WO2015198978A1 - Photoelectric conversion device and method for manufacturing same - Google Patents

Photoelectric conversion device and method for manufacturing same Download PDF

Info

Publication number
WO2015198978A1
WO2015198978A1 PCT/JP2015/067694 JP2015067694W WO2015198978A1 WO 2015198978 A1 WO2015198978 A1 WO 2015198978A1 JP 2015067694 W JP2015067694 W JP 2015067694W WO 2015198978 A1 WO2015198978 A1 WO 2015198978A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
photoelectric conversion
layer
silicon substrate
Prior art date
Application number
PCT/JP2015/067694
Other languages
French (fr)
Japanese (ja)
Inventor
神川 剛
真臣 原田
和也 辻埜
親扶 岡本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014132665A external-priority patent/JP5913446B2/en
Priority claimed from JP2014132666A external-priority patent/JP5871996B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015198978A1 publication Critical patent/WO2015198978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion device that converts light into electricity and a method for manufacturing the photoelectric conversion device.
  • intrinsic (i-type) amorphous silicon is interposed between an n-type crystalline silicon substrate and a p-type amorphous silicon layer to reduce defects at the interface, and characteristics at the heterojunction interface.
  • a photoelectric conversion device with improved characteristics.
  • Japanese Unexamined Patent Application Publication No. 2010-283408 discloses a pair of second semiconductor layers disposed on both sides of a first semiconductor layer, and an insulating layer formed from one second semiconductor layer to the first semiconductor layer. And an insulating layer formed from the other second semiconductor layer to the first semiconductor layer is disclosed.
  • the transparent electrode layer and the collecting electrode layer are separated by a pair of separation grooves formed along the first direction on the insulating layer.
  • a surface passivation layer of a semiconductor material is locally opened on a surface-passivated semiconductor material through a tensioned foil opening by a plasma etching method.
  • Tensioned foil is then used as a mask for a heterocontact, TCO (Transparent Conductive Oxide) or further deposition process of metal and / or further plasma process.
  • the first semiconductor layer and the second semiconductor layer may be in contact with each other between the insulating layer and the substrate. Therefore, a leak current may occur between them. Even if the i layer is formed between the first semiconductor layer and the second semiconductor layer, defects are introduced into the i layer due to thermal or physical damage when the insulating layer is formed, There is a possibility that sufficient electrical separation cannot be performed.
  • the adhesion between the mask and the substrate is improved by applying tension to the foil (mask).
  • the mask and the substrate may not be sufficiently adhered.
  • a p-type semiconductor layer and an n-type semiconductor layer are formed on one surface of a substrate, if the adhesion between the mask and the substrate is poor, the p-type semiconductor layer and the n-type semiconductor layer can be sufficiently electrically separated. There is a possibility of disappearing.
  • An object of the present invention is to effectively separate an n-type semiconductor layer (first conductive semiconductor layer) and a p-type semiconductor layer (second conductive semiconductor layer) formed on one surface of a silicon substrate. It is obtaining the structure of the photoelectric conversion apparatus which can be obtained, and the manufacturing method of a photoelectric conversion apparatus.
  • the photoelectric conversion device disclosed herein includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types, and the silicon substrate.
  • An insulating layer is provided on the one surface and insulates the first conductive semiconductor layer from the second conductive semiconductor layer.
  • the first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer.
  • Another photoelectric conversion device disclosed herein includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types, and the silicon
  • An insulating layer is provided on the one surface of the substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer.
  • the first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate.
  • the thickness of the insulating layer is larger than the height difference of the irregularities on the one surface of the silicon substrate.
  • the manufacturing method of the photoelectric conversion device disclosed herein includes a step of preparing a silicon substrate, a step of forming an insulating layer on one surface of the silicon substrate, and a part of a region sandwiched between the insulating layers. Forming a first conductivity type semiconductor layer; forming a second conductivity type semiconductor layer of a conductivity type opposite to the first conductivity type semiconductor layer in another part of the region sandwiched between the insulating layers; Is provided.
  • a step of preparing a silicon substrate, and an insulating layer on one surface of the silicon substrate are thicker than a difference in height of the unevenness of the one surface of the silicon substrate.
  • a configuration of a photoelectric conversion device that can effectively separate the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, and a method for manufacturing the photoelectric conversion device are obtained.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2B is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2C is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2D is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2E is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 2F is a diagram for describing an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2B is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 2G is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 3A is a surface micrograph of a silicon substrate.
  • FIG. 3B is an uneven profile of the silicon substrate.
  • FIG. 3C is a cross-sectional view showing a state in which an insulating layer is formed on an uneven surface.
  • FIG. 4A is a schematic diagram showing a state in which an n-type semiconductor layer is formed on a surface where an insulating layer is not formed.
  • FIG. 4B is a schematic diagram showing a state in which a p-type semiconductor layer is further formed from FIG. 4A.
  • FIG. 5A is a cross-sectional view schematically showing the shape of a mask suitably used in this embodiment.
  • FIG. 5A is a cross-sectional view schematically showing the shape of a mask suitably used in this embodiment.
  • FIG. 5B is a cross-sectional view schematically showing the shape of a mask which is another example of a mask suitably used in the present embodiment.
  • FIG. 6 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element according to a modification of the first embodiment of the present invention.
  • FIG. 7A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 7B is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 7C is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 8 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element according to the second embodiment of the present invention.
  • FIG. 10A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element.
  • FIG. 10B is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 10C is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 10D is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 11A is a schematic diagram illustrating a state where an i-type semiconductor layer and an n-type semiconductor layer are formed on a surface where an insulating layer is not formed.
  • FIG. 11B is a schematic diagram showing a state in which an i-type semiconductor layer and a p-type semiconductor layer are further formed from FIG. 11A.
  • FIG. 12 is sectional drawing which shows typically the structure of the photoelectric conversion element concerning the modification of the 3rd Embodiment of this invention.
  • FIG. 13A is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 13B is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 14 is sectional drawing which shows typically the structure of the photoelectric conversion element concerning the 4th Embodiment of this invention.
  • FIG. 15A is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 12 is sectional drawing which shows typically the structure of the photoelectric conversion element concerning the modification of the 3rd Embodiment of this invention.
  • FIG. 13A is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 15B is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 15C is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 15D is a diagram for describing an example of a method of manufacturing a photoelectric conversion element.
  • FIG. 16 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module according to the present embodiment.
  • FIG. 17 is a schematic diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment.
  • FIG. 18 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module array illustrated in FIG.
  • FIG. 19 is a schematic diagram illustrating another example of the configuration of the solar power generation system according to the present embodiment.
  • FIG. 20 is a schematic diagram illustrating another example of the configuration of the photovoltaic power generation system according to the present embodiment.
  • FIG. 21 is a schematic diagram illustrating another example of the configuration of the photovoltaic
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 1 according to the first embodiment of the present invention.
  • the photoelectric conversion element 1 includes a substrate 10 (silicon substrate), an ARC (Anti Reflection Coat) 11, a passivation layer 12, an insulating layer 13, an n-type semiconductor layer (first conductive semiconductor layer) 14, a p-type semiconductor layer (second semiconductor layer). Conductive semiconductor layer) 15, n-type electrode 16, and p-type electrode 17.
  • the substrate 10 is a single crystal silicon substrate having an n-type conductivity.
  • the thickness of the silicon substrate 10 is, for example, 100 to 150 ⁇ m.
  • a pyramid-shaped texture is formed on one surface of the substrate 10. The texture decreases the surface reflectance of the substrate 10 and increases the short-circuit current Jsc.
  • the photoelectric conversion element 1 is a so-called back junction type photoelectric conversion element in which both the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed on the back surface.
  • the ARC 11 is formed so as to cover the light receiving surface of the substrate 10.
  • the ARC 11 decreases the surface reflectance of the substrate 10 and increases the short-circuit current Jsc.
  • the ARC 11 is formed by laminating a silicon oxide film having a thickness of about 20 nm and a silicon nitride film having a thickness of about 60 nm in this order.
  • the passivation layer 12 is formed so as to cover the back surface of the substrate 10.
  • the passivation layer 12 may be, for example, silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride, phosphorous nitride, or titanium. Nitride and the like.
  • the passivation layer 12 is preferably an oxide of silicon.
  • the passivation layer 12 may be formed by oxidizing the substrate 10.
  • the thickness of the passivation layer 12 is, for example, 0.5 to 3 nm.
  • the insulating layer 13, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 are formed on the passivation layer 12.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10.
  • the insulating layer 13 insulates the n-type semiconductor layer 14 from the p-type semiconductor layer 15.
  • the insulating layer 13 is formed in contact with the passivation layer 12. Neither the n-type semiconductor layer 14 nor the p-type semiconductor layer 15 is formed between the substrate 10 and the insulating layer 13.
  • the width L of the insulating layer 13 is preferably 2 to 800 ⁇ m. If the width L is smaller than 2 ⁇ m, depending on the manufacturing method, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 may be in contact with each other, and the leakage current may increase. On the other hand, when the width L is wider than 800 ⁇ m, the areas of the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are relatively small, and the series resistance is high.
  • the width L of the insulating layer 13 is more preferably 20 to 500 ⁇ m.
  • the layer thickness d of the insulating layer 13 is preferably 0.3 to 300 ⁇ m. In the present embodiment, the layer thickness d is larger than the height difference of the unevenness on the back surface of the substrate 10. This point will be described later.
  • the insulating layer 13 may be, for example, an inorganic material or an organic material.
  • the inorganic substance include silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride.
  • organic substances include imide resins, epoxy resins, fluororesins, polycarbonates, and liquid crystal polymers.
  • the imide resin is, for example, polyimide.
  • the fluororesin is, for example, polytetrafluoroethylene (PTFE).
  • the n-type semiconductor layer 14 is an amorphous semiconductor layer having an n-type conductivity and containing hydrogen.
  • the n-type semiconductor layer 14 contains, for example, phosphorus (P) as a dopant.
  • the n-type semiconductor layer 14 is, for example, n-type amorphous silicon, n-type amorphous silicon germanium, n-type amorphous germanium, n-type amorphous silicon carbide, n-type amorphous silicon nitride, n-type non-crystalline. Examples thereof include crystalline silicon oxide, n-type amorphous silicon oxynitride, and n-type amorphous silicon carbon oxide.
  • the thickness of the n-type semiconductor layer 14 is, for example, 3 to 50 nm.
  • the p-type semiconductor layer 15 is an amorphous semiconductor layer having a p-type conductivity and containing hydrogen.
  • the p-type semiconductor layer 15 contains, for example, boron (B) as a dopant.
  • the p-type semiconductor layer 15 may be, for example, p-type amorphous silicon, p-type amorphous silicon germanium, p-type amorphous germanium, p-type amorphous silicon carbide, p-type amorphous silicon nitride, p-type non-crystalline. Examples thereof include crystalline silicon oxide, p-type amorphous silicon oxynitride, and p-type amorphous silicon carbon oxide.
  • the thickness of the p-type semiconductor layer 15 is, for example, 5 to 50 nm.
  • the amorphous semiconductor may include a microcrystalline phase.
  • the microcrystalline phase includes crystals having an average particle size of 1 to 50 nm.
  • the n-type electrode 16 is formed in contact with the n-type semiconductor layer 14, and the p-type electrode 17 is formed in contact with the p-type semiconductor layer 15.
  • the n-type electrode 16 includes a conductive layer 161 and a conductive layer 162.
  • the p-type electrode 17 includes a conductive layer 171 and a conductive layer 172.
  • Each of the conductive layers 161, 162, 171, and 172 is, for example, TCO, metal, or the like.
  • TCO is, for example, ITO (Indium Tin Oxide), ZnO, or the like.
  • the metal is, for example, Ag, Ni, Al, Cu, Sn, Pt, Au, or an alloy thereof.
  • each of the conductive layers 161 and 171 is, for example, 3 to 100 nm, and the thickness of each of the conductive layers 162 and 172 is, for example, about 2 ⁇ m.
  • a substrate 10 having a texture formed on one side is prepared (FIG. 2A).
  • the substrate 10 is manufactured as follows.
  • a wafer having a thickness of 100 to 300 ⁇ m is cut out from the bulk silicon by a wire saw. Etching for removing the damaged layer on the surface of the wafer and etching for adjusting the thickness are performed.
  • a protective film is formed on one surface of the etched wafer.
  • the protective film is, for example, silicon oxide, silicon nitride or the like.
  • the wafer on which the protective film is formed is etched using an alkaline solution such as NaOH or KOH (for example, an aqueous solution of KOH: 1 to 5 wt%, isopropyl alcohol: 1 to 10 wt%).
  • a pyramidal texture is formed on the surface where the protective film is not formed by anisotropic etching.
  • the substrate 10 is obtained by removing the protective film after the etching.
  • the ARC 11 and the passivation layer 12 are formed on the substrate 10 (FIG. 2B).
  • the ARC 11 is formed by laminating a silicon oxide film and a silicon nitride film
  • the passivation layer 12 is a silicon oxide film.
  • the surface of the substrate 10 is oxidized to form an oxide film on the light receiving surface and a passivation layer 12 on the back surface.
  • a silicon nitride film is formed on the oxide film on the light receiving surface to form ARC11.
  • the substrate 10 may be oxidized by either wet treatment or thermal oxidation.
  • wet processing for example, the substrate 10 is immersed in hydrogen peroxide, nitric acid, ozone water, etc., and then heated to 800 to 1000 ° C. in a dry atmosphere.
  • thermal oxidation for example, the substrate 10 is heated to 900 to 1000 ° C. in an atmosphere of oxygen or water vapor.
  • the silicon nitride film can be formed by sputtering, EB (Electron Beam) vapor deposition, TEOS method, or the like.
  • the SiON film can be formed by nitriding with nitrogen plasma by PECVD (Plasma Enhanced Chemical Vapor Deposition) and further annealing at 500 ° C. or higher.
  • PECVD Pulsma Enhanced Chemical Vapor Deposition
  • the passivation film with SiON it is possible to suppress the diffusion of dopants such as boron contained in the p-type layer formed on the passivation film into the silicon substrate. By doing so, even when a passivation film having a thickness capable of flowing a tunnel current or the like is formed, it is more preferable because diffusion of boron can be effectively suppressed.
  • the insulating layer 13 is formed on the passivation layer 12 to be thicker than the unevenness on the back surface of the substrate 10 (FIG. 2C).
  • the insulating layer 13 is formed using silicon oxide, silicon nitride, silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, aluminum oxynitride, or the like, for example, vapor deposition Or by sputtering.
  • silicon oxide, silicon nitride, or silicon oxynitride is used as the insulating layer 13, a printing method or a film formation method using an inkjet may be used.
  • the printing method is, for example, a screen printing method. Even when an organic material is used for the insulating layer 13, a printing method or a film forming method using an ink jet can be used.
  • n-type semiconductor layer 14 is formed in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 2D).
  • the n-type semiconductor layer 14 can be formed by, for example, PECVD (Plasma Enhanced Chemical Vapor Deposition).
  • substrate temperature 130 to 180 ° C.
  • hydrogen gas flow rate 0 to 100 sccm
  • silane gas flow rate 40 sccm
  • mixed gas of phosphine and hydrogen phosphine concentration with respect to hydrogen: 1%
  • flow rate 40 sccm
  • pressure 40 to 120 Pa
  • a mask MA is arranged in a region where the n-type semiconductor layer 14 is not formed.
  • the n-type semiconductor layer 14 can be formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region A in FIG. 2D).
  • a p-type semiconductor layer 15 is formed in another part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 2E).
  • the p-type semiconductor layer 15 can be formed by PECVD, for example.
  • substrate temperature 130-180 ° C.
  • hydrogen gas flow rate 0-100 sccm
  • silane gas flow rate 40 sccm
  • pressure 40-120 Pa
  • the p-type semiconductor layer 15 is formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 2E) using the mask MB. To do.
  • the n-type semiconductor layer 14 is washed with hydrofluoric acid or the like. Then, it is preferable to remove the natural oxide film.
  • the insulating layer 13 When the insulating layer 13 is formed of an organic material, there is no problem with the insulating layer 13 even if it is washed with hydrofluoric acid or the like. However, when an oxide film such as SiO 2, a nitride film, or an oxynitride film is formed, it is etched with hydrofluoric acid or the like, so that the insulating layer 13 is not etched away. It is necessary to adjust time etc.
  • a conductive layer 191 and a conductive layer 192 are formed to cover the insulating layer 13, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 (FIG. 2F). As will be described later, the conductive layer 191 and the conductive layer 192 are layers that are separated in the next step and become the n-type electrode 16 and the p-type electrode 17.
  • the conductive layers 191 and 192 can be formed by a sputtering method, a vapor deposition method, an ion plating method, a thermal CVD method, an MOCVD method, a sol-gel method, a method of spraying and heating a liquefied raw material, an ink jet method, or the like.
  • a sputtering method a vapor deposition method, an ion plating method, a thermal CVD method, an MOCVD method, a sol-gel method, a method of spraying and heating a liquefied raw material, an ink jet method, or the like.
  • ITO for example, an ITO target having a SnO 2 was 0.5 ⁇ 4 wt% dope, flowing a mixed gas of argon gas or argon gas and oxygen gas, substrate temperature: 25 ⁇ 250 ° C., Pressure: 0.1-1.
  • It can be formed by performing a sputtering process under conditions of 5 Pa and power: 0.01 to 2 kW.
  • ZnO it can be formed by the same sputtering using a ZnO target doped with 0.5 to 4 wt% of Al instead of the ITO target.
  • Al can be formed by EB vapor deposition.
  • the conductive layer 192 may be formed by plating using the conductive layer 191 as a seed electrode.
  • the conductive layer 191 for example, Ni, W, Co, Ti, or an alloy thereof, or an alloy of these metals and P, B can be used as the conductive layer 191.
  • Cu, Al, Sn, or the like can be used as the conductive layer 192.
  • Grooves are formed in the conductive layers 191 and 192 that overlap with the insulating layer 13 in plan view (FIG. 2G). More specifically, the conductive layer 191 is separated into conductive layers 161 and 171, and the conductive layer 192 is separated into conductive layers 162 and 172. Thereby, the n-type electrode 16 and the p-type electrode 17 are formed.
  • the groove is preferably formed by laser ablation.
  • the laser used for laser ablation is, for example, an ArF excimer laser (wavelength: 193 nm).
