルフアス
シリコン(a−Si:H)であつて、光入射側から
膜面に平行なpin接合を備えている場合、先ずシ
ラン(SiH4)、ジシラン(Si2H6)等のシリコン
化合物雰囲気にp型決定不純物を含むジボラン
(B2H6)を少量添加し、斯る原料ガスをプラズマ
分解や光分解により分解して膜厚50Å〜200Å程
度のp型層を形成し、次いで順次SiH4又はSi2H6
ガスのみにより膜厚4000〜6000Å程度の真性(ノ
ンドープ)層と、SiH4又はSi2H6ガスにn型決定
不純物を含むホスフイン(PH3)を添加し膜厚
100Å〜500Å程度のn型層とを積層する。
For example, when the semiconductor photoactive layer 3 is made of hydrogenated amorphous silicon (a-Si:H) and has a pin junction parallel to the film surface from the light incident side, first silane (SiH 4 ), disilane (Si A small amount of diborane (B 2 H 6 ) containing a p-type determining impurity is added to a silicon compound atmosphere such as 2 H 6 ), and the raw material gas is decomposed by plasma decomposition or photolysis to form a p film with a thickness of about 50 Å to 200 Å. Form a mold layer, then sequentially SiH 4 or Si 2 H 6
An intrinsic (non-doped) layer with a film thickness of about 4000 to 6000 Å is created using gas alone, and a film thickness is increased by adding phosphine (PH 3 ) containing an n-type determining impurity to SiH 4 or Si 2 H 6 gas.
An n-type layer with a thickness of approximately 100 Å to 500 Å is laminated.

この様にして得られた半導体光活性層3の膜厚
は1μm以下と肉薄であり、僅かな膜厚変動であつ
ても光電変換特性に与える影響は大きい。従つ
て、直列接続型光起電力装置を形成する基板と同
一サイズの基板1のほぼ全面に分割することなく
設けられたモニタ用発電領域5に対し、基板1の
受光面側からビーム状の擬似太陽光線(SB)を
第1図に示す如く2次元的に走査して斯る太陽光
線(SB)の照射により発生した光電変換出力を
受光面電極2及び背面電極4から逐次導出する。
その結果、発電領域の分割予定方向に例えば第2
図に示す如き中央部分が低い電流分布が得られる
と、横軸の分割幅内に於ける電流値の積分値が等
しくなるように直列段数に応じた各分割幅Wを決
定すれば、直列接続のために発電領域を分割して
もそれら発電領域の光電変換出力は等しくなる。
The film thickness of the semiconductor photoactive layer 3 thus obtained is as thin as 1 μm or less, and even a slight variation in the film thickness has a large effect on the photoelectric conversion characteristics. Therefore, a beam-shaped pseudo beam is generated from the light-receiving surface side of the substrate 1 to the monitor power generation area 5, which is provided without being divided over almost the entire surface of the substrate 1, which has the same size as the substrate forming the series-connected photovoltaic device. The sunlight (SB) is scanned two-dimensionally as shown in FIG. 1, and the photoelectric conversion output generated by the irradiation with the sunlight (SB) is sequentially derived from the light-receiving surface electrode 2 and the back electrode 4.
As a result, for example, a second
When a current distribution with a low central part as shown in the figure is obtained, each division width W is determined according to the number of series stages so that the integrated value of the current value within the division width on the horizontal axis is equal. Therefore, even if the power generation areas are divided, the photoelectric conversion outputs of the power generation areas will be equal.

尚、分割方向に直交する方向の発電領域の長さ
は全て等しい。
Note that the lengths of the power generation regions in the direction orthogonal to the dividing direction are all equal.

例えば上記中央部分が低くなる第2図の電流分
布を持つモニタ用発電領域5と同じロツトで製造
された10cm×10cmの半導体光活性層3を用いて第
3図の如き7段直列型光起電力装置を形成する場
合、各発電領域5a〜5g間に存在する無効領域
6ab〜6fgの無効幅Wiを1/3mmとすると、各発電
領域5a〜5gの有効幅Wa〜Wgは従来の等間
隔にあつては各々1.4cmとなる。この時の各発電
領域5a〜5gの出力電流は順次、150mA、
150mA、135mA、120mA、135mA、150mA、
150mAとなり、一段当りの動作電圧が0.6Vとす
ると、斯る光起電力装置の総合光電変換出力は
0.6V×7段×120mA=504mWとなる。
For example, using a 10 cm x 10 cm semiconductor photoactive layer 3 manufactured in the same lot as the monitoring power generation region 5 having the current distribution shown in FIG. 2 where the central portion is low, a seven-stage series photovoltaic generator as shown in FIG. 3 can be constructed. When forming a power device, assuming that the invalid width Wi of the invalid regions 6ab to 6fg existing between the respective power generation regions 5a to 5g is 1/3 mm, the effective widths Wa to Wg of the respective power generation regions 5a to 5g are equal to the conventional equidistant width. 1.4cm each. At this time, the output current of each power generation area 5a to 5g is 150mA,
150mA, 135mA, 120mA, 135mA, 150mA,
Assuming that the output voltage is 150mA and the operating voltage per stage is 0.6V, the total photoelectric conversion output of such a photovoltaic device is
0.6V x 7 stages x 120mA = 504mW.