  • substrate 10 can be suppressed by utilizing ultrashort pulse laser (femtosecond order) and UV light of a short wavelength.
  • the configuration and manufacturing method of the photoelectric conversion element 1 according to the first embodiment of the present invention have been described above.
  • the p-type semiconductor layer 15 and the substrate 10 form a pn junction with the passivation layer 12 interposed therebetween.
  • Electrons and holes move to the n-type semiconductor layer 14 and the p-type semiconductor layer 15 by tunneling the passivation layer 12, respectively, and are taken out as current through the n-type electrode 16 and the p-type electrode 17.
  • the passivation layer 12 reduces defects at the interface between the substrate 10 and the n-type semiconductor layer 14 and at the interface between the substrate 10 and the p-type semiconductor layer 15.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are adjacent to each other with the insulating layer 13 interposed therebetween in the in-plane direction of the substrate 10.
  • the insulating layer 13 is formed before the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed. Therefore, neither the n-type semiconductor layer 14 nor the p-type semiconductor layer 15 is formed between the substrate 10 and the insulating layer 13.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are reliably separated by the insulating layer 13. As a result, leakage between the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be suppressed, and a high shunt resistance can be obtained.
  • the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10. This effect will be described with reference to FIGS. 3A to 3C.
  • FIG. 3A is a surface micrograph of the silicon substrate.
  • FIG. 3B is an uneven profile of the silicon substrate.
  • the substrate 10 may have irregularities of about 1 ⁇ m on the surface where no texture is formed due to the influence of etching performed to remove the damaged layer.
  • the layer thickness d of the insulating layer 13 is made larger than the height difference ⁇ of the unevenness on the back surface of the substrate 10. Note that the height difference ⁇ indicates the maximum height difference of the unevenness on the back surface of the substrate 10.
  • the insulating layer 13 protrudes from the back surface of the substrate 10 even when the insulating layer 13 is formed in the deepest part of the recess on the back surface of the substrate 10. Therefore, when the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed in the same plane, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be prevented from contacting each other. As a result, leakage between the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be suppressed, and a high shunt resistance can be obtained.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be more reliably separated if the thickness d of the insulating layer 13 is larger than the height difference of the irregularities on the back surface of the substrate 10.
  • the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be separated to some extent even if the layer thickness d of the insulating layer 13 is equal to or less than the height difference of the unevenness on the back surface of the substrate 10. Therefore, it is not essential that the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10.
  • the layer thickness d is preferably 3 ⁇ m or more. However, if the substrate 10 is flat like a mirror substrate, the layer thickness d may be less than 3 ⁇ m. Even when the substrate 10 is flat like a mirror substrate, the layer thickness d is preferably 0.3 ⁇ m or more. If the layer thickness d is 0.3 ⁇ m or more, the substrate 10 can be effectively protected from damage due to laser ablation when laser ablation is used in the manufacturing process.
  • the layer thickness d is greater than 300 ⁇ m, peeling or cracking is likely to occur due to stress or the like. Therefore, the layer thickness d is preferably 300 ⁇ m or less from the viewpoint of the upper limit.
  • FIG. 4A is a schematic diagram showing a state in which an n-type semiconductor layer 94 is formed on the surface where the insulating layer 13 is not formed.
  • the n-type semiconductor layer 94 is formed using a mask MC having an opening at a portion facing the region A.
  • active species (radicals) generated by the decomposition of the source gas enter between the mask MC and the substrate 10, and the n-type semiconductor layer 94 is also formed in the region C.
  • FIG. 4B is a schematic diagram showing a state in which the p-type semiconductor layer 95 is further formed from FIG. 4A.
  • the p-type semiconductor layer 95 is formed using a mask MD having an opening at a portion facing the region B.
  • the active species enter between the mask MD and the substrate 10, and the p-type semiconductor layer 95 is also formed in the region D. Therefore, in this comparative example, the n-type semiconductor layer 94 and the p-type semiconductor layer 95 are in contact with each other.
  • the active species are blocked by the insulating layer 13, and therefore, between the mask MA and the substrate 10 or between the mask MB and the substrate 10. Do not intrude in between. Therefore, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be reliably separated.
  • the mask MA or MB and the insulating layer 13 can be more easily adhered as the layer thickness d (FIG. 1) of the insulating layer 13 is larger. Further, the greater the layer thickness d, the more active species can be prevented from wrapping around. Therefore, the layer thickness d is preferably as thick as possible within a range not exceeding 300 ⁇ m.
  • FIG. 5A is a cross-sectional view schematically showing the shape of the mask MA preferably used in the present embodiment.
  • a recess MAa is formed on the lower surface of the mask MA.
  • the recesses MAa are formed so as to correspond to the interval and width of the insulating layer 13.
  • the alignment between the mask Ma and the substrate 10 can be performed accurately and easily.
  • the area where the mask MA and the insulating layer 13 face each other is increased by the concave portion MAa, the wraparound of the active species can be effectively suppressed.
  • FIG. 5B is a cross-sectional view schematically showing the shape of a mask ME which is another example of a mask suitably used in the present embodiment.
  • a recess MEa is formed instead of the recess MAa of the mask MA.
  • the recess MEa is formed so as to straddle the insulating layer 13. Also with the mask ME, alignment can be performed accurately and easily, and the wraparound of active species can be effectively suppressed.
  • a metal mask such as stainless steel, copper, nickel, nickel alloy (42 alloy, invar material, etc.), molybdenum, or the like, or a glass mask, a ceramic mask, an organic film, or the like may be used. May be.
  • FIG. 6 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element 1A according to a modification of the first embodiment of the present invention.
  • the photoelectric conversion element 1 ⁇ / b> A includes an n-type semiconductor layer 14 ⁇ / b> A instead of the n-type semiconductor layer 14 of the photoelectric conversion element 1.
  • the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10.
  • the photoelectric conversion element 1 and the photoelectric conversion element 1A are different in the stacking order of the n-type semiconductor layer 14 (n-type semiconductor layer 14A) and the insulating layer 13.
  • the insulating layer 13 is formed so as to straddle the passivation film 12 and the n-type semiconductor layer 14A.
  • the n-type semiconductor layer 14 ⁇ / b> A exists in a part between the insulating layer 13 and the substrate 10.
  • an n-type semiconductor layer 14A is formed on the passivation layer 12 (FIG. 7A).
  • the n-type semiconductor layer 14A is formed using a mask MC having an opening in a portion facing the region A.
  • active species radicals
  • An insulating layer 13 is formed in a portion straddling the passivation layer 12 and the n-type semiconductor layer 14A (FIG. 7B). Note that the insulating layer 13 may be formed outside the n-type semiconductor layer 14A. In other words, the insulating layer 13 may be formed so as to sandwich the n-type semiconductor layer 14A. If the distance between the insulating layers 13 is increased, the n-type semiconductor layer 14 ⁇ / b> A will not be outside the insulating layer 13.
  • a p-type semiconductor layer 15 is formed in a region between the insulating layers 13 where the n-type semiconductor layer 14A is not formed (FIG. 7C). As in the case of the photoelectric conversion element 1, the p-type semiconductor layer 15 is formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 7C) using the mask MB. .
  • the n-type electrode 16 and the p-type electrode 17 are formed in the same manner as the photoelectric conversion element 1. Thereby, the photoelectric conversion element 1A is manufactured.
  • the n-type semiconductor layer 14A, the insulating layer 13, and the p-type semiconductor layer 15 are formed in this order.
  • the p-type semiconductor layer, the insulating layer, and the n-type semiconductor layer are formed in this order. Also good. That is, at least one of the step of forming the n-type semiconductor layer and the step of forming the p-type semiconductor layer may be performed after the step of forming the insulating layer.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 2 according to the second embodiment of the present invention.
  • the photoelectric conversion element 2 includes an i-type semiconductor layer 22 in place of the passivation layer 12 of the photoelectric conversion element 1.
  • the i-type semiconductor layer 22 is a layer of an amorphous semiconductor that is substantially intrinsic and contains hydrogen.
  • the i-type semiconductor layer 22 includes, for example, i-type amorphous silicon, i-type amorphous silicon germanium, i-type amorphous germanium, i-type amorphous silicon carbide, i-type amorphous silicon nitride, i-type non-crystalline. It consists of crystalline silicon oxide, i-type amorphous silicon oxynitride, i-type amorphous silicon carbon oxide, and the like.
  • the i-type semiconductor layer 22 has a thickness of 1 to 10 nm, for example.
  • a dopant such as boron contained in the p-type semiconductor layer 15 formed on the i-type semiconductor layer 22 is added to the substrate 10. Can be prevented from diffusing. This is more preferable because boron diffusion can be effectively suppressed.
  • the i-type semiconductor layer 22 reduces defects at the interface between the substrate 10 and the n-type semiconductor layer 14 and at the interface between the substrate 10 and the p-type semiconductor layer 15.
  • the photoelectric conversion element 2 can be manufactured by forming the i-type semiconductor layer 22 instead of the passivation film 12 of the photoelectric conversion element 1.
  • the i-type semiconductor layer 22 may be formed before the ARC 11 is formed, or may be formed after the ARC 11 is formed.
  • the i-type semiconductor layer 22 can be formed by PECVD, for example. For example, by performing PECVD under conditions of substrate temperature: 130 to 180 ° C., hydrogen gas flow rate: 0 to 100 sccm, silane gas flow rate: 40 sccm, pressure: 40 to 120 Pa, RF power density: 5 to 15 mW / cm 2 , Type amorphous silicon can be formed.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 3 according to the third embodiment of the present invention.
  • the photoelectric conversion element 3 includes an i-type semiconductor layer (first i-type semiconductor layer) 321 and an i-type semiconductor layer (second i-type semiconductor layer) 322 instead of the passivation layer 12 of the photoelectric conversion element 1.
  • the i-type semiconductor layer 321 is formed between the substrate 10 and the n-type semiconductor layer 14, and the i-type semiconductor layer 322 is formed between the substrate 10 and the p-type semiconductor layer 15.
  • the insulating layer 13 is in contact with the back surface of the substrate 10. That is, none of the i-type semiconductor layers 321 and 322, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 are formed between the substrate 10 and the insulating layer 13.
  • I-type semiconductor layers 321 and 322 reduce defects at the interface between substrate 10 and n-type semiconductor layer 14 and at the interface between substrate 10 and p-type semiconductor layer 15.
  • a substrate 10 having a texture formed on one side is prepared.
  • An ARC 11 is formed on the light receiving surface of the substrate 10 (FIG. 10A).
  • An insulating layer 13 is formed on the back surface of the substrate 10 (FIG. 10B).
  • the i-type semiconductor layer 321 and the n-type semiconductor layer 14 are formed in this order in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 10C).
  • the i-type semiconductor layer 321 and the n-type semiconductor layer 14 can be formed by PECVD, for example. Similar to the first embodiment, by using the mask MA, the i-type semiconductor layer 321 and the n-type semiconductor layer 321 and the n-type semiconductor layer only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region A in FIG. 10C).
  • the semiconductor layer 14 can be formed.
  • the i-type semiconductor layer 322 and the p-type semiconductor layer 15 are formed in this order in the other part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 10D).
  • the i-type semiconductor layer 322 and the p-type semiconductor layer 15 can be formed by PECVD, for example. Similar to the first embodiment, by using the mask MB, the i-type semiconductor layer 322 and the p-type are formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 10D).
  • the semiconductor layer 15 can be formed.
  • the n-type electrode 16 and the p-type electrode 17 are formed. Thereby, the photoelectric conversion element 3 is manufactured.
  • FIG. 11A is a schematic diagram showing a state in which the i-type semiconductor layer 921 and the n-type semiconductor layer 94 are formed on the surface where the insulating layer 13 is not formed. At this time, the i-type semiconductor layer 921 and the n-type semiconductor layer 94 are also formed in the region C due to the wraparound of the active species.
  • the i-type semiconductor layer 921 and the n-type semiconductor layer 94 become thinner toward the ends.
  • the passivation property of the i-type semiconductor layer 921 is lowered in the region C. This shortens the lifetime of minority carriers.
  • FIG. 11B is a schematic diagram showing a state in which an i-type semiconductor layer 922 and a p-type semiconductor layer 95 are further formed from FIG. 11A. Also in this case, the i-type semiconductor layer 922 and the p-type semiconductor layer 95 are formed also in the region D by the wraparound of the active species. Then, the i-type semiconductor layer 922 and the p-type semiconductor layer 95 become thinner toward the end portions. When the i-type semiconductor layer 922 is thinned, the passivation property of the i-type semiconductor layer 922 is lowered in the region D. This shortens the lifetime of minority carriers.
  • the insulating layer 13 by forming the insulating layer 13, it is possible to prevent a region such as the region C or the region D from being present. Therefore, the lifetime of the minority carrier can be suppressed from being shortened.
  • FIG. 12 is a cross-sectional view schematically showing the configuration of a photoelectric conversion element 3A according to a modification of the third embodiment of the present invention.
  • the photoelectric conversion element 3 ⁇ / b> A further includes a passivation layer 323 formed between the substrate 10 and the insulating layer 13 in addition to the configuration of the photoelectric conversion element 3.
  • the passivation layer 323 may be, for example, silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride, phosphorous nitride, or titanium. Nitride and the like.
  • the passivation layer 323 is preferably an oxide of silicon.
  • the passivation layer 323 may be formed by oxidizing the substrate 10. The thickness of the passivation layer 323 is, for example, 0.5 to 3 nm.
  • a substrate 10 having a texture formed on one side is prepared.
  • the ARC 11 and the passivation layer 12 are formed.
  • the insulating layer 13 is formed on the passivation layer 12 (FIG. 13A).
  • the passivation layer 12 is etched (FIG. 13B). As a result, the passivation layer 12 between the substrate 10 and the insulating layer 13 remains as the passivation layer 323, and the other portion of the passivation layer 12 is removed.
  • the i-type semiconductor layer 321 and the n-type semiconductor layer 14, the i-type semiconductor layer 322 and the p-type semiconductor layer 15, and the n-type electrode 16 and the p-type electrode 17 are formed. Thereby, the photoelectric conversion element 3A is manufactured.
  • the photoelectric conversion element 3 ⁇ / b> A includes a passivation layer 323 between the substrate 10 and the insulating layer 13. With the passivation layer 323, the passivation property in the lower portion of the insulating layer 13 can be further enhanced as compared with the photoelectric conversion element 3.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 4 according to the fourth embodiment of the present invention.
  • the photoelectric conversion element 4 includes an n-type semiconductor layer 441 and an n-type dopant source 442 instead of the n-type semiconductor layer 14 of the photoelectric conversion element 1, and replaces the p-type semiconductor layer 15 with a p-type semiconductor layer 451 and a p-type dopant.
  • a source 452 is provided.
  • the n-type semiconductor layer 441 and the p-type semiconductor layer 451 are formed on the passivation layer 12.
  • the n-type semiconductor layer 441 and the p-type semiconductor layer 451 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10.
  • the n-type dopant source 442 is formed on the n-type semiconductor layer 441, and the p-type dopant source 452 is formed on the p-type semiconductor layer 451.
  • the n-type semiconductor layer 441 and the p-type semiconductor layer 451 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10.
  • the n-type semiconductor layer 441 is polycrystalline silicon in which an n-type dopant is diffused.
  • the n-type dopant source 442 is, for example, phosphorus-doped silicate glass (PSG).
  • the p-type semiconductor layer 451 is polycrystalline silicon in which a p-type dopant is diffused.
  • the p-type dopant source 452 is, for example, boron-doped silicate glass (BSG).
  • a substrate 10 having a texture formed on one side is prepared.
  • the ARC 11 and the passivation layer 12 are formed.
  • the insulating layer 13 is formed on the passivation layer 12 (FIG. 15A).
  • a polycrystalline silicon layer 440 is formed on the passivation layer 12 (FIG. 15B).
  • the polycrystalline silicon layer 440 can be formed by, for example, LPCVD (Low Pressure CVD).
  • n-type dopant source 442 and a p-type dopant source 452 are formed on the polycrystalline silicon layer 440 (FIG. 15C).
  • the n-type dopant source 442 and the p-type dopant source 452 can be formed by, for example, a screen printing method.
  • the substrate 10 is heat-treated to diffuse the dopants of the n-type dopant source 442 and the p-type dopant source 452 into the polycrystalline silicon layer 440 (FIG. 15D).
  • the heat treatment temperature is 600 to 1100 ° C., for example.
  • the n-type semiconductor layer 441 is formed in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10, and the p-type is formed on another part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10.
  • a semiconductor layer 451 is formed.
  • n-type dopant source 442 and the p-type dopant source 452 may be removed after the n-type semiconductor layer 441 and the p-type semiconductor layer 451 are formed.
  • the n-type electrode 16 and the p-type electrode 17 are formed in the same manner as in the first embodiment. Thereby, the photoelectric conversion element 4 is manufactured.
  • the case where the conductivity type of the substrate 10 is n-type has been described, but the conductivity type of the substrate 10 may be p-type.
  • the case where the ARC 11 is formed on the light receiving surface has been described. However, the ARC 11 may not be formed. Instead of the ARC 11, or between the light receiving surface and the ARC 11, an n + layer in which a high concentration n-type dopant is diffused may be formed.
  • each of the n-type electrode 16 and the p-type electrode 17 may be composed of one conductive layer or may be composed of three or more conductive layers.
  • the first layer may be TCO
  • the second layer may be Ni
  • the third layer may be Cu formed by plating.
  • an amorphous semiconductor layer may be formed by CatCVD instead of PECVD.
  • the film formation conditions are, for example, substrate temperature: 100 to 300 ° C., pressure: 10 to 500 Pa, temperature of the thermal catalyst (when tungsten is used as the thermal catalyst): 1500 to 2000 ° C., RF power density : 0.01 to 1 W / cm 2 . Accordingly, a high-quality amorphous semiconductor layer can be formed at a relatively low temperature and in a short time.
  • the photoelectric conversion device in this specification is a device based on a wide concept including a photoelectric conversion element, a photoelectric conversion module using the photoelectric conversion element, and a photovoltaic power generation system including the photoelectric conversion module.
  • a photoelectric conversion module (fifth embodiment) including at least one of the photoelectric conversion elements of the first to fourth embodiments and a photovoltaic power generation system (sixth embodiment, seventh embodiment). Mode) will be described.
  • the photoelectric conversion module and the photovoltaic power generation system including the photoelectric conversion elements can also have high conversion efficiency.