ところが本発明製造方法によれば、各発電領域
5a〜5gの予定箇所の光電変換特性が予めモニ
タ用発電領域5により測定され、その特性結果に
基づき各発電領域5a〜5gの光電変換出力がほ
ぼ等しくなるべく分割幅Wa〜Wgが例えばWaか
ら順次1.31cm、1.31cm、1.46cm、1.64cm、1.46cm、
1.31cm、1.31cmと光電変換特性の低い中央部分ほ
ど幅広に設定されると、各発電領域5a〜5gの
出力電流はほぼ140mAとなり、斯る構造の光起
電力装置の総合光電変換出力は0.6V×7段×
140mA=588mWとなる。従つて、個別に分割さ
れる発電領域5a〜5gの発電面積、即ち分割幅
Wa〜Wgを予定箇所の光電変換性に基づき決定
することによつて本実施例にあつては17%の総合
光電変換出力の上昇が見られた。
However, according to the manufacturing method of the present invention, the photoelectric conversion characteristics of the planned locations of each power generation area 5a to 5g are measured in advance by the monitoring power generation area 5, and based on the characteristic results, the photoelectric conversion output of each power generation area 5a to 5g is approximately The dividing widths Wa to Wg are preferably equal, for example, 1.31 cm, 1.31 cm, 1.46 cm, 1.64 cm, 1.46 cm, sequentially from Wa.
If the width is set to 1.31 cm and 1.31 cm, which is wider in the center where the photoelectric conversion characteristics are lower, the output current of each power generation area 5a to 5g will be approximately 140 mA, and the total photoelectric conversion output of the photovoltaic device with such a structure will be 0.6. V x 7 steps x
140mA = 588mW. Therefore, the power generation area of the power generation regions 5a to 5g that are individually divided, that is, the division width
By determining Wa to Wg based on the photoelectric conversion properties of the planned locations, an increase in the total photoelectric conversion output of 17% was observed in this example.

尚、上記各発明領域5a〜5gの分割幅Wa〜
Wgが種々変化しても特開昭57−12568号公報や
特開昭60−59786号公報に開示されたレーサスク
ライブ法を用いれば、斯る分割幅Wa〜Wgの数
値データを供給するだけでそれらのパターニング
を容易に実現することができる。
In addition, the division width Wa of each of the above-mentioned invention areas 5a to 5g is ~
Even if Wg changes variously, if the laser scribing method disclosed in JP-A-57-12568 and JP-A-60-59786 is used, it is possible to simply supply the numerical data of the division width Wa to Wg. Such patterning can be easily realized.