  • the fifth embodiment is a photoelectric conversion module including at least one of the photoelectric conversion elements of the first to fourth embodiments.
  • FIG. 16 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module according to the present embodiment.
  • the photoelectric conversion module 1000 includes a plurality of photoelectric conversion elements 1001, a cover 1002, and output terminals 1013 and 1014.
  • a plurality of photoelectric conversion elements 1001 are arranged in an array and connected in series.
  • FIG. 16 illustrates an arrangement in which the photoelectric conversion elements 1001 are connected in series.
  • the arrangement and connection method are not limited to this, and the photoelectric conversion elements 1001 may be connected in parallel or may be combined in series and parallel. It may be an array.
  • any one of the photoelectric conversion elements of the first to fourth embodiments is used.
  • the photoelectric conversion module 1000 is not limited to the above description as long as at least one of the plurality of photoelectric conversion elements 1001 includes any one of the photoelectric conversion elements of the first to fourth embodiments, and can take any configuration. To do. Further, the number of photoelectric conversion elements 1001 included in the photoelectric conversion module 1000 can be any integer of 2 or more.
  • the cover 1002 is composed of a weatherproof cover and covers the plurality of photoelectric conversion elements 1001.
  • the cover 1002 includes, for example, a transparent base material (for example, glass) provided on the light receiving surface side of the photoelectric conversion element 1001 and a back surface base material provided on the back surface side opposite to the light receiving surface side of the photoelectric conversion element 1001. (For example, glass, a resin sheet etc.) and the sealing material (for example, EVA etc.) which fills the clearance gap between the said transparent base material and the said resin base material.
  • a transparent base material for example, glass
  • a back surface base material provided on the back surface side opposite to the light receiving surface side of the photoelectric conversion element 1001.
  • the sealing material for example, EVA etc.
  • the output terminal 1013 is connected to a photoelectric conversion element 1001 arranged at one end of a plurality of photoelectric conversion elements 1001 connected in series.
  • the output terminal 1014 is connected to the photoelectric conversion element 1001 arranged at the other end of the plurality of photoelectric conversion elements 1001 connected in series.
  • the sixth embodiment is a photovoltaic power generation system including at least one of the photoelectric conversion elements of the first to fourth embodiments. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency. Note that the solar power generation system is a device that appropriately converts the power output from the photoelectric conversion module and supplies the converted power to a commercial power system or an electric device.
  • FIG. 17 is a schematic diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment.
  • the photovoltaic power generation system 2000 includes a photoelectric conversion module array 2001, a connection box 2002, a power conditioner 2003, a distribution board 2004, and a power meter 2005.
  • the photoelectric conversion module array 2001 includes a plurality of photoelectric conversion modules 1000 (fifth embodiment). Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
  • the solar power generation system 2000 is added with a function generally called “Home Energy Management System (HEMS)”, “Building Energy Management System (BEMS)”, or the like. can do. Accordingly, the energy consumption can be reduced by monitoring the power generation amount of the solar power generation system 2000, monitoring / controlling the power consumption amount of each electrical device connected to the solar power generation system 2000, and the like.
  • HEMS Home Energy Management System
  • BEMS Building Energy Management System
  • connection box 2002 is connected to the photoelectric conversion module array 2001.
  • the power conditioner 2003 is connected to the connection box 2002.
  • the distribution board 2004 is connected to the power conditioner 2003 and the electrical equipment 2011.
  • the power meter 2005 is connected to the distribution board 2004 and the commercial power system.
  • a storage battery 2100 may be connected to the power conditioner 2003 as shown in FIG. In this case, output fluctuation due to fluctuations in the amount of sunlight can be suppressed, and power stored in the storage battery 2100 can be supplied even in a time zone without sunlight.
  • the storage battery 2100 may be built in the power conditioner 2003.
  • the photoelectric conversion module array 2001 converts sunlight into electricity to generate DC power and supplies the DC power to the connection box 2002.
  • the power conditioner 2003 converts the DC power received from the connection box 2002 into AC power and supplies it to the distribution board 2004. Note that part or all of the DC power received from the connection box 2002 may be supplied to the distribution board 2004 as it is without being converted to AC power.
  • the power conditioner 2003 receives the direct current received from the connection box 2002. A part or all of the electric power can be appropriately converted into electric power and stored in the storage battery 2100.
  • the power stored in the storage battery 2100 is appropriately supplied to the power conditioner 2003 according to the amount of power generated by the photoelectric conversion module and the power consumption of the electrical equipment 2011, and is appropriately converted to the distribution board 2004. Supplied.
  • the distribution board 2004 supplies the electric equipment 2011 with at least one of the electric power received from the power conditioner 2003 and the commercial electric power received via the electric power meter 2005.
  • the distribution board 2004 supplies the AC power received from the power conditioner 2003 to the electrical equipment 2011 when the AC power received from the power conditioner 2003 is larger than the power consumption of the electrical equipment 2011.
  • the surplus AC power is supplied to the commercial power system via the power meter 2005.
  • the distribution board 2004 receives the AC power received from the commercial power system and the AC power received from the power conditioner 2003 in the electrical equipment. To 2011.
  • the power meter 2005 measures the power in the direction from the commercial power system to the distribution board 2004 and measures the power in the direction from the distribution board 2004 to the commercial power system.
  • the photoelectric conversion module array 2001 will be described.
  • FIG. 18 is a schematic diagram showing an example of the configuration of the photoelectric conversion module array 2001 shown in FIG. Referring to FIG. 18, photoelectric conversion module array 2001 includes a plurality of photoelectric conversion modules 1000 and output terminals 2013 and 2014.
  • a plurality of photoelectric conversion modules 1000 are arranged in an array and connected in series.
  • FIG. 18 illustrates an arrangement in which the photoelectric conversion modules 1000 are connected in series.
  • the arrangement and connection method are not limited to this, and the photoelectric conversion modules 1000 may be connected in parallel or may be combined in series and parallel. It is good also as an arrangement.
  • the number of photoelectric conversion modules 1000 included in the photoelectric conversion module array 2001 can be any integer of 2 or more.
  • the output terminal 2013 is connected to the photoelectric conversion module 1000 located at one end of the plurality of photoelectric conversion modules 1000 connected in series.
  • the output terminal 2014 is connected to the photoelectric conversion module 1000 located at the other end of the plurality of photoelectric conversion modules 1000 connected in series.
  • the photovoltaic power generation system of this embodiment is such that at least one of the plurality of photoelectric conversion elements 1001 includes any one of the photoelectric conversion elements of the first to fourth embodiments.
  • the present invention is not limited to the above description, and any configuration can be taken.
  • the seventh embodiment is a photovoltaic power generation system that is larger than the photovoltaic power generation system described as the sixth embodiment.
  • the solar power generation system according to the seventh embodiment also includes at least one of the photoelectric conversion elements of the first to fourth embodiments. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
  • FIG. 19 is a schematic diagram illustrating another example of the configuration of the solar power generation system according to the present embodiment.
  • solar power generation system 4000 includes a plurality of subsystems 4001, a plurality of power conditioners 4003, and a transformer 4004.
  • the photovoltaic power generation system 4000 is a larger scale photovoltaic power generation system than the photovoltaic power generation system 2000 shown in FIG. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
  • the plurality of power conditioners 4003 are each connected to the subsystem 4001.
  • the number of the power conditioners 4003 and the subsystems 4001 connected thereto can be any integer of 2 or more.
  • a storage battery 4100 may be connected to the power conditioner 4003 as shown in FIG. In this case, output fluctuation due to fluctuations in the amount of sunshine can be suppressed, and power stored in the storage battery 4100 can be supplied even in a time zone without sunshine.
  • the storage battery 4100 may be built in the power conditioner 4003.
  • the transformer 4004 is connected to a plurality of power conditioners 4003 and a commercial power system.
  • Each of the plurality of subsystems 4001 includes a plurality of module systems 3000.
  • the number of module systems 3000 in the subsystem 4001 can be any integer greater than or equal to two.
  • Each of the plurality of module systems 3000 includes a plurality of photoelectric conversion module arrays 2001, a plurality of connection boxes 3002, and a current collection box 3004.
  • the number of the junction box 3002 in the module system 3000 and the photoelectric conversion module array 2001 connected to the junction box 3002 can be any integer of 2 or more.
  • the current collection box 3004 is connected to a plurality of connection boxes 3002.
  • the power conditioner 4003 is connected to a plurality of current collection boxes 3004 in the subsystem 4001.
  • the plurality of photoelectric conversion module arrays 2001 of the module system 3000 convert sunlight into electricity to generate DC power, and supply the DC power to the current collection box 3004 via the connection box 3002.
  • a plurality of current collection boxes 3004 in the subsystem 4001 supplies DC power to the power conditioner 4003.
  • the plurality of power conditioners 4003 convert DC power into AC power and supply the AC power to the transformer 4004.
  • the power conditioner 4003 when the storage battery 4100 is connected to the power conditioner 4003 (or when the storage battery 4100 is built in the power conditioner 4003), the power conditioner 4003 is received from the current collection box 3004. A part or all of the DC power can be appropriately converted into power and stored in the storage battery 4100.
  • the electric power stored in the storage battery 4100 is appropriately supplied to the power conditioner 4003 side according to the power generation amount of the subsystem 4001, appropriately converted into electric power, and supplied to the transformer 4004.
  • the transformer 4004 converts the voltage level of AC power received from a plurality of power conditioners 4003 and supplies it to the commercial power system.
  • the solar power generation system 4000 only needs to have at least one of the photoelectric conversion elements of the first to fourth embodiments, and all the photoelectric conversion elements included in the solar power generation system 4000 are the first to fourth. It is not necessary to be the photoelectric conversion element of the embodiment.
  • all of the photoelectric conversion elements included in one subsystem 4001 are any of the photoelectric conversion elements of the first to fourth embodiments, and a part or all of the photoelectric conversion elements included in another subsystem 4001 are There may be cases where the photoelectric conversion elements of the first to fourth embodiments are not used.
  • a photoelectric conversion device includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed on one surface of the silicon substrate and have opposite conductivity types, silicon An insulating layer is formed on one surface of the substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer (first configuration).
  • the first conductive type semiconductor layer and the second conductive type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer. Therefore, the first conductive type semiconductor layer and the second conductive type semiconductor layer are reliably separated by the insulating layer.
  • the thickness of the insulating layer is larger than the height difference of the unevenness on one surface of the silicon substrate (second configuration).
  • a photoelectric conversion device includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed on one surface of the silicon substrate and have opposite conductivity types, An insulating layer is provided on one surface of the silicon substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer.
  • the first conductivity type semiconductor layer and the second conductivity type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate.
  • the thickness of the insulating layer is larger than the level difference of the irregularities on one surface of the silicon substrate (third configuration).
  • the first conductive type semiconductor layer and the second conductive type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate.
  • the thickness of the insulating layer is larger than the height difference of the irregularities on one surface of the silicon substrate.
  • the insulating layer protrudes from one surface of the silicon substrate. Therefore, the first conductive semiconductor layer and the second conductive semiconductor layer can be prevented from contacting each other. Thereby, the first conductive semiconductor layer and the second conductive semiconductor layer are reliably separated by the insulating layer.
  • the width of the insulating layer is preferably 20 to 500 ⁇ m (fourth configuration).
  • the insulating layer includes silicon oxide, silicon nitride, silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, aluminum It may be one kind selected from the group consisting of oxynitrides, imide resins, epoxy resins, fluororesins, polycarbonates, and liquid crystal polymers (fifth configuration).
  • Any of the first to fifth configurations may further include a passivation layer formed at least between the silicon substrate and the insulating layer (sixth configuration).
  • the passivation property in the lower part of the insulating layer can be further enhanced.
  • the first i-type semiconductor layer formed between the silicon substrate and the first conductivity type semiconductor layer and the silicon substrate and the second conductivity type semiconductor layer are formed.
  • the second i-type semiconductor layer may be further provided (seventh configuration).
  • defects at the interface between the silicon substrate and the first conductivity type semiconductor layer and the interface between the silicon substrate and the second conductivity type semiconductor layer can be reduced.
  • a method for manufacturing a photoelectric conversion device includes a step of preparing a silicon substrate, a step of forming an insulating layer on one surface of the silicon substrate, and a part of a region sandwiched between the insulating layers.
  • the insulating layer is formed before forming the first conductive type semiconductor layer and the second conductive type semiconductor layer. For this reason, neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer. Therefore, the first conductive type semiconductor layer and the second conductive type semiconductor layer are reliably separated by the insulating layer.
  • a method for manufacturing a photoelectric conversion device comprising: preparing a silicon substrate; and forming an insulating layer on one surface of the silicon substrate thicker than a difference in height of one surface of the silicon substrate. Forming a first conductive semiconductor layer on one surface of the silicon substrate; and forming a second conductive semiconductor layer of a conductivity type opposite to the first conductive semiconductor layer on one surface of the silicon substrate. Forming. At least one of the process of forming a 1st conductivity type semiconductor layer and the process of forming a 2nd conductivity type semiconductor layer is performed after the process of forming an insulating layer (2nd aspect).
  • the layer thickness of the insulating layer is larger than the height difference of the irregularities on one surface of the silicon substrate. Therefore, the insulating layer protrudes from one surface of the silicon substrate. At least one of the step of forming the first conductive type semiconductor layer and the step of forming the second conductive type semiconductor layer is performed after the step of forming the insulating layer. Therefore, at least one of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer is blocked by the insulating layer. Thereby, the first conductive semiconductor layer and the second conductive semiconductor layer can be reliably separated.
  • the passivation layer is formed on one surface of the silicon substrate before the earlier step of forming the first conductivity type semiconductor layer and the step of forming the second conductivity type semiconductor layer. You may further provide the process to form (3rd aspect).
  • the step of forming the first i-type semiconductor layer on one surface of the silicon substrate before the step of forming the first conductivity type semiconductor layer, and the second conductivity type semiconductor Before the step of forming the layer, a step of forming the second i-type semiconductor layer on one surface of the silicon substrate may be further provided (fourth aspect).
  • the step of forming a conductive layer covering the first conductive type semiconductor layer, the second conductive type semiconductor layer, and the insulating layer, and a portion overlapping the insulating layer in plan view And a step of forming a groove in the conductive layer (fifth aspect).
  • an electrode electrically connected to the first semiconductor layer and an electrode electrically connected to the second semiconductor layer can be manufactured. Further, by forming a groove in a portion of the conductive layer that overlaps with the insulating layer in plan view, damage to the silicon substrate can be suppressed.
  • the method may further include a step of plating the conductive layer (sixth aspect).
  • the electrode can be formed at low cost.

Abstract

Achieved is a configuration of a photoelectric conversion device, which is capable of effectively separating a semiconductor layer of a first conductivity type and a semiconductor layer of a second conductivity type from each other, said semiconductor layers being formed on one surface of a silicon substrate. A photoelectric conversion device (1) is provided with: a silicon substrate (10); a semiconductor layer of a first conductivity type (14) and a semiconductor layer of a second conductivity type (15), which are formed on one surface of the silicon substrate (10) and have conductivity types opposite to each other; and an insulating layer (13) which is formed on the above-mentioned surface of the silicon substrate (10) and insulates the semiconductor layer of a first conductivity type (14) and the semiconductor layer of a second conductivity type (15) from each other. The semiconductor layer of a first conductivity type (14) and the semiconductor layer of a second conductivity type (15) are arranged adjacent to each other in the in-plane direction of the silicon substrate (10) with the insulating layer (13) being interposed therebetween. Neither the semiconductor layer of a first conductivity type (14) nor the semiconductor layer of a second conductivity type (15) is formed between the silicon substrate (10) and the insulating layer (13).

Description

光電変換装置およびその製造方法Photoelectric conversion device and manufacturing method thereof
 本発明は、光を電気に変換する光電変換装置およびその製造方法に関するものである。 The present invention relates to a photoelectric conversion device that converts light into electricity and a method for manufacturing the photoelectric conversion device.
 従来、n型の結晶シリコン基板とp型の非晶質シリコン層との間に真性(i型)の非晶質シリコンを介在させて、界面での欠陥を低減し、ヘテロ接合界面での特性を改善させた光電変換装置が知られている。 Conventionally, intrinsic (i-type) amorphous silicon is interposed between an n-type crystalline silicon substrate and a p-type amorphous silicon layer to reduce defects at the interface, and characteristics at the heterojunction interface. There is known a photoelectric conversion device with improved characteristics.
 特開2010-283408号公報には、第1半導体層の両隣に配設される一対の第2半導体層と、一方の第2半導体層上から第1半導体層上まで跨って形成される絶縁層と、他方の第2半導体層上から第1半導体層上まで跨って形成される絶縁層とを備える太陽電池が開示されている。透明電極層および収集電極層は、絶縁層上で第1方向に沿って形成される一対の分離溝によって分離される。 Japanese Unexamined Patent Application Publication No. 2010-283408 discloses a pair of second semiconductor layers disposed on both sides of a first semiconductor layer, and an insulating layer formed from one second semiconductor layer to the first semiconductor layer. And an insulating layer formed from the other second semiconductor layer to the first semiconductor layer is disclosed. The transparent electrode layer and the collecting electrode layer are separated by a pair of separation grooves formed along the first direction on the insulating layer.
 特表2010-503222号公報には、表面パッシベーションされた半導体材料上において、半導体材料の表面パッシベーション層を、プラズマエッチング法によって、張力をかけた箔の開口部を介して局所的に開口し、上記張力をかけた箔を、その後、ヘテロコンタクト、TCO(Transparent Conductive Oxide)、もしくは金属のさらなる堆積プロセス用、および/または、さらなるプラズマプロセス用のマスキングとして利用することを特徴とする、局所的なヘテロコンタクトを生成するための方法およびその装置が記載されている。 In Japanese Translation of PCT International Publication No. 2010-503222, a surface passivation layer of a semiconductor material is locally opened on a surface-passivated semiconductor material through a tensioned foil opening by a plasma etching method. Tensioned foil is then used as a mask for a heterocontact, TCO (Transparent Conductive Oxide) or further deposition process of metal and / or further plasma process A method and apparatus for generating contacts is described.
 特開2010-283408号公報に開示された構成では、絶縁層と基板との間で、第1半導体層と第2半導体層とが接する場合がある。そのため、これらの間でリーク電流が発生する場合がある。また、仮に第1半導体層と第2半導体層との間にi層を形成した場合であっても、絶縁層を形成する際の熱的または物理的ダメージによって、i層に欠陥が導入され、電気的分離を十分に行えなくなる可能性がある。 In the configuration disclosed in Japanese Patent Application Laid-Open No. 2010-283408, the first semiconductor layer and the second semiconductor layer may be in contact with each other between the insulating layer and the substrate. Therefore, a leak current may occur between them. Even if the i layer is formed between the first semiconductor layer and the second semiconductor layer, defects are introduced into the i layer due to thermal or physical damage when the insulating layer is formed, There is a possibility that sufficient electrical separation cannot be performed.
 特表2010-503222号公報に開示された方法では、箔(マスク)に張力をかけることで、マスクと基板との密着性を向上させている。しかし、特表2010-503222号公報に記載された方法を用いても、マスクと基板とを十分に密着できない場合がある。 In the method disclosed in JP-T-2010-503222, the adhesion between the mask and the substrate is improved by applying tension to the foil (mask). However, even if the method described in JP-T-2010-503222 is used, the mask and the substrate may not be sufficiently adhered.
 基板の一方の面にp型半導体層とn型半導体層とを形成する場合、マスクと基板との密着性が悪いと、p型半導体層とn型半導体層との電気的分離を十分に行えなくなる可能性がある。 When a p-type semiconductor layer and an n-type semiconductor layer are formed on one surface of a substrate, if the adhesion between the mask and the substrate is poor, the p-type semiconductor layer and the n-type semiconductor layer can be sufficiently electrically separated. There is a possibility of disappearing.
 本発明の目的は、シリコン基板の一方の面に形成されるn型半導体層(第1導電型半導体層)とp型半導体層(第2導電型半導体層)とを効果的に分離することができる光電変換装置の構成、および光電変換装置の製造方法を得ることである。 An object of the present invention is to effectively separate an n-type semiconductor layer (first conductive semiconductor layer) and a p-type semiconductor layer (second conductive semiconductor layer) formed on one surface of a silicon substrate. It is obtaining the structure of the photoelectric conversion apparatus which can be obtained, and the manufacturing method of a photoelectric conversion apparatus.
 ここに開示する光電変換装置は、シリコン基板と、前記シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、前記シリコン基板の前記一方の面に形成され、前記第1導電型半導体層と前記第2導電型半導体層とを絶縁する絶縁層とを備える。前記第1導電型半導体層と前記第2導電型半導体層とは、前記シリコン基板の面内方向において前記絶縁層を挟んで隣接する。前記シリコン基板と前記絶縁層との間には、前記第1導電型半導体層および前記第2導電型半導体層のいずれも形成されていない。 The photoelectric conversion device disclosed herein includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types, and the silicon substrate. An insulating layer is provided on the one surface and insulates the first conductive semiconductor layer from the second conductive semiconductor layer. The first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer.
 ここに開示する他の光電変換装置は、シリコン基板と、前記シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、前記シリコン基板の前記一方の面に形成され、前記第1導電型半導体層と前記第2導電型半導体層とを絶縁する絶縁層とを備える。前記第1導電型半導体層と前記第2導電型半導体層とは、前記シリコン基板の面内方向において前記絶縁層を挟んで隣接する。前記絶縁層の層厚は、前記シリコン基板の前記一方の面の凹凸の高低差よりも大きい。 Another photoelectric conversion device disclosed herein includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types, and the silicon An insulating layer is provided on the one surface of the substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer. The first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate. The thickness of the insulating layer is larger than the height difference of the irregularities on the one surface of the silicon substrate.
 ここに開示する光電変換装置の製造方法は、シリコン基板を準備する工程と、前記シリコン基板の一方の面に絶縁層を形成する工程と、前記絶縁層によって挟まれた領域の一部に、第1導電型半導体層を形成する工程と、前記絶縁層によって挟まれた領域の他の一部に、前記第1導電型半導体層と反対の導電型の第2導電型半導体層を形成する工程とを備える。 The manufacturing method of the photoelectric conversion device disclosed herein includes a step of preparing a silicon substrate, a step of forming an insulating layer on one surface of the silicon substrate, and a part of a region sandwiched between the insulating layers. Forming a first conductivity type semiconductor layer; forming a second conductivity type semiconductor layer of a conductivity type opposite to the first conductivity type semiconductor layer in another part of the region sandwiched between the insulating layers; Is provided.
 ここに開示する他の光電変換装置の製造方法は、シリコン基板を準備する工程と、前記シリコン基板の一方の面に、前記シリコン基板の前記一方の面の凹凸の高低差よりも厚く絶縁層を形成する工程と、前記シリコン基板の前記一方の面に第1導電型半導体層を形成する工程と、前記シリコン基板の前記一方の面に、前記第1導電型半導体層と反対の導電型の第2導電半導体層を形成する工程とを備える。前記第1導電型半導体層を形成する工程および前記第2導電型半導体層を形成する工程の少なくとも一方が、前記絶縁層を形成する工程よりも後に行われる。 In another method of manufacturing a photoelectric conversion device disclosed herein, a step of preparing a silicon substrate, and an insulating layer on one surface of the silicon substrate are thicker than a difference in height of the unevenness of the one surface of the silicon substrate. Forming a first conductivity type semiconductor layer on the one surface of the silicon substrate, and forming a first conductivity type opposite to the first conductivity type semiconductor layer on the one surface of the silicon substrate. Forming a two-conductive semiconductor layer. At least one of the step of forming the first conductive type semiconductor layer and the step of forming the second conductive type semiconductor layer is performed after the step of forming the insulating layer.
 本発明によれば、第1導電型半導体層と第2導電型半導体層とを効果的に分離することができる光電変換装置の構成、および光電変換装置の製造方法が得られる。 According to the present invention, a configuration of a photoelectric conversion device that can effectively separate the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, and a method for manufacturing the photoelectric conversion device are obtained.
図1は、本発明の第1の実施形態にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element according to the first embodiment of the present invention. 図2Aは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図2Bは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2B is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図2Cは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2C is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図2Dは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2D is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図2Eは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2E is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図2Fは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2F is a diagram for describing an example of a method for manufacturing a photoelectric conversion element. 図2Gは、光電変換素子の製造方法の一例を説明するための図である。FIG. 2G is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図3Aは、シリコン基板の表面顕微鏡写真である。FIG. 3A is a surface micrograph of a silicon substrate. 図3Bは、シリコン基板の凹凸のプロファイルである。FIG. 3B is an uneven profile of the silicon substrate. 図3Cは、凹凸のある面に絶縁層を形成した状態を示す断面図である。FIG. 3C is a cross-sectional view showing a state in which an insulating layer is formed on an uneven surface. 図4Aは、絶縁層が形成されていない面にn型半導体層を形成した状態を示す模式図である。FIG. 4A is a schematic diagram showing a state in which an n-type semiconductor layer is formed on a surface where an insulating layer is not formed. 図4Bは、図4Aからさらにp型半導体層を形成した状態を示す模式図である。FIG. 4B is a schematic diagram showing a state in which a p-type semiconductor layer is further formed from FIG. 4A. 図5Aは、本実施形態に好適に用いられるマスクの形状を模式的に示す断面図である。FIG. 5A is a cross-sectional view schematically showing the shape of a mask suitably used in this embodiment. 図5Bは、本実施形態に好適に用いられるマスクの他の例であるマスクの形状を模式的に示す断面図である。FIG. 5B is a cross-sectional view schematically showing the shape of a mask which is another example of a mask suitably used in the present embodiment. 図6は、本発明の第1の実施形態の変形例にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element according to a modification of the first embodiment of the present invention. 図7Aは、光電変換素子の製造方法の一例を説明するための図である。FIG. 7A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図7Bは、光電変換素子の製造方法の一例を説明するための図である。FIG. 7B is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図7Cは、光電変換素子の製造方法の一例を説明するための図である。FIG. 7C is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図8は、本発明の第2の実施形態にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element according to the second embodiment of the present invention. 図9は、本発明の第3の実施形態にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element according to the third embodiment of the present invention. 図10Aは、光電変換素子の製造方法の一例を説明するための図である。FIG. 10A is a diagram for explaining an example of a method for manufacturing a photoelectric conversion element. 図10Bは、光電変換素子の製造方法の一例を説明するための図である。FIG. 10B is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element. 図10Cは、光電変換素子の製造方法の一例を説明するための図である。FIG. 10C is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図10Dは、光電変換素子の製造方法の一例を説明するための図である。FIG. 10D is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図11Aは、絶縁層が形成されていない面にi型半導体層とn型半導体層とを形成した状態を示す模式図である。FIG. 11A is a schematic diagram illustrating a state where an i-type semiconductor layer and an n-type semiconductor layer are formed on a surface where an insulating layer is not formed. 図11Bは、図11Aからさらにi型半導体層とp型半導体層とを形成した状態を示す模式図である。FIG. 11B is a schematic diagram showing a state in which an i-type semiconductor layer and a p-type semiconductor layer are further formed from FIG. 11A. 図12は、本発明の第3の実施形態の変形例にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 12: is sectional drawing which shows typically the structure of the photoelectric conversion element concerning the modification of the 3rd Embodiment of this invention. 図13Aは、光電変換素子の製造方法の一例を説明するための図である。FIG. 13A is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element. 図13Bは、光電変換素子の製造方法の一例を説明するための図である。FIG. 13B is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図14は、本発明の第4の実施形態にかかる光電変換素子の構成を模式的に示す断面図である。FIG. 14: is sectional drawing which shows typically the structure of the photoelectric conversion element concerning the 4th Embodiment of this invention. 図15Aは、光電変換素子の製造方法の一例を説明するための図である。FIG. 15A is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element. 図15Bは、光電変換素子の製造方法の一例を説明するための図である。FIG. 15B is a diagram for explaining an example of a method of manufacturing a photoelectric conversion element. 図15Cは、光電変換素子の製造方法の一例を説明するための図である。FIG. 15C is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図15Dは、光電変換素子の製造方法の一例を説明するための図である。FIG. 15D is a diagram for describing an example of a method of manufacturing a photoelectric conversion element. 図16は、本実施形態にかかる光電変換モジュールの構成の一例を示す概略図である。FIG. 16 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module according to the present embodiment. 図17は、本実施形態にかかる太陽光発電システムの構成の一例を示す概略図である。FIG. 17 is a schematic diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment. 図18は、図17に示す光電変換モジュールアレイの構成の一例を示す概略図である。FIG. 18 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module array illustrated in FIG. 図19は、本実施形態にかかる太陽光発電システムの構成の他の一例を示す概略図である。FIG. 19 is a schematic diagram illustrating another example of the configuration of the solar power generation system according to the present embodiment. 図20は、本実施形態にかかる太陽光発電システムの構成の他の一例を示す概略図である。FIG. 20 is a schematic diagram illustrating another example of the configuration of the photovoltaic power generation system according to the present embodiment. 図21は、本実施形態にかかる太陽光発電システムの構成の他の一例を示す概略図である。FIG. 21 is a schematic diagram illustrating another example of the configuration of the photovoltaic power generation system according to the present embodiment.
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. In addition, in order to make the explanation easy to understand, in the drawings referred to below, the configuration is shown in a simplified or schematic manner, or some components are omitted. Further, the dimensional ratio between the constituent members shown in each drawing does not necessarily indicate an actual dimensional ratio.
 [第1実施形態]
 図1は、本発明の第1の実施形態にかかる光電変換素子1の構成を模式的に示す断面図である。光電変換素子1は、基板10(シリコン基板)、ARC(Anti Reflection Coat)11、パッシベーション層12、絶縁層13、n型半導体層(第1導電型半導体層)14、p型半導体層(第2導電型半導体層)15、n型電極16、およびp型電極17を備えている。
[First Embodiment]
FIG. 1 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 1 according to the first embodiment of the present invention. The photoelectric conversion element 1 includes a substrate 10 (silicon substrate), an ARC (Anti Reflection Coat) 11, a passivation layer 12, an insulating layer 13, an n-type semiconductor layer (first conductive semiconductor layer) 14, a p-type semiconductor layer (second semiconductor layer). Conductive semiconductor layer) 15, n-type electrode 16, and p-type electrode 17.
 基板10は、導電型がn型の単結晶シリコン基板である。シリコン基板10の厚さは、例えば100~150μmである。基板10の一方の面には、ピラミッド形状のテクスチャが形成されている。テクスチャは、基板10の表面反射率を低下させ、短絡電流Jscを増加させる。 The substrate 10 is a single crystal silicon substrate having an n-type conductivity. The thickness of the silicon substrate 10 is, for example, 100 to 150 μm. A pyramid-shaped texture is formed on one surface of the substrate 10. The texture decreases the surface reflectance of the substrate 10 and increases the short-circuit current Jsc.
 以下、テクスチャが形成されている面を基板10の受光面と呼び、他方の面を裏面と呼ぶ。光電変換素子1は、n型半導体層14およびp型半導体層15の両方が裏面に形成された、いわゆる裏面接合型の光電変換素子である。 Hereinafter, the surface on which the texture is formed is referred to as the light receiving surface of the substrate 10, and the other surface is referred to as the back surface. The photoelectric conversion element 1 is a so-called back junction type photoelectric conversion element in which both the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed on the back surface.
 ARC11は、基板10の受光面を覆って形成されている。ARC11は、基板10の表面反射率を低下させ、短絡電流Jscを増加させる。ARC11は例えば、厚さ20nm程度の酸化シリコン膜と、厚さ60nm程度の窒化シリコン膜とをこの順で積層したものである。 The ARC 11 is formed so as to cover the light receiving surface of the substrate 10. The ARC 11 decreases the surface reflectance of the substrate 10 and increases the short-circuit current Jsc. For example, the ARC 11 is formed by laminating a silicon oxide film having a thickness of about 20 nm and a silicon nitride film having a thickness of about 60 nm in this order.
 パッシベーション層12は、基板10の裏面を覆って形成されている。パッシベーション層12は例えば、シリコンの酸化物、シリコンの窒化物、もしくはシリコンの酸窒化物、多結晶シリコン、アルミニウムの酸化物、アルミニウムの窒化物、もしくはアルミニウムの酸窒化物、リン窒化物、またはチタン窒化物等である。パッシベーション層12は、好ましくはシリコンの酸化物である。パッシベーション層12は、基板10を酸化して形成したものであっても良い。パッシベーション層12の厚さは、例えば0.5~3nmである。 The passivation layer 12 is formed so as to cover the back surface of the substrate 10. The passivation layer 12 may be, for example, silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride, phosphorous nitride, or titanium. Nitride and the like. The passivation layer 12 is preferably an oxide of silicon. The passivation layer 12 may be formed by oxidizing the substrate 10. The thickness of the passivation layer 12 is, for example, 0.5 to 3 nm.
 絶縁層13、n型半導体層14、およびp型半導体層15は、パッシベーション層12の上に形成されている。n型半導体層14とp型半導体層15とは、基板10の面内方向において絶縁層13を挟んで隣接して配置されている。絶縁層13は、n型半導体層14とp型半導体層15とを絶縁している。 The insulating layer 13, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 are formed on the passivation layer 12. The n-type semiconductor layer 14 and the p-type semiconductor layer 15 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10. The insulating layer 13 insulates the n-type semiconductor layer 14 from the p-type semiconductor layer 15.
 絶縁層13は、パッシベーション層12に接して形成されている。基板10と絶縁層13との間には、n型半導体層14およびp型半導体層15のいずれも形成されていない。 The insulating layer 13 is formed in contact with the passivation layer 12. Neither the n-type semiconductor layer 14 nor the p-type semiconductor layer 15 is formed between the substrate 10 and the insulating layer 13.
 絶縁層13の幅Lは、2~800μmであることが好ましい。幅Lが2μmよりも狭いと、製造方法によってはn型半導体層14とp型半導体層15とが接触し、リーク電流が増加する場合がある。一方、幅Lが800μmよりも広いと、n型半導体層14およびp型半導体層15の面積が相対的に小さくなり、直列抵抗が高くなる。絶縁層13の幅Lは、より好ましくは20~500μmである。 The width L of the insulating layer 13 is preferably 2 to 800 μm. If the width L is smaller than 2 μm, depending on the manufacturing method, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 may be in contact with each other, and the leakage current may increase. On the other hand, when the width L is wider than 800 μm, the areas of the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are relatively small, and the series resistance is high. The width L of the insulating layer 13 is more preferably 20 to 500 μm.
 絶縁層13の層厚dは好ましくは、0.3~300μmである。本実施形態では、層厚dは、基板10の裏面の凹凸の高低差よりも大きい。この点については後述する。 The layer thickness d of the insulating layer 13 is preferably 0.3 to 300 μm. In the present embodiment, the layer thickness d is larger than the height difference of the unevenness on the back surface of the substrate 10. This point will be described later.
 絶縁層13は例えば、無機物であっても良いし、有機物であっても良い。無機物は例えば、シリコンの酸化物、シリコンの窒化物、もしくはシリコンの酸窒化物、多結晶シリコン、またはアルミニウムの酸化物、アルミニウムの窒化物、もしくはアルミニウムの酸窒化物等である。有機物は例えば、イミド系樹脂、エポキシ系樹脂、フッ素樹脂、ポリカーボネート、液晶ポリマー等である。イミド系樹脂は例えばポリイミドである。フッ素樹脂は例えば、ポリテトラフルオロエチレン(PTFE)である。 The insulating layer 13 may be, for example, an inorganic material or an organic material. Examples of the inorganic substance include silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride. Examples of organic substances include imide resins, epoxy resins, fluororesins, polycarbonates, and liquid crystal polymers. The imide resin is, for example, polyimide. The fluororesin is, for example, polytetrafluoroethylene (PTFE).
 n型半導体層14は、導電型がn型で、水素を含有する非晶質半導体の層である。n型半導体層14は例えば、ドーパントとしてリン(P)を含有する。n型半導体層14は例えば、n型非晶質シリコン、n型非晶質シリコンゲルマニウム、n型非晶質ゲルマニウム、n型非晶質シリコンカーバイド、n型非晶質シリコンナイトライド、n型非晶質シリコンオキサイド、n型非晶質シリコンオキシナイトライド、n型非晶質シリコンカーボンオキサイド等である。n型半導体層14の厚さは例えば、3~50nmである。 The n-type semiconductor layer 14 is an amorphous semiconductor layer having an n-type conductivity and containing hydrogen. The n-type semiconductor layer 14 contains, for example, phosphorus (P) as a dopant. The n-type semiconductor layer 14 is, for example, n-type amorphous silicon, n-type amorphous silicon germanium, n-type amorphous germanium, n-type amorphous silicon carbide, n-type amorphous silicon nitride, n-type non-crystalline. Examples thereof include crystalline silicon oxide, n-type amorphous silicon oxynitride, and n-type amorphous silicon carbon oxide. The thickness of the n-type semiconductor layer 14 is, for example, 3 to 50 nm.
 p型半導体層15は、導電型がp型で、水素を含有する非晶質半導体の層である。p型半導体層15は例えば、ドーパントとしてボロン(B)を含有する。p型半導体層15は例えば、p型非晶質シリコン、p型非晶質シリコンゲルマニウム、p型非晶質ゲルマニウム、p型非晶質シリコンカーバイド、p型非晶質シリコンナイトライド、p型非晶質シリコンオキサイド、p型非晶質シリコンオキシナイトライド、p型非晶質シリコンカーボンオキサイド等である。p型半導体層15の厚さは例えば、5~50nmである。 The p-type semiconductor layer 15 is an amorphous semiconductor layer having a p-type conductivity and containing hydrogen. The p-type semiconductor layer 15 contains, for example, boron (B) as a dopant. The p-type semiconductor layer 15 may be, for example, p-type amorphous silicon, p-type amorphous silicon germanium, p-type amorphous germanium, p-type amorphous silicon carbide, p-type amorphous silicon nitride, p-type non-crystalline. Examples thereof include crystalline silicon oxide, p-type amorphous silicon oxynitride, and p-type amorphous silicon carbon oxide. The thickness of the p-type semiconductor layer 15 is, for example, 5 to 50 nm.