(ト) 発明の効果 本発明製造方法は以上の説明から明らかな如
く、直列接続される発電領域の各発電面積を、各
発電領域予定箇所の光電変換特性に基づき決定す
ることによつて、各発電領域の出力電流値の均一
化が図れるので、半導体光活性層の膜厚や膜質の
不揃があつても最高の光電変換出力を導出するこ
とができる。特に半導体光活性層としてアモルフ
アスシリコン系の膜厚サブミクロンや数ミクロン
程度の薄膜半導体を利用した太陽光発電用の大面
積光起電力装置に本発明製造方法を適用した場合
に効果が大きく、半導体光活性層を支持する基板
表面が曲面状のときより一層の効果を奏する。
(G) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention determines the power generation area of each power generation region connected in series based on the photoelectric conversion characteristics of the planned location of each power generation region. Since the output current value of the power generation region can be made uniform, the highest photoelectric conversion output can be derived even if there are irregularities in the film thickness and film quality of the semiconductor photoactive layer. In particular, the manufacturing method of the present invention is particularly effective when applied to a large-area photovoltaic device for solar power generation that uses an amorphous silicon-based thin film semiconductor with a film thickness of submicron or several microns as a semiconductor photoactive layer. This is even more effective when the surface of the substrate supporting the semiconductor photoactive layer is curved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の要部である光電変換特性の測
定を説明するための斜視図、第2図は斯る測定に
より得られた電流分布図、第3図は本発明製造方
法により製造される直列接続型光起電力装置の断
面図、を夫々示している。 1……基板、3……半導体光活性層、5……モ
ニタ用発電領域、5a〜5g……発電領域。
FIG. 1 is a perspective view for explaining the measurement of photoelectric conversion characteristics, which is the main part of the present invention, FIG. 2 is a current distribution diagram obtained by such measurement, and FIG. FIG. DESCRIPTION OF SYMBOLS 1...Substrate, 3...Semiconductor photoactive layer, 5...Power generation area for monitoring, 5a-5g...Power generation area.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の絶縁表面に複数の発電領域を配置せし
め、それらの素子を電気的に直列接続せしめた光
起電力装置の製造方法であつて、上記発電領域の
各発電面積は個別の発電領域への分割に先立つ各
発電領域予定箇所の光電変換特性に基づき決定さ
れた後、個別の発電領域に分割されることを特微
とした光起電力装置の製造方法。
1. A method for manufacturing a photovoltaic device in which a plurality of power generation regions are arranged on an insulating surface of a substrate and those elements are electrically connected in series, wherein the power generation area of each power generation region is A method for manufacturing a photovoltaic device characterized in that the photovoltaic device is divided into individual power generation regions after the power generation regions are determined based on the photoelectric conversion characteristics of each planned power generation region prior to division.
JP60206951A 1985-09-19 1985-09-19 Manufacture of photovoltaic device Granted JPS6266684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206951A JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206951A JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6266684A JPS6266684A (en) 1987-03-26
JPH0528513B2 true JPH0528513B2 (en) 1993-04-26

Family

ID=16531720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206951A Granted JPS6266684A (en) 1985-09-19 1985-09-19 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6266684A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648799Y2 (en) * 1988-05-18 1994-12-12 株式会社小松製作所 AC thin film EL device
JPH036848U (en) * 1989-06-05 1991-01-23
JP2007012976A (en) * 2005-07-01 2007-01-18 Honda Motor Co Ltd Solar cell module
JP5687837B2 (en) * 2007-02-16 2015-03-25 ナノグラム・コーポレイションNanoGram Corporation Solar cell structure, photovoltaic module and methods corresponding thereto
EP2058869A1 (en) * 2007-11-06 2009-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solar cell module with customised solar cell width
EP2309540A1 (en) * 2009-10-12 2011-04-13 Inventux Technologies AG Photovoltaic module
KR20150057853A (en) * 2013-11-20 2015-05-28 삼성에스디아이 주식회사 Solar cell

Also Published As

Publication number Publication date
JPS6266684A (en) 1987-03-26

Similar Documents

Publication Publication Date Title
US5127964A (en) Flexible photovoltaic device
RU2555212C2 (en) Heterojunction photovoltaic cell having back contact
JP7023975B2 (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
US8575472B2 (en) Photoelectric conversion device and method for producing same
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
WO2010019685A4 (en) Photovoltaic cells with processed surfaces and related applications
JP4767365B2 (en) Thin film solar cell and manufacturing method thereof
JP2020509600A (en) P-type PERC double-sided solar cell and its module, system and manufacturing method
US20080241356A1 (en) Photovoltaic devices manufactured using crystalline silicon thin films on glass
JP2016015529A (en) Photoelectric conversion device
US5288338A (en) Solar cell and method of producing the solar cell
JPH0528513B2 (en)
JP3721620B2 (en) Parallel integrated solar cell
JP2015133341A (en) Back-junction solar cell and method of manufacturing the same
US20110056560A1 (en) Solar cell module and manufacturing method thereof
JPS59161081A (en) Thin-film solar cell
WO2015178305A1 (en) Photoelectric conversion element and production method therefor
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JPH073876B2 (en) Photovoltaic device
Nakano et al. High performance a-Si solar cells and new fabrication methods for a-Si solar cells
WO2015178307A1 (en) Photoelectric conversion element
WO2015198978A1 (en) Photoelectric conversion device and method for manufacturing same
EP0341756B2 (en) Flexible photovoltaic device
JP2002343990A (en) Photovoltaic element
JPS58115872A (en) Flexible photoelectromotive force generating device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term