 なお、この明細書において、非晶質半導体には、微結晶相が含まれても良いものとする。微結晶相は、平均粒子径が1~50nmである結晶を含む。 Note that in this specification, the amorphous semiconductor may include a microcrystalline phase. The microcrystalline phase includes crystals having an average particle size of 1 to 50 nm.
 n型電極16はn型半導体層14に接して形成されており、p型電極17はp型半導体層15に接して形成されている。 The n-type electrode 16 is formed in contact with the n-type semiconductor layer 14, and the p-type electrode 17 is formed in contact with the p-type semiconductor layer 15.
 n型電極16は、導電層161と導電層162とを含んでいる。p型電極17も同様に、導電層171と導電層172とを含んでいる。導電層161、162、171、および172のそれぞれは例えば、TCO、金属等である。TCOは例えば、ITO(Indium Tin Oxide)、ZnO等である。金属は例えば、Ag、Ni、Al、Cu、Sn、Pt、Au等、またはこれらの合金等である。導電層161および171としては、n型半導体層14およびp型半導体層15と密着性の良いTCOを用いることが好ましく、導電層162および172としては、導電率の高い金属を用いることが好ましい。導電層161および171の各々の厚さは例えば3~100nmであり、導電層162および172の各々の厚さは例えば2μm程度である。 The n-type electrode 16 includes a conductive layer 161 and a conductive layer 162. Similarly, the p-type electrode 17 includes a conductive layer 171 and a conductive layer 172. Each of the conductive layers 161, 162, 171, and 172 is, for example, TCO, metal, or the like. TCO is, for example, ITO (Indium Tin Oxide), ZnO, or the like. The metal is, for example, Ag, Ni, Al, Cu, Sn, Pt, Au, or an alloy thereof. As the conductive layers 161 and 171, it is preferable to use a TCO having good adhesion to the n-type semiconductor layer 14 and the p-type semiconductor layer 15, and as the conductive layers 162 and 172, it is preferable to use a metal having high conductivity. The thickness of each of the conductive layers 161 and 171 is, for example, 3 to 100 nm, and the thickness of each of the conductive layers 162 and 172 is, for example, about 2 μm.
 [光電変換素子1の製造方法]
 以下、図2A~図2Gを参照して、光電変換素子1の製造方法の一例を説明する。
[Production Method of Photoelectric Conversion Element 1]
Hereinafter, an example of a method for manufacturing the photoelectric conversion element 1 will be described with reference to FIGS. 2A to 2G.
 片面にテクスチャが形成された基板10を準備する(図2A)。基板10は例えば、次のように製造される。バルクのシリコンから、ワイヤーソーによって100~300μmの厚さのウェハーを切り出す。ウェハーの表面のダメージ層を除去するためのエッチングと、厚さを調整するためのエッチングとを行う。これらのエッチングがされたウェハーの片面に、保護膜を形成する。保護膜は例えば、酸化シリコン、窒化シリコン等である。保護膜が形成されたウェハーを、NaOH、KOH等のアルカリ溶液(例えば、KOH:1~5wt%、イソプロピルアルコール:1~10wt%の水溶液)を用いてエッチングする。このとき、異方性エッチングによって、保護膜が形成されていない面にピラミッド形状のテクスチャが形成される。エッチング後に保護膜を除去することによって、基板10が得られる。 A substrate 10 having a texture formed on one side is prepared (FIG. 2A). For example, the substrate 10 is manufactured as follows. A wafer having a thickness of 100 to 300 μm is cut out from the bulk silicon by a wire saw. Etching for removing the damaged layer on the surface of the wafer and etching for adjusting the thickness are performed. A protective film is formed on one surface of the etched wafer. The protective film is, for example, silicon oxide, silicon nitride or the like. The wafer on which the protective film is formed is etched using an alkaline solution such as NaOH or KOH (for example, an aqueous solution of KOH: 1 to 5 wt%, isopropyl alcohol: 1 to 10 wt%). At this time, a pyramidal texture is formed on the surface where the protective film is not formed by anisotropic etching. The substrate 10 is obtained by removing the protective film after the etching.
 基板10に、ARC11およびパッシベーション層12を形成する(図2B)。ここでは、ARC11が酸化シリコン膜と窒化シリコン膜とを積層させたものであり、パッシベーション層12が酸化シリコン膜である場合を説明する。まず、基板10の表面を酸化させて、受光面の酸化膜と裏面のパッシベーション層12とを形成する。その後、受光面の酸化膜の上に窒化シリコン膜を形成して、ARC11を形成する。 The ARC 11 and the passivation layer 12 are formed on the substrate 10 (FIG. 2B). Here, a case will be described in which the ARC 11 is formed by laminating a silicon oxide film and a silicon nitride film, and the passivation layer 12 is a silicon oxide film. First, the surface of the substrate 10 is oxidized to form an oxide film on the light receiving surface and a passivation layer 12 on the back surface. Thereafter, a silicon nitride film is formed on the oxide film on the light receiving surface to form ARC11.
 基板10の酸化は、ウェット処理および熱酸化のいずれでも良い。ウェット処理の場合は例えば、基板10を過酸化水素、硝酸、オゾン水等に浸漬し、その後ドライ雰囲気で800~1000℃に加熱する。熱酸化の場合は例えば、基板10を酸素または水蒸気の雰囲気で900~1000℃に加熱する。窒化シリコン膜の形成は、スパッタ、EB(Electron Beam)蒸着、TEOS法等によって行うことができる。 The substrate 10 may be oxidized by either wet treatment or thermal oxidation. In the case of wet processing, for example, the substrate 10 is immersed in hydrogen peroxide, nitric acid, ozone water, etc., and then heated to 800 to 1000 ° C. in a dry atmosphere. In the case of thermal oxidation, for example, the substrate 10 is heated to 900 to 1000 ° C. in an atmosphere of oxygen or water vapor. The silicon nitride film can be formed by sputtering, EB (Electron Beam) vapor deposition, TEOS method, or the like.
 あるいは、熱酸化膜を形成した後、PECVD(Plasma Enhanced Chemical Vapor Deposition)により、窒素プラズマで窒化し、さらに500℃以上で、アニールすることにより、SiON膜を形成することができる。このように、パッシベーション膜をSiONで形成することにより、パッシベーション膜上に形成されるp型層に含有されるボロンなどのドーパントがシリコン基板に拡散することを抑制することができる。このようにすることで、トンネル電流などを流すことができる膜厚のパッシベーション膜を形成した場合であっても、有効にボロンの拡散を抑制することができるためより好ましい。 Alternatively, after forming the thermal oxide film, the SiON film can be formed by nitriding with nitrogen plasma by PECVD (Plasma Enhanced Chemical Vapor Deposition) and further annealing at 500 ° C. or higher. Thus, by forming the passivation film with SiON, it is possible to suppress the diffusion of dopants such as boron contained in the p-type layer formed on the passivation film into the silicon substrate. By doing so, even when a passivation film having a thickness capable of flowing a tunnel current or the like is formed, it is more preferable because diffusion of boron can be effectively suppressed.
 パッシベーション層12の上に、基板10の裏面の凹凸の高低差よりも厚く絶縁層13を形成する(図2C)。絶縁層13として、シリコンの酸化物、シリコンの窒化物、もしくはシリコンの酸窒化物、多結晶シリコン、またはアルミニウムの酸化物、アルミニウムの窒化物、もしくはアルミニウムの酸窒化物等を用いる場合、例えば蒸着やスパッタを用いて形成することができる。絶縁層13として、シリコンの酸化物、シリコンの窒化物、もしくはシリコンの酸窒化物を用いる場合、印刷法、インクジェットを用いた成膜法を用いても良い。印刷法は、例えばスクリーン印刷法等である。絶縁層13として有機物を用いる場合も、印刷法、インクジェットを用いた成膜法を用いることができる。 The insulating layer 13 is formed on the passivation layer 12 to be thicker than the unevenness on the back surface of the substrate 10 (FIG. 2C). When the insulating layer 13 is formed using silicon oxide, silicon nitride, silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, aluminum oxynitride, or the like, for example, vapor deposition Or by sputtering. In the case where silicon oxide, silicon nitride, or silicon oxynitride is used as the insulating layer 13, a printing method or a film formation method using an inkjet may be used. The printing method is, for example, a screen printing method. Even when an organic material is used for the insulating layer 13, a printing method or a film forming method using an ink jet can be used.
 基板10の裏面の絶縁層13で挟まれた領域の一部に、n型半導体層14を形成する(図2D)。n型半導体層14は例えば、PECVD(Plasma Enchanced Chemical Vapor Deposition)によって形成することができる。例えば、基板温度:130~180℃、水素ガス流量:0~100sccm、シランガス流量:40sccm、ホスフィンと水素との混合ガス(水素に対するホスフィンの濃度:1%)流量:40sccm、圧力:40~120Pa、RFパワー密度:5~15mW/cmの条件下でPECVDを行うことによって、リンがドープされたn型非晶質シリコンを形成することができる。 An n-type semiconductor layer 14 is formed in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 2D). The n-type semiconductor layer 14 can be formed by, for example, PECVD (Plasma Enhanced Chemical Vapor Deposition). For example, substrate temperature: 130 to 180 ° C., hydrogen gas flow rate: 0 to 100 sccm, silane gas flow rate: 40 sccm, mixed gas of phosphine and hydrogen (phosphine concentration with respect to hydrogen: 1%), flow rate: 40 sccm, pressure: 40 to 120 Pa, By performing PECVD under the condition of RF power density: 5 to 15 mW / cm 2 , n-type amorphous silicon doped with phosphorus can be formed.
 このとき、図2Dに示すように、n型半導体層14を形成しない領域にマスクMAを配置する。これによって、基板10の裏面の絶縁層13で挟まれた領域の一部(図2Dの領域A)にだけ、n型半導体層14を形成することができる。 At this time, as shown in FIG. 2D, a mask MA is arranged in a region where the n-type semiconductor layer 14 is not formed. Thereby, the n-type semiconductor layer 14 can be formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region A in FIG. 2D).
 基板10の裏面の絶縁層13で挟まれた領域の他の一部に、p型半導体層15を形成する(図2E)。p型半導体層15は例えば、PECVDによって形成することができる。例えば、基板温度:130~180℃、水素ガス流量:0~100sccm、シランガス流量:40sccm、ジボランと水素との混合ガス(水素に対するジボランの濃度:2%)流量:40sccm、圧力:40~120Pa、RFパワー密度:5~15mW/cmの条件下でPECVDを行うことによって、ボロンがドープされたp型非晶質シリコンを形成することができる。 A p-type semiconductor layer 15 is formed in another part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 2E). The p-type semiconductor layer 15 can be formed by PECVD, for example. For example, substrate temperature: 130-180 ° C., hydrogen gas flow rate: 0-100 sccm, silane gas flow rate: 40 sccm, mixed gas of diborane and hydrogen (diborane concentration with respect to hydrogen: 2%) flow rate: 40 sccm, pressure: 40-120 Pa, By performing PECVD under the condition of RF power density: 5 to 15 mW / cm 2 , p-type amorphous silicon doped with boron can be formed.
 n型半導体層14の場合と同様に、マスクMBを用いて、基板10の裏面の絶縁層13で挟まれた領域の一部(図2Eの領域B)にだけ、p型半導体層15を形成する。 As in the case of the n-type semiconductor layer 14, the p-type semiconductor layer 15 is formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 2E) using the mask MB. To do.
 なお、n型半導体層14を形成する工程とp型半導体層15を形成する工程の間で、マスクを交換するためにチャンバーを開放する場合には、n型半導体層14をフッ酸等で洗浄して自然酸化膜を除去しておくことが好ましい。 In the case where the chamber is opened to replace the mask between the step of forming the n-type semiconductor layer 14 and the step of forming the p-type semiconductor layer 15, the n-type semiconductor layer 14 is washed with hydrofluoric acid or the like. Then, it is preferable to remove the natural oxide film.
 絶縁層13を有機物で形成した場合には、フッ酸等で洗浄しても、絶縁層13は問題ない。しかしSiO2などの酸化物膜、窒化物膜、酸窒化物膜などで形成した場合には、フッ酸等でエッチングされてしまうため、絶縁層13がエッチングされてなくなってしまわないように、濃度や時間等を調整する必要がある。 When the insulating layer 13 is formed of an organic material, there is no problem with the insulating layer 13 even if it is washed with hydrofluoric acid or the like. However, when an oxide film such as SiO 2, a nitride film, or an oxynitride film is formed, it is etched with hydrofluoric acid or the like, so that the insulating layer 13 is not etched away. It is necessary to adjust time etc.
 絶縁層13、n型半導体層14、およびp型半導体層15を覆って、導電層191および導電層192を形成する(図2F)。導電層191および導電層192は、後述するように、次工程で分離されてn型電極16およびp型電極17となる層である。 A conductive layer 191 and a conductive layer 192 are formed to cover the insulating layer 13, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 (FIG. 2F). As will be described later, the conductive layer 191 and the conductive layer 192 are layers that are separated in the next step and become the n-type electrode 16 and the p-type electrode 17.
 導電層191および192は、スパッタ法、蒸着法、イオンプレーティング法、熱CVD法、MOCVD法、ゾルゲル法、液状にした原料を噴霧加熱する方法、またはインクジェット法等を用いて形成することができる。ここでは一例として、導電層191がITOまたはZnOであり、導電層192がAlである場合を説明する。ITOは例えば、SnOを0.5~4wt%ドープしたITOターゲットを、アルゴンガスまたはアルゴンガスと酸素ガスとの混合ガスを流し、基板温度:25~250℃、圧力:0.1~1.5Pa、電力:0.01~2kWの条件でスパッタ処理を行うことで形成することができる。ZnOの場合は、ITOターゲットに代えて、Alを0.5~4wt%ドープしたZnOターゲットを用いて同様のスパッタを用いて形成することができる。Alは例えば、EB蒸着によって形成することができる。 The conductive layers 191 and 192 can be formed by a sputtering method, a vapor deposition method, an ion plating method, a thermal CVD method, an MOCVD method, a sol-gel method, a method of spraying and heating a liquefied raw material, an ink jet method, or the like. . Here, as an example, a case where the conductive layer 191 is ITO or ZnO and the conductive layer 192 is Al will be described. ITO, for example, an ITO target having a SnO 2 was 0.5 ~ 4 wt% dope, flowing a mixed gas of argon gas or argon gas and oxygen gas, substrate temperature: 25 ~ 250 ° C., Pressure: 0.1-1. It can be formed by performing a sputtering process under conditions of 5 Pa and power: 0.01 to 2 kW. In the case of ZnO, it can be formed by the same sputtering using a ZnO target doped with 0.5 to 4 wt% of Al instead of the ITO target. For example, Al can be formed by EB vapor deposition.
 あるいは、導電層191をシード電極として、メッキ成膜法によって導電層192を形成しても良い。この場合、導電層191としては例えば、Ni、W、Co、Tiもしくはこれらの合金、またはこれらの金属とP、Bとの合金を用いることができる。導電層192としては例えば、Cu、Al、Sn等を用いることができる。メッキ成膜法を用いることによって、低コストで導電層を形成することができる。 Alternatively, the conductive layer 192 may be formed by plating using the conductive layer 191 as a seed electrode. In this case, for example, Ni, W, Co, Ti, or an alloy thereof, or an alloy of these metals and P, B can be used as the conductive layer 191. For example, Cu, Al, Sn, or the like can be used as the conductive layer 192. By using the plating film forming method, the conductive layer can be formed at low cost.
 平面視において絶縁層13と重なる部分の導電層191および192に、溝を形成する(図2G)。より具体的には、導電層191を導電層161と171とに分離し、導電層192を導電層162と172とに分離する。これによって、n型電極16とp型電極17とが形成される。 Grooves are formed in the conductive layers 191 and 192 that overlap with the insulating layer 13 in plan view (FIG. 2G). More specifically, the conductive layer 191 is separated into conductive layers 161 and 171, and the conductive layer 192 is separated into conductive layers 162 and 172. Thereby, the n-type electrode 16 and the p-type electrode 17 are formed.
 溝の形成は、レーザーアブレーションによって行うことが好ましい。レーザーアブレーションに使用するレーザーは、例えばArFエキシマレーザー(波長:193nm)である。なお、超短パルスレーザー(フェムト秒オーダー)や短波長のUV光を利用することで、基板10に与えるダメージを抑制することができる。 The groove is preferably formed by laser ablation. The laser used for laser ablation is, for example, an ArF excimer laser (wavelength: 193 nm). In addition, the damage given to the board | substrate 10 can be suppressed by utilizing ultrashort pulse laser (femtosecond order) and UV light of a short wavelength.
 以上、本発明の第1の実施形態にかかる光電変換素子1の構成および製造方法を説明した。p型半導体層15と基板10とは、パッシベーション層12を挟んでpn接合を形成する。pn接合に光が入射すると、電子と正孔とが生成される。電子および正孔は、パッシベーション層12をトンネリングなどしてそれぞれn型半導体層14およびp型半導体層15に移動し、n型電極16およびp型電極17を通じて、電流として外部に取り出される。パッシベーション層12は、基板10とn型半導体層14との間の界面、および基板10とp型半導体層15との間の界面の欠陥を低減する。 The configuration and manufacturing method of the photoelectric conversion element 1 according to the first embodiment of the present invention have been described above. The p-type semiconductor layer 15 and the substrate 10 form a pn junction with the passivation layer 12 interposed therebetween. When light enters the pn junction, electrons and holes are generated. Electrons and holes move to the n-type semiconductor layer 14 and the p-type semiconductor layer 15 by tunneling the passivation layer 12, respectively, and are taken out as current through the n-type electrode 16 and the p-type electrode 17. The passivation layer 12 reduces defects at the interface between the substrate 10 and the n-type semiconductor layer 14 and at the interface between the substrate 10 and the p-type semiconductor layer 15.
 [光電変換素子1の効果]
 本実施形態では、n型半導体層14とp型半導体層15とは、基板10の面内方向において絶縁層13を挟んで隣接している。本実施形態では、n型半導体層14とp型半導体層15とを形成する前に、絶縁層13を形成する。そのため、基板10と絶縁層13との間には、n型半導体層14およびp型半導体層15のいずれも形成されていない。
[Effect of photoelectric conversion element 1]
In the present embodiment, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are adjacent to each other with the insulating layer 13 interposed therebetween in the in-plane direction of the substrate 10. In the present embodiment, the insulating layer 13 is formed before the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed. Therefore, neither the n-type semiconductor layer 14 nor the p-type semiconductor layer 15 is formed between the substrate 10 and the insulating layer 13.
 本実施形態によれば、n型半導体層14とp型半導体層15とが絶縁層13によって確実に分離される。これによって、n型半導体層14とp型半導体層15との間のリークを抑制し、高いシャント抵抗を得ることができる。 According to this embodiment, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are reliably separated by the insulating layer 13. As a result, leakage between the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be suppressed, and a high shunt resistance can be obtained.
 本実施形態ではさらに、絶縁層13の層厚dは、基板10の裏面の凹凸の高低差よりも大きい。この効果を、図3A~図3Cを参照して説明する。 Further, in the present embodiment, the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10. This effect will be described with reference to FIGS. 3A to 3C.
 図3Aは、シリコン基板の表面顕微鏡写真である。図3Bは、シリコン基板の凹凸のプロファイルである。基板10には、ダメージ層を除去するために行うエッチングの影響等によって、テクスチャが形成されていない面にも1μm程度の凹凸が存在する場合がある。本実施形態では、絶縁層13の層厚dを、基板10の裏面の凹凸の高低差Δよりも大きくする。なお高低差Δは、基板10の裏面の凹凸の高低差の最大のものを指すものとする。 FIG. 3A is a surface micrograph of the silicon substrate. FIG. 3B is an uneven profile of the silicon substrate. The substrate 10 may have irregularities of about 1 μm on the surface where no texture is formed due to the influence of etching performed to remove the damaged layer. In the present embodiment, the layer thickness d of the insulating layer 13 is made larger than the height difference Δ of the unevenness on the back surface of the substrate 10. Note that the height difference Δ indicates the maximum height difference of the unevenness on the back surface of the substrate 10.
 これによって、図3Cに示すように、絶縁層13が基板10の裏面の凹部の最も深い部分に形成された場合であっても、絶縁層13が基板10の裏面から突出する。そのため、n型半導体層14およびp型半導体層15を同一面内に形成する場合において、n型半導体層14およびp型半導体層15が互いに接触しないようにすることができる。これによって、n型半導体層14とp型半導体層15との間のリークを抑制し、高いシャント抵抗を得ることができる。 As a result, as shown in FIG. 3C, the insulating layer 13 protrudes from the back surface of the substrate 10 even when the insulating layer 13 is formed in the deepest part of the recess on the back surface of the substrate 10. Therefore, when the n-type semiconductor layer 14 and the p-type semiconductor layer 15 are formed in the same plane, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be prevented from contacting each other. As a result, leakage between the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be suppressed, and a high shunt resistance can be obtained.
 以上のように、絶縁層13の層厚dが基板10の裏面の凹凸の高低差よりも大きければ、n型半導体層14とp型半導体層15とをより確実に分離することができる。ただし、絶縁層13の層厚dが基板10の裏面の凹凸の高低差以下であっても、n型半導体層14とp型半導体層15とをある程度分離することができる。したがって、絶縁層13の層厚dが基板10の裏面の凹凸の高低差よりも大きくすることは、必須ではない。 As described above, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be more reliably separated if the thickness d of the insulating layer 13 is larger than the height difference of the irregularities on the back surface of the substrate 10. However, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be separated to some extent even if the layer thickness d of the insulating layer 13 is equal to or less than the height difference of the unevenness on the back surface of the substrate 10. Therefore, it is not essential that the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10.
 層厚dは、好ましくは3μm以上である。ただし、基板10がミラー基板のように平坦であれば、層厚dは3μm未満であっても良い。なお、基板10がミラー基板のように平坦な場合でも、層厚dは0.3μm以上であることが好ましい。層厚dが0.3μm以上であれば、製造工程においてレーザーアブレーションを用いる場合に、レーザーアブレーションによるダメージから基板10を有効に保護することができる。 The layer thickness d is preferably 3 μm or more. However, if the substrate 10 is flat like a mirror substrate, the layer thickness d may be less than 3 μm. Even when the substrate 10 is flat like a mirror substrate, the layer thickness d is preferably 0.3 μm or more. If the layer thickness d is 0.3 μm or more, the substrate 10 can be effectively protected from damage due to laser ablation when laser ablation is used in the manufacturing process.
 一方、層厚dが300μmよりも厚くなると、応力等によって剥がれやクラックが発生しやすくなる。そのため、層厚dは、上限の観点では300μm以下であることが好ましい。 On the other hand, if the layer thickness d is greater than 300 μm, peeling or cracking is likely to occur due to stress or the like. Therefore, the layer thickness d is preferably 300 μm or less from the viewpoint of the upper limit.
 ここで、仮想的な比較例を用いて本実施形態の効果を説明する。図4Aは、絶縁層13が形成されていない面にn型半導体層94を形成した状態を示す模式図である。図4Aでは、領域Aに対向する部分が開口したマスクMCを用いて、n型半導体層94を形成している。このとき、マスクMCを基板10に密着させることは難しく、マスクMCと基板10との間には隙間Gが存在する。そのため、原料ガスが分解されて生成される活性種(ラジカル)がマスクMCと基板10との間に侵入し、領域Cにもn型半導体層94が形成される。 Here, the effect of this embodiment will be described using a virtual comparative example. FIG. 4A is a schematic diagram showing a state in which an n-type semiconductor layer 94 is formed on the surface where the insulating layer 13 is not formed. In FIG. 4A, the n-type semiconductor layer 94 is formed using a mask MC having an opening at a portion facing the region A. At this time, it is difficult to bring the mask MC into close contact with the substrate 10, and there is a gap G between the mask MC and the substrate 10. Therefore, active species (radicals) generated by the decomposition of the source gas enter between the mask MC and the substrate 10, and the n-type semiconductor layer 94 is also formed in the region C.
 図4Bは、図4Aからさらにp型半導体層95を形成した状態を示す模式図である。図4Bでは、領域Bに対向する部分が開口したマスクMDを用いて、p型半導体層95を形成している。この場合も同様に、活性種がマスクMDと基板10との間に侵入し、領域Dにもp型半導体層95が形成される。そのため、この比較例では、n型半導体層94とp型半導体層95とが接する。 FIG. 4B is a schematic diagram showing a state in which the p-type semiconductor layer 95 is further formed from FIG. 4A. In FIG. 4B, the p-type semiconductor layer 95 is formed using a mask MD having an opening at a portion facing the region B. In this case as well, the active species enter between the mask MD and the substrate 10, and the p-type semiconductor layer 95 is also formed in the region D. Therefore, in this comparative example, the n-type semiconductor layer 94 and the p-type semiconductor layer 95 are in contact with each other.
 これに対して、本実施形態によれば、図2Dおよび図2Eに示すように、活性種は絶縁層13によって遮られるため、マスクMAと基板10との間、またはマスクMBと基板10との間に侵入しない。そのため、n型半導体層14とp型半導体層15とを確実に分離することができる。 On the other hand, according to the present embodiment, as shown in FIGS. 2D and 2E, the active species are blocked by the insulating layer 13, and therefore, between the mask MA and the substrate 10 or between the mask MB and the substrate 10. Do not intrude in between. Therefore, the n-type semiconductor layer 14 and the p-type semiconductor layer 15 can be reliably separated.
 なお、絶縁層13の層厚d(図1)が厚いほど、マスクMAまたはMBと絶縁層13とを密着させやすくできる。また、層厚dが厚いほど、活性種の回り込みを抑制することができる。したがって層厚dは、300μmを超えない範囲で、厚い方が好ましい。 In addition, the mask MA or MB and the insulating layer 13 can be more easily adhered as the layer thickness d (FIG. 1) of the insulating layer 13 is larger. Further, the greater the layer thickness d, the more active species can be prevented from wrapping around. Therefore, the layer thickness d is preferably as thick as possible within a range not exceeding 300 μm.
 図5Aは、本実施形態に好適に用いられるマスクMAの形状を模式的に示す断面図である。マスクMAの下面には、凹部MAaが形成されている。凹部MAaは、絶縁層13の間隔と幅に対応するように形成されている。この凹部MAaによって、マスクMaと基板10との位置合わせを正確かつ容易に行うことができる。また、凹部MAaによって、マスクMAと絶縁層13とが対向する面積が増えるため、活性種の回り込みを効果的に抑制することができる。 FIG. 5A is a cross-sectional view schematically showing the shape of the mask MA preferably used in the present embodiment. A recess MAa is formed on the lower surface of the mask MA. The recesses MAa are formed so as to correspond to the interval and width of the insulating layer 13. By this recess MAa, the alignment between the mask Ma and the substrate 10 can be performed accurately and easily. In addition, since the area where the mask MA and the insulating layer 13 face each other is increased by the concave portion MAa, the wraparound of the active species can be effectively suppressed.
 図5Bは、本実施形態に好適に用いられるマスクの他の例であるマスクMEの形状を模式的に示す断面図である。マスクMEには、マスクMAの凹部MAaに代えて、凹部MEaが形成されている。凹部MEaは、絶縁層13を跨ぐように形成されている。マスクMEによっても、位置合わせを正確かつ容易に行うことができ、かつ活性種の回り込みを効果的に抑制することができる。 FIG. 5B is a cross-sectional view schematically showing the shape of a mask ME which is another example of a mask suitably used in the present embodiment. In the mask ME, a recess MEa is formed instead of the recess MAa of the mask MA. The recess MEa is formed so as to straddle the insulating layer 13. Also with the mask ME, alignment can be performed accurately and easily, and the wraparound of active species can be effectively suppressed.
 なお、マスクMAおよびマスクMEとして、ステンレス鋼、銅、ニッケル、ニッケル合金(42アロイ、インバー材等)、モリブデン等のメタルマスクを用いても良いし、ガラスマスク、セラミックマスク、有機フィルム等を用いても良い。 As the mask MA and mask ME, a metal mask such as stainless steel, copper, nickel, nickel alloy (42 alloy, invar material, etc.), molybdenum, or the like, or a glass mask, a ceramic mask, an organic film, or the like may be used. May be.
 [第1実施形態の変形例]
 図6は、本発明の第1の実施形態の変形例にかかる光電変換素子1Aの構成を模式的に示す断面図である。光電変換素子1Aは、光電変換素子1のn型半導体層14に代えて、n型半導体層14Aを備えている。本変形例においても、絶縁層13の層厚dは基板10の裏面の凹凸の高低差よりも大きい。
[Modification of First Embodiment]
FIG. 6 is a cross-sectional view schematically showing a configuration of a photoelectric conversion element 1A according to a modification of the first embodiment of the present invention. The photoelectric conversion element 1 </ b> A includes an n-type semiconductor layer 14 </ b> A instead of the n-type semiconductor layer 14 of the photoelectric conversion element 1. Also in this modification, the layer thickness d of the insulating layer 13 is larger than the height difference of the unevenness on the back surface of the substrate 10.
 光電変換素子1と光電変換素子1Aとは、n型半導体層14(n型半導体層14A)と絶縁層13との積層の順番が異なっている。本変形例では、絶縁層13は、パッシベーション膜12とn型半導体層14Aとに跨るように形成されている。換言すれば、絶縁層13と基板10との間の一部に、n型半導体層14Aが存在する。 The photoelectric conversion element 1 and the photoelectric conversion element 1A are different in the stacking order of the n-type semiconductor layer 14 (n-type semiconductor layer 14A) and the insulating layer 13. In this modification, the insulating layer 13 is formed so as to straddle the passivation film 12 and the n-type semiconductor layer 14A. In other words, the n-type semiconductor layer 14 </ b> A exists in a part between the insulating layer 13 and the substrate 10.
 [光電変換素子1Aの製造方法]
 図7A~図7Cを参照して、光電変換素子1Aの製造方法の一例を説明する。なお、光電変換素子1と同様の工程に関しては詳しい説明を省略する。
[Method for Producing Photoelectric Conversion Element 1A]
An example of a method for manufacturing the photoelectric conversion element 1A will be described with reference to FIGS. 7A to 7C. Detailed description of the same steps as those of the photoelectric conversion element 1 will be omitted.
 図2Bに示す工程の後に、パッシベーション層12の上にn型半導体層14Aを形成する(図7A)。図7Aでは、領域Aに対向する部分が開口したマスクMCを用いて、n型半導体層14Aを形成している。このとき、活性種(ラジカル)がマスクMCと基板10との間に侵入し、領域Cにもn型半導体層14Aが形成される。 After the step shown in FIG. 2B, an n-type semiconductor layer 14A is formed on the passivation layer 12 (FIG. 7A). In FIG. 7A, the n-type semiconductor layer 14A is formed using a mask MC having an opening in a portion facing the region A. At this time, active species (radicals) enter between the mask MC and the substrate 10, and the n-type semiconductor layer 14A is also formed in the region C.
 パッシベーション層12とn型半導体層14Aとに跨る部分に、絶縁層13を形成する(図7B)。なお、絶縁層13は、n型半導体層14Aよりも外側に形成されれば良い。換言すれば、絶縁層13は、n型半導体層14Aを挟むように形成されれば良い。絶縁層13同士の間隔を広めにすれば、n型半導体層14Aが絶縁層13の外側にならない。 An insulating layer 13 is formed in a portion straddling the passivation layer 12 and the n-type semiconductor layer 14A (FIG. 7B). Note that the insulating layer 13 may be formed outside the n-type semiconductor layer 14A. In other words, the insulating layer 13 may be formed so as to sandwich the n-type semiconductor layer 14A. If the distance between the insulating layers 13 is increased, the n-type semiconductor layer 14 </ b> A will not be outside the insulating layer 13.
 絶縁層13で挟まれた領域のうち、n型半導体層14Aが形成されていない方の領域に、p型半導体層15を形成する(図7C)。光電変換素子1の場合と同様に、マスクMBを用いて、基板10の裏面の絶縁層13で挟まれた領域の一部(図7Cの領域B)にだけ、p型半導体層15を形成する。 A p-type semiconductor layer 15 is formed in a region between the insulating layers 13 where the n-type semiconductor layer 14A is not formed (FIG. 7C). As in the case of the photoelectric conversion element 1, the p-type semiconductor layer 15 is formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 7C) using the mask MB. .
 以降は光電変換素子1と同様にして、n型電極16およびp型電極17を形成する。これによって、光電変換素子1Aが製造される。 Thereafter, the n-type electrode 16 and the p-type electrode 17 are formed in the same manner as the photoelectric conversion element 1. Thereby, the photoelectric conversion element 1A is manufactured.
 [光電変換素子1Aの効果]
 本変形例によれば、p型半導体層15を形成する際(図7C)、活性種が絶縁層13によって遮られて、マスクMBと基板10との間に侵入しない。そのため、n型半導体層14Aとp型半導体層15とが接するのを抑制することができる。これによって、n型半導体層14Aとp型半導体層15との間のリークを抑制し、高いシャント抵抗を得ることができる。
[Effect of photoelectric conversion element 1A]
According to this modification, when the p-type semiconductor layer 15 is formed (FIG. 7C), the active species are blocked by the insulating layer 13 and do not enter between the mask MB and the substrate 10. Therefore, contact between n-type semiconductor layer 14A and p-type semiconductor layer 15 can be suppressed. Thereby, leakage between the n-type semiconductor layer 14A and the p-type semiconductor layer 15 can be suppressed, and a high shunt resistance can be obtained.
 なお、この変形例では、n型半導体層14A、絶縁層13、およびp型半導体層15をこの順番で形成したが、p型半導体層、絶縁層、およびn型半導体層の順番で形成しても良い。すなわち、n型半導体層を形成する工程およびp型半導体層を形成する工程の少なくとも一方が、絶縁層を形成する工程よりも後に行われれば良い。 In this modification, the n-type semiconductor layer 14A, the insulating layer 13, and the p-type semiconductor layer 15 are formed in this order. However, the p-type semiconductor layer, the insulating layer, and the n-type semiconductor layer are formed in this order. Also good. That is, at least one of the step of forming the n-type semiconductor layer and the step of forming the p-type semiconductor layer may be performed after the step of forming the insulating layer.
 [第2実施形態]
 図8は、本発明の第2の実施形態にかかる光電変換素子2の構成を模式的に示す断面図である。光電変換素子2は、光電変換素子1のパッシベーション層12に代えて、i型半導体層22を備えている。
[Second Embodiment]
FIG. 8 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 2 according to the second embodiment of the present invention. The photoelectric conversion element 2 includes an i-type semiconductor layer 22 in place of the passivation layer 12 of the photoelectric conversion element 1.
 i型半導体層22は、実質的に真性で、水素を含有する非晶質半導体の層である。i型半導体層22は例えば、i型非晶質シリコン、i型非晶質シリコンゲルマニウム、i型非晶質ゲルマニウム、i型非晶質シリコンカーバイド、i型非晶質シリコンナイトライド、i型非晶質シリコンオキサイド、i型非晶質シリコンオキシナイトライド、i型非晶質シリコンカーボンオキサイド等からなる。i型半導体層22の厚さは例えば、1~10nmである。このように、i型半導体層22をシリコンオキシナイトライドやシリコンナイトライドで形成することにより、i型半導体層22上に形成されるp型半導体層15に含有されるボロンなどのドーパントが基板10に拡散することを抑制することができる。有効にボロンの拡散を抑制することができるためより好ましい。 The i-type semiconductor layer 22 is a layer of an amorphous semiconductor that is substantially intrinsic and contains hydrogen. The i-type semiconductor layer 22 includes, for example, i-type amorphous silicon, i-type amorphous silicon germanium, i-type amorphous germanium, i-type amorphous silicon carbide, i-type amorphous silicon nitride, i-type non-crystalline. It consists of crystalline silicon oxide, i-type amorphous silicon oxynitride, i-type amorphous silicon carbon oxide, and the like. The i-type semiconductor layer 22 has a thickness of 1 to 10 nm, for example. In this way, by forming the i-type semiconductor layer 22 from silicon oxynitride or silicon nitride, a dopant such as boron contained in the p-type semiconductor layer 15 formed on the i-type semiconductor layer 22 is added to the substrate 10. Can be prevented from diffusing. This is more preferable because boron diffusion can be effectively suppressed.
 i型半導体層22は、基板10とn型半導体層14との間の界面、および基板10とp型半導体層15との間の界面の欠陥を低減する。 The i-type semiconductor layer 22 reduces defects at the interface between the substrate 10 and the n-type semiconductor layer 14 and at the interface between the substrate 10 and the p-type semiconductor layer 15.
 [光電変換素子2の製造方法]
 光電変換素子2は、光電変換素子1のパッシベーション膜12に代えてi型半導体層22を形成することで製造することができる。i型半導体層22は、ARC11を形成する前に形成しても良いし、ARC11を形成した後に形成しても良い。i型半導体層22は例えば、PECVDによって形成することができる。例えば、基板温度:130~180℃、水素ガス流量:0~100sccm、シランガス流量:40sccm、圧力:40~120Pa、RFパワー密度:5~15mW/cmの条件下でPECVDを行うことによって、i型非晶質シリコンを形成することができる。
[Production Method of Photoelectric Conversion Element 2]
The photoelectric conversion element 2 can be manufactured by forming the i-type semiconductor layer 22 instead of the passivation film 12 of the photoelectric conversion element 1. The i-type semiconductor layer 22 may be formed before the ARC 11 is formed, or may be formed after the ARC 11 is formed. The i-type semiconductor layer 22 can be formed by PECVD, for example. For example, by performing PECVD under conditions of substrate temperature: 130 to 180 ° C., hydrogen gas flow rate: 0 to 100 sccm, silane gas flow rate: 40 sccm, pressure: 40 to 120 Pa, RF power density: 5 to 15 mW / cm 2 , Type amorphous silicon can be formed.
 [光電変換素子2の効果]
 本実施形態によっても、第1の実施形態と同様の効果が得られる。
[Effect of photoelectric conversion element 2]
According to this embodiment, the same effect as that of the first embodiment can be obtained.
 [第3実施形態]
 図9は、本発明の第3の実施形態にかかる光電変換素子3の構成を模式的に示す断面図である。光電変換素子3は、光電変換素子1のパッシベーション層12に代えて、i型半導体層(第1i型半導体層)321およびi型半導体層(第2i型半導体層)322を備えている。
[Third Embodiment]
FIG. 9 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 3 according to the third embodiment of the present invention. The photoelectric conversion element 3 includes an i-type semiconductor layer (first i-type semiconductor layer) 321 and an i-type semiconductor layer (second i-type semiconductor layer) 322 instead of the passivation layer 12 of the photoelectric conversion element 1.
 i型半導体層321は基板10とn型半導体層14との間に形成され、i型半導体層322は基板10とp型半導体層15との間に形成されている。絶縁層13は、基板10の裏面に接している。すなわち、基板10と絶縁層13との間には、i型半導体層321および322、n型半導体層14、およびp型半導体層15のいずれも形成されていない。 The i-type semiconductor layer 321 is formed between the substrate 10 and the n-type semiconductor layer 14, and the i-type semiconductor layer 322 is formed between the substrate 10 and the p-type semiconductor layer 15. The insulating layer 13 is in contact with the back surface of the substrate 10. That is, none of the i-type semiconductor layers 321 and 322, the n-type semiconductor layer 14, and the p-type semiconductor layer 15 are formed between the substrate 10 and the insulating layer 13.
 i型半導体層321および322は、基板10とn型半導体層14との間の界面、および基板10とp型半導体層15との間の界面の欠陥を低減する。 I-type semiconductor layers 321 and 322 reduce defects at the interface between substrate 10 and n-type semiconductor layer 14 and at the interface between substrate 10 and p-type semiconductor layer 15.
 [光電変換素子3の製造方法]
 図10A~図10Dを参照して、光電変換素子3の製造方法の一例を説明する。なお、光電変換素子1と同様の工程に関しては詳しい説明を省略する。
[Production Method of Photoelectric Conversion Element 3]
An example of a method for manufacturing the photoelectric conversion element 3 will be described with reference to FIGS. 10A to 10D. Detailed description of the same steps as those of the photoelectric conversion element 1 will be omitted.
 片面にテクスチャが形成された基板10を準備する。基板10の受光面にARC11を形成する(図10A)。基板10の裏面に絶縁層13を形成する(図10B)。 A substrate 10 having a texture formed on one side is prepared. An ARC 11 is formed on the light receiving surface of the substrate 10 (FIG. 10A). An insulating layer 13 is formed on the back surface of the substrate 10 (FIG. 10B).
 基板10の裏面の絶縁層13で挟まれた領域の一部に、i型半導体層321およびn型半導体層14をこの順番で形成する(図10C)。i型半導体層321およびn型半導体層14は例えば、PECVDによって形成することができる。第1の実施形態と同様に、マスクMAを用いることによって、基板10の裏面の絶縁層13で挟まれた領域の一部(図10Cの領域A)にだけ、i型半導体層321およびn型半導体層14を形成することができる。 The i-type semiconductor layer 321 and the n-type semiconductor layer 14 are formed in this order in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 10C). The i-type semiconductor layer 321 and the n-type semiconductor layer 14 can be formed by PECVD, for example. Similar to the first embodiment, by using the mask MA, the i-type semiconductor layer 321 and the n-type semiconductor layer 321 and the n-type semiconductor layer only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region A in FIG. 10C). The semiconductor layer 14 can be formed.
 基板10の裏面の絶縁層13で挟まれた領域の他の一部に、i型半導体層322およびp型半導体層15をこの順番で形成する(図10D)。i型半導体層322およびp型半導体層15は例えば、PECVDによって形成することができる。第1の実施形態と同様に、マスクMBを用いることによって、基板10の裏面の絶縁層13で挟まれた領域の一部(図10Dの領域B)にだけ、i型半導体層322およびp型半導体層15を形成することができる。 The i-type semiconductor layer 322 and the p-type semiconductor layer 15 are formed in this order in the other part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (FIG. 10D). The i-type semiconductor layer 322 and the p-type semiconductor layer 15 can be formed by PECVD, for example. Similar to the first embodiment, by using the mask MB, the i-type semiconductor layer 322 and the p-type are formed only in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10 (region B in FIG. 10D). The semiconductor layer 15 can be formed.
 以降は第1の実施形態と同様に、n型電極16およびp型電極17を形成する。これによって、光電変換素子3が製造される。 Thereafter, as in the first embodiment, the n-type electrode 16 and the p-type electrode 17 are formed. Thereby, the photoelectric conversion element 3 is manufactured.
 [光電変換素子3の効果]
 ここで、仮想的な比較例を用いて本実施形態の効果を説明する。図11Aは、絶縁層13が形成されていない面にi型半導体層921とn型半導体層94とを形成した状態を示す模式図である。このとき、活性種の回り込みによって、領域Cにもi型半導体層921およびn型半導体層94が形成される。
[Effect of photoelectric conversion element 3]
Here, the effect of this embodiment is demonstrated using a virtual comparative example. FIG. 11A is a schematic diagram showing a state in which the i-type semiconductor layer 921 and the n-type semiconductor layer 94 are formed on the surface where the insulating layer 13 is not formed. At this time, the i-type semiconductor layer 921 and the n-type semiconductor layer 94 are also formed in the region C due to the wraparound of the active species.
 図11Aに示すように、i型半導体層921およびn型半導体層94は、端部に向かって厚さが薄くなる。i型半導体層921が薄くなることによって、領域Cではi型半導体層921のパッシベーション性が低下する。これによって、少数キャリアのライフタイムが短くなる。 As shown in FIG. 11A, the i-type semiconductor layer 921 and the n-type semiconductor layer 94 become thinner toward the ends. As the i-type semiconductor layer 921 is thinned, the passivation property of the i-type semiconductor layer 921 is lowered in the region C. This shortens the lifetime of minority carriers.
 図11Bは、図11Aからさらにi型半導体層922とp型半導体層95とを形成した状態を示す模式図である。この場合も、活性種の回り込みによって、領域Dにもi型半導体層922およびp型半導体層95が形成される。そして、i型半導体層922およびp型半導体層95は端部に向かって薄くなる。i型半導体層922が薄くなることによって、領域Dではi型半導体層922のパッシベーション性が低下する。これによって、少数キャリアのライフタイムが短くなる。 FIG. 11B is a schematic diagram showing a state in which an i-type semiconductor layer 922 and a p-type semiconductor layer 95 are further formed from FIG. 11A. Also in this case, the i-type semiconductor layer 922 and the p-type semiconductor layer 95 are formed also in the region D by the wraparound of the active species. Then, the i-type semiconductor layer 922 and the p-type semiconductor layer 95 become thinner toward the end portions. When the i-type semiconductor layer 922 is thinned, the passivation property of the i-type semiconductor layer 922 is lowered in the region D. This shortens the lifetime of minority carriers.
 これに対して、本実施形態によれば、絶縁層13を形成することで、領域Cまたは領域Dのような領域が存在しないようにできる。そのため、少数キャリアのライフタイムが短くなるのを抑制することができる。 On the other hand, according to the present embodiment, by forming the insulating layer 13, it is possible to prevent a region such as the region C or the region D from being present. Therefore, the lifetime of the minority carrier can be suppressed from being shortened.
 [第3実施形態の変形例]
 図12は、本発明の第3の実施形態の変形例にかかる光電変換素子3Aの構成を模式的に示す断面図である。光電変換素子3Aは、光電変換素子3の構成に加えて、基板10と絶縁層13との間に形成されたパッシベーション層323をさらに備えている。
[Modification of Third Embodiment]
FIG. 12 is a cross-sectional view schematically showing the configuration of a photoelectric conversion element 3A according to a modification of the third embodiment of the present invention. The photoelectric conversion element 3 </ b> A further includes a passivation layer 323 formed between the substrate 10 and the insulating layer 13 in addition to the configuration of the photoelectric conversion element 3.
 パッシベーション層323は例えば、シリコンの酸化物、シリコンの窒化物、もしくはシリコンの酸窒化物、多結晶シリコン、アルミニウムの酸化物、アルミニウムの窒化物、もしくはアルミニウムの酸窒化物、リン窒化物、またはチタン窒化物等である。パッシベーション層323は、好ましくはシリコンの酸化物である。パッシベーション層323は、基板10を酸化して形成したものであっても良い。パッシベーション層323の厚さは、例えば0.5~3nmである。 The passivation layer 323 may be, for example, silicon oxide, silicon nitride, or silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, or aluminum oxynitride, phosphorous nitride, or titanium. Nitride and the like. The passivation layer 323 is preferably an oxide of silicon. The passivation layer 323 may be formed by oxidizing the substrate 10. The thickness of the passivation layer 323 is, for example, 0.5 to 3 nm.
 [光電変換素子3Aの製造方法]
 図13Aおよび図13Bを参照して、光電変換素子3Aの製造方法の一例を説明する。なお、光電変換素子1と同様の工程に関しては詳しい説明を省略する。
[Method for Producing Photoelectric Conversion Element 3A]
With reference to FIG. 13A and FIG. 13B, an example of the manufacturing method of 3 A of photoelectric conversion elements is demonstrated. Detailed description of the same steps as those of the photoelectric conversion element 1 will be omitted.
 片面にテクスチャが形成された基板10を準備する。第1の実施形態と同様にして、ARC11およびパッシベーション層12を形成する。第1の実施形態と同様に、パッシベーション層12の上に絶縁層13を形成する(図13A)。 A substrate 10 having a texture formed on one side is prepared. In the same manner as in the first embodiment, the ARC 11 and the passivation layer 12 are formed. As in the first embodiment, the insulating layer 13 is formed on the passivation layer 12 (FIG. 13A).
 絶縁層13をマスクとして、パッシベーション層12をエッチングする(図13B)。これによって、基板10と絶縁層13との間のパッシベーション層12がパッシベーション層323として残り、他の部分のパッシベーション層12は除去される。 Using the insulating layer 13 as a mask, the passivation layer 12 is etched (FIG. 13B). As a result, the passivation layer 12 between the substrate 10 and the insulating layer 13 remains as the passivation layer 323, and the other portion of the passivation layer 12 is removed.
 以降は第3の実施形態と同様にして、i型半導体層321およびn型半導体層14、i型半導体層322およびp型半導体層15、ならびにn型電極16およびp型電極17を形成する。これによって、光電変換素子3Aが製造される。 Thereafter, in the same manner as in the third embodiment, the i-type semiconductor layer 321 and the n-type semiconductor layer 14, the i-type semiconductor layer 322 and the p-type semiconductor layer 15, and the n-type electrode 16 and the p-type electrode 17 are formed. Thereby, the photoelectric conversion element 3A is manufactured.
 [光電変換素子3Aの効果]
 光電変換素子3Aは、基板10と絶縁層13との間にパッシベーション層323を備えている。パッシベーション層323によって、光電変換素子3と比較して絶縁層13の下部におけるパッシベーション性をさらに高めることができる。
[Effect of photoelectric conversion element 3A]
The photoelectric conversion element 3 </ b> A includes a passivation layer 323 between the substrate 10 and the insulating layer 13. With the passivation layer 323, the passivation property in the lower portion of the insulating layer 13 can be further enhanced as compared with the photoelectric conversion element 3.
 [第4実施形態]
 図14は、本発明の第4の実施形態にかかる光電変換素子4の構成を模式的に示す断面図である。光電変換素子4は、光電変換素子1のn型半導体層14に代えてn型半導体層441およびn型ドーパント源442を備え、p型半導体層15に代えてp型半導体層451およびp型ドーパント源452を備えている。
[Fourth Embodiment]
FIG. 14 is a cross-sectional view schematically showing the configuration of the photoelectric conversion element 4 according to the fourth embodiment of the present invention. The photoelectric conversion element 4 includes an n-type semiconductor layer 441 and an n-type dopant source 442 instead of the n-type semiconductor layer 14 of the photoelectric conversion element 1, and replaces the p-type semiconductor layer 15 with a p-type semiconductor layer 451 and a p-type dopant. A source 452 is provided.
 n型半導体層441およびp型半導体層451は、パッシベーション層12の上に形成されている。n型半導体層441とp型半導体層451とは、基板10の面内方向において、絶縁層13を挟んで隣接して配置されている。 The n-type semiconductor layer 441 and the p-type semiconductor layer 451 are formed on the passivation layer 12. The n-type semiconductor layer 441 and the p-type semiconductor layer 451 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10.
 n型ドーパント源442はn型半導体層441の上に形成され、p型ドーパント源452はp型半導体層451の上に形成されている。n型半導体層441とp型半導体層451とは、基板10の面内方向において、絶縁層13を挟んで隣接して配置されている。 The n-type dopant source 442 is formed on the n-type semiconductor layer 441, and the p-type dopant source 452 is formed on the p-type semiconductor layer 451. The n-type semiconductor layer 441 and the p-type semiconductor layer 451 are disposed adjacent to each other across the insulating layer 13 in the in-plane direction of the substrate 10.
 n型半導体層441は、n型のドーパントが拡散した多結晶シリコンである。n型ドーパント源442は例えば、リンドープケイ酸塩ガラス(PSG)である。p型半導体層451は、p型のドーパントが拡散した多結晶シリコンである。p型ドーパント源452は例えば、ボロンドープケイ酸塩ガラス(BSG)である。 The n-type semiconductor layer 441 is polycrystalline silicon in which an n-type dopant is diffused. The n-type dopant source 442 is, for example, phosphorus-doped silicate glass (PSG). The p-type semiconductor layer 451 is polycrystalline silicon in which a p-type dopant is diffused. The p-type dopant source 452 is, for example, boron-doped silicate glass (BSG).
 [光電変換素子4の製造方法]
 図15A~図15Dを参照して、光電変換素子4の製造方法の一例を説明する。なお、光電変換素子1と同様の工程に関しては詳しい説明を省略する。
[Production Method of Photoelectric Conversion Element 4]
An example of a method for manufacturing the photoelectric conversion element 4 will be described with reference to FIGS. 15A to 15D. Detailed description of the same steps as those of the photoelectric conversion element 1 will be omitted.
 片面にテクスチャが形成された基板10を準備する。第1の実施形態と同様にして、ARC11およびパッシベーション層12を形成する。第1の実施形態と同様に、パッシベーション層12の上に絶縁層13を形成する(図15A)。 A substrate 10 having a texture formed on one side is prepared. In the same manner as in the first embodiment, the ARC 11 and the passivation layer 12 are formed. Similar to the first embodiment, the insulating layer 13 is formed on the passivation layer 12 (FIG. 15A).
 パッシベーション層12の上に、多結晶シリコン層440を形成する(図15B)。多結晶シリコン層440は例えば、LPCVD(Low Pressure CVD)によって形成することができる。 A polycrystalline silicon layer 440 is formed on the passivation layer 12 (FIG. 15B). The polycrystalline silicon layer 440 can be formed by, for example, LPCVD (Low Pressure CVD).
 多結晶シリコン層440の上に、n型ドーパント源442およびp型ドーパント源452を形成する(図15C)。n型ドーパント源442およびp型ドーパント源452は例えば、スクリーン印刷法によって形成することができる。 An n-type dopant source 442 and a p-type dopant source 452 are formed on the polycrystalline silicon layer 440 (FIG. 15C). The n-type dopant source 442 and the p-type dopant source 452 can be formed by, for example, a screen printing method.
 基板10を熱処理して、n型ドーパント源442およびp型ドーパント源452のドーパントを多結晶シリコン層440に拡散させる(図15D)。熱処理温度は例えば600~1100℃である。これによって、基板10の裏面の絶縁層13で挟まれた領域の一部にn型半導体層441が形成され、基板10の裏面の絶縁層13で挟まれた領域の他の一部にp型半導体層451が形成される。 The substrate 10 is heat-treated to diffuse the dopants of the n-type dopant source 442 and the p-type dopant source 452 into the polycrystalline silicon layer 440 (FIG. 15D). The heat treatment temperature is 600 to 1100 ° C., for example. As a result, the n-type semiconductor layer 441 is formed in a part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10, and the p-type is formed on another part of the region sandwiched between the insulating layers 13 on the back surface of the substrate 10. A semiconductor layer 451 is formed.
 なお、n型半導体層441およびp型半導体層451を形成した後に、n型ドーパント源442およびp型ドーパント源452を除去しても良い。 Note that the n-type dopant source 442 and the p-type dopant source 452 may be removed after the n-type semiconductor layer 441 and the p-type semiconductor layer 451 are formed.
 以降は第1の実施形態と同様にして、n型電極16およびp型電極17を形成する。これによって、光電変換素子4が製造される。 Thereafter, the n-type electrode 16 and the p-type electrode 17 are formed in the same manner as in the first embodiment. Thereby, the photoelectric conversion element 4 is manufactured.
 [光電変換素子4の効果]
 本実施形態のようにn型ドーパントとp型ドーパントを熱拡散させる場合、境界付近においてカウンタードープによって光電変換素子の特性が劣化することが知られている。本実施形態によれば、n型ドーパントが拡散する多結晶シリコン層440と、p型ドーパントが拡散する多結晶シリコン層440とは、絶縁層13によって分離されている。そのため、カウンタードープを抑制することができる。
[Effect of photoelectric conversion element 4]
When the n-type dopant and the p-type dopant are thermally diffused as in the present embodiment, it is known that the characteristics of the photoelectric conversion element deteriorate due to counter-doping in the vicinity of the boundary. According to this embodiment, the polycrystalline silicon layer 440 in which the n-type dopant diffuses and the polycrystalline silicon layer 440 in which the p-type dopant diffuses are separated by the insulating layer 13. Therefore, counter dope can be suppressed.
 [その他の実施形態]
 以上、本発明の第1~第4の実施形態にかかる光電変換素子について説明した。本発明の光電変換素子は上述の各実施形態のみに限定されず、発明の範囲内で種々の変更が可能である。また、各実施形態は、適宜組み合わせて実施することが可能である。
[Other Embodiments]
The photoelectric conversion elements according to the first to fourth embodiments of the present invention have been described above. The photoelectric conversion element of the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the invention. Moreover, each embodiment can be implemented in combination as appropriate.
 上記の各実施形態では、基板10の導電型がn型の場合を説明したが、基板10の導電型はp型であっても良い。また、上記の各実施形態では、受光面にARC11が形成されている場合を説明したが、ARC11は形成されていなくても良い。ARC11に代えて、あるいは受光面とARC11との間に、高濃度のn型ドーパントが拡散されたn層が形成されていても良い。 In each of the above embodiments, the case where the conductivity type of the substrate 10 is n-type has been described, but the conductivity type of the substrate 10 may be p-type. In each of the above embodiments, the case where the ARC 11 is formed on the light receiving surface has been described. However, the ARC 11 may not be formed. Instead of the ARC 11, or between the light receiving surface and the ARC 11, an n + layer in which a high concentration n-type dopant is diffused may be formed.
 上記の各実施形態では、n型電極16が導電層161および162を含み、p型電極17が導電層171および172を含む場合を説明した。しかし、n型電極16およびp型電極17の各々は、1層の導電層からなる構成であっても良いし、3層以上の導電層を含む構成であっても良い。例えば、第1層をTCOとし、第2層をNiとし、第3層をメッキ成膜法で形成されたCuとしても良い。 In the above embodiments, the case where the n-type electrode 16 includes the conductive layers 161 and 162 and the p-type electrode 17 includes the conductive layers 171 and 172 has been described. However, each of the n-type electrode 16 and the p-type electrode 17 may be composed of one conductive layer or may be composed of three or more conductive layers. For example, the first layer may be TCO, the second layer may be Ni, and the third layer may be Cu formed by plating.
 また、上記の各実施形態では、PECVDによって非晶質半導体層を形成する場合を説明した。しかし、PECVDに代えて、CatCVDによって非晶質半導体層を形成しても良い。CatCVDを用いる場合、成膜条件は例えば、基板温度:100~300℃、圧力:10~500Pa、熱触媒体の温度(熱触媒体としてタングステンを使用する場合):1500~2000℃、RFパワー密度:0.01~1W/cmとすることができる。これによって、品質の高い非晶質半導体層を比較的低温かつ短時間で形成することができる。 In each of the above embodiments, the case where the amorphous semiconductor layer is formed by PECVD has been described. However, an amorphous semiconductor layer may be formed by CatCVD instead of PECVD. When using CatCVD, the film formation conditions are, for example, substrate temperature: 100 to 300 ° C., pressure: 10 to 500 Pa, temperature of the thermal catalyst (when tungsten is used as the thermal catalyst): 1500 to 2000 ° C., RF power density : 0.01 to 1 W / cm 2 . Accordingly, a high-quality amorphous semiconductor layer can be formed at a relatively low temperature and in a short time.
 [光電変換モジュールおよび太陽光発電システム]
 本明細書における光電変換装置は、光電変換素子、光電変換素子を用いた光電変換モジュール、光電変換モジュールを備えた太陽光発電システム、を含む広い概念での装置である。以下、本発明の別の局面として第1~第4実施形態の光電変換素子のうち少なくとも1つを備える光電変換モジュール(第5実施形態)および太陽光発電システム(第6実施形態、第7実施形態)について説明する。
[Photoelectric conversion module and photovoltaic power generation system]
The photoelectric conversion device in this specification is a device based on a wide concept including a photoelectric conversion element, a photoelectric conversion module using the photoelectric conversion element, and a photovoltaic power generation system including the photoelectric conversion module. Hereinafter, as another aspect of the present invention, a photoelectric conversion module (fifth embodiment) including at least one of the photoelectric conversion elements of the first to fourth embodiments and a photovoltaic power generation system (sixth embodiment, seventh embodiment). Mode) will be described.
 第1~第4実施形態の光電変換素子は高い変換効率を有するため、これを備える光電変換モジュールおよび太陽光発電システムも高い変換効率を有することができる。 Since the photoelectric conversion elements of the first to fourth embodiments have high conversion efficiency, the photoelectric conversion module and the photovoltaic power generation system including the photoelectric conversion elements can also have high conversion efficiency.
 [第5実施形態]
 第5実施形態は、第1~第4実施形態の光電変換素子のうち少なくとも1つを備える光電変換モジュールである。
[Fifth Embodiment]
The fifth embodiment is a photoelectric conversion module including at least one of the photoelectric conversion elements of the first to fourth embodiments.
 <光電変換モジュール>
 図16は、本実施形態にかかる光電変換モジュールの構成の一例を示す概略図である。図16を参照して光電変換モジュール1000は、複数の光電変換素子1001と、カバー1002と、出力端子1013,1014とを備える。
<Photoelectric conversion module>
FIG. 16 is a schematic diagram illustrating an example of the configuration of the photoelectric conversion module according to the present embodiment. Referring to FIG. 16, the photoelectric conversion module 1000 includes a plurality of photoelectric conversion elements 1001, a cover 1002, and output terminals 1013 and 1014.
 複数の光電変換素子1001はアレイ状に配列され直列に接続されている。図16には光電変換素子1001を直列に接続する配列を図示しているが、配列および接続方式はこれに限定されず、並列に接続して配列しても良いし、直列と並列とを組み合わせた配列としても良い。複数の光電変換素子1001の各々には、第1~第4実施形態の光電変換素子のいずれか1つが用いられる。なお、光電変換モジュール1000は、複数の光電変換素子1001のうち少なくとも1つが第1~第4実施形態の光電変換素子のいずれかからなる限り、上記の説明に限定されず如何なる構成もとり得るものとする。また、光電変換モジュール1000に含まれる光電変換素子1001の数は2以上の任意の整数とすることができる。 A plurality of photoelectric conversion elements 1001 are arranged in an array and connected in series. FIG. 16 illustrates an arrangement in which the photoelectric conversion elements 1001 are connected in series. However, the arrangement and connection method are not limited to this, and the photoelectric conversion elements 1001 may be connected in parallel or may be combined in series and parallel. It may be an array. For each of the plurality of photoelectric conversion elements 1001, any one of the photoelectric conversion elements of the first to fourth embodiments is used. The photoelectric conversion module 1000 is not limited to the above description as long as at least one of the plurality of photoelectric conversion elements 1001 includes any one of the photoelectric conversion elements of the first to fourth embodiments, and can take any configuration. To do. Further, the number of photoelectric conversion elements 1001 included in the photoelectric conversion module 1000 can be any integer of 2 or more.
 カバー1002は耐候性のカバーから構成されており、複数の光電変換素子1001を覆う。カバー1002は、例えば、光電変換素子1001の受光面側に設けられた透明基材(例えばガラス等)と、前記光電変換素子1001の受光面側とは反対の裏面側に設けられた裏面基材(例えば、ガラス、樹脂シート等)と、前記透明基材と前記樹脂基材との間の隙間を埋める封止材(例えばEVA等)とを含む。 The cover 1002 is composed of a weatherproof cover and covers the plurality of photoelectric conversion elements 1001. The cover 1002 includes, for example, a transparent base material (for example, glass) provided on the light receiving surface side of the photoelectric conversion element 1001 and a back surface base material provided on the back surface side opposite to the light receiving surface side of the photoelectric conversion element 1001. (For example, glass, a resin sheet etc.) and the sealing material (for example, EVA etc.) which fills the clearance gap between the said transparent base material and the said resin base material.
 出力端子1013は、直列に接続された複数の光電変換素子1001の一方端に配置される光電変換素子1001に接続される。 The output terminal 1013 is connected to a photoelectric conversion element 1001 arranged at one end of a plurality of photoelectric conversion elements 1001 connected in series.
 出力端子1014は、直列に接続された複数の光電変換素子1001の他方端に配置される光電変換素子1001に接続される。 The output terminal 1014 is connected to the photoelectric conversion element 1001 arranged at the other end of the plurality of photoelectric conversion elements 1001 connected in series.
 [第6実施形態]
 第6実施形態は、第1~第4実施形態の光電変換素子のうち少なくとも1つを備える太陽光発電システムである。本発明の光電変換素子は高い変換効率を有するため、これを備える本発明の太陽光発電システムも高い変換効率を有することができる。なお、太陽光発電システムとは、光電変換モジュールが出力する電力を適宜変換して、商用電力系統または電気機器等に供給する装置である。
[Sixth Embodiment]
The sixth embodiment is a photovoltaic power generation system including at least one of the photoelectric conversion elements of the first to fourth embodiments. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency. Note that the solar power generation system is a device that appropriately converts the power output from the photoelectric conversion module and supplies the converted power to a commercial power system or an electric device.
 <太陽光発電システム>
 図17は、本実施形態にかかる太陽光発電システムの構成の一例を示す概略図である。図17を参照して、太陽光発電システム2000は、光電変換モジュールアレイ2001と、接続箱2002と、パワーコンディショナ2003と、分電盤2004と、電力メータ2005とを備える。後述するように光電変換モジュールアレイ2001は複数の光電変換モジュール1000(第5実施形態)から構成される。本発明の光電変換素子は高い変換効率を有するため、これを備える本発明の太陽光発電システムも高い変換効率を有することができる。
<Solar power generation system>
FIG. 17 is a schematic diagram illustrating an example of the configuration of the photovoltaic power generation system according to the present embodiment. With reference to FIG. 17, the photovoltaic power generation system 2000 includes a photoelectric conversion module array 2001, a connection box 2002, a power conditioner 2003, a distribution board 2004, and a power meter 2005. As will be described later, the photoelectric conversion module array 2001 includes a plurality of photoelectric conversion modules 1000 (fifth embodiment). Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
 太陽光発電システム2000には、一般に「ホーム・エネルギー・マネジメント・システム(HEMS:Home Energy Management System)」、「ビルディング・エネルギー・マネジメント・システム(BEMS:Building Energy Management System)」等と呼ばれる機能を付加することができる。これにより太陽光発電システム2000の発電量の監視、太陽光発電システム2000に接続される各電気機器類の消費電力量の監視・制御等を行うことで、エネルギー消費量を削減することができる。 The solar power generation system 2000 is added with a function generally called “Home Energy Management System (HEMS)”, “Building Energy Management System (BEMS)”, or the like. can do. Accordingly, the energy consumption can be reduced by monitoring the power generation amount of the solar power generation system 2000, monitoring / controlling the power consumption amount of each electrical device connected to the solar power generation system 2000, and the like.
 接続箱2002は光電変換モジュールアレイ2001に接続される。パワーコンディショナ2003は接続箱2002に接続される。分電盤2004はパワーコンディショナ2003および電気機器類2011に接続される。電力メータ2005は分電盤2004および商用電力系統に接続される。 The connection box 2002 is connected to the photoelectric conversion module array 2001. The power conditioner 2003 is connected to the connection box 2002. The distribution board 2004 is connected to the power conditioner 2003 and the electrical equipment 2011. The power meter 2005 is connected to the distribution board 2004 and the commercial power system.
 なお、図20に示すようにパワーコンディショナ2003には蓄電池2100が接続されていても良い。この場合、日照量の変動による出力変動を抑制することができるとともに、日照のない時間帯であっても蓄電池2100に蓄電された電力を供給することができる。前記蓄電池2100はパワーコンディショナ2003に内蔵されていてもよい。 Note that a storage battery 2100 may be connected to the power conditioner 2003 as shown in FIG. In this case, output fluctuation due to fluctuations in the amount of sunlight can be suppressed, and power stored in the storage battery 2100 can be supplied even in a time zone without sunlight. The storage battery 2100 may be built in the power conditioner 2003.
 (動作)
 太陽光発電システム2000の動作を説明する。
(Operation)
The operation of the solar power generation system 2000 will be described.
 光電変換モジュールアレイ2001は太陽光を電気に変換して直流電力を発電し、直流電力を接続箱2002へ供給する。 The photoelectric conversion module array 2001 converts sunlight into electricity to generate DC power and supplies the DC power to the connection box 2002.
 パワーコンディショナ2003は接続箱2002から受けた直流電力を交流電力に変換して分電盤2004へ供給する。なお、接続箱2002から受けた直流電力の一部または全部を交流電力に変換せず、直流電力のままで分電盤2004へ供給してもよい。 The power conditioner 2003 converts the DC power received from the connection box 2002 into AC power and supplies it to the distribution board 2004. Note that part or all of the DC power received from the connection box 2002 may be supplied to the distribution board 2004 as it is without being converted to AC power.
 なお、図20に示すようにパワーコンディショナ2003に蓄電池2100が接続されている場合(または、蓄電池2100がパワーコンディショナ2003に内蔵される場合)、パワーコンディショナ2003は接続箱2002から受けた直流電力の一部または全部を適切に電力変換して、蓄電池2100に蓄電することができる。蓄電池2100に蓄電された電力は、光電変換モジュールの発電量や電気機器類2011の電力消費量の状況に応じて適宜パワーコンディショナ2003側に供給され、適切に電力変換されて分電盤2004へ供給される。 As shown in FIG. 20, when the storage battery 2100 is connected to the power conditioner 2003 (or when the storage battery 2100 is built in the power conditioner 2003), the power conditioner 2003 receives the direct current received from the connection box 2002. A part or all of the electric power can be appropriately converted into electric power and stored in the storage battery 2100. The power stored in the storage battery 2100 is appropriately supplied to the power conditioner 2003 according to the amount of power generated by the photoelectric conversion module and the power consumption of the electrical equipment 2011, and is appropriately converted to the distribution board 2004. Supplied.
 分電盤2004はパワーコンディショナ2003から受けた電力および電力メータ2005を介して受けた商用電力の少なくともいずれかを電気機器類2011へ供給する。また分電盤2004はパワーコンディショナ2003から受けた交流電力が電気機器類2011の消費電力よりも多いとき、パワーコンディショナ2003から受けた交流電力を電気機器類2011へ供給する。そして余った交流電力を電力メータ2005を介して商用電力系統へ供給する。 The distribution board 2004 supplies the electric equipment 2011 with at least one of the electric power received from the power conditioner 2003 and the commercial electric power received via the electric power meter 2005. The distribution board 2004 supplies the AC power received from the power conditioner 2003 to the electrical equipment 2011 when the AC power received from the power conditioner 2003 is larger than the power consumption of the electrical equipment 2011. The surplus AC power is supplied to the commercial power system via the power meter 2005.
 また分電盤2004はパワーコンディショナ2003から受けた交流電力が電気機器類2011の消費電力よりも少ないとき、商用電力系統から受けた交流電力およびパワーコンディショナ2003から受けた交流電力を電気機器類2011へ供給する。 Further, when the AC power received from the power conditioner 2003 is less than the power consumption of the electrical equipment 2011, the distribution board 2004 receives the AC power received from the commercial power system and the AC power received from the power conditioner 2003 in the electrical equipment. To 2011.
 電力メータ2005は、商用電力系統から分電盤2004へ向かう方向の電力を計測するとともに、分電盤2004から商用電力系統へ向かう方向の電力を計測する。 The power meter 2005 measures the power in the direction from the commercial power system to the distribution board 2004 and measures the power in the direction from the distribution board 2004 to the commercial power system.
 (光電変換モジュールアレイ)
 光電変換モジュールアレイ2001について説明する。
(Photoelectric conversion module array)
The photoelectric conversion module array 2001 will be described.
 図18は、図17に示す光電変換モジュールアレイ2001の構成の一例を示す概略図である。図18を参照して、光電変換モジュールアレイ2001は、複数の光電変換モジュール1000と出力端子2013,2014とを含む。 FIG. 18 is a schematic diagram showing an example of the configuration of the photoelectric conversion module array 2001 shown in FIG. Referring to FIG. 18, photoelectric conversion module array 2001 includes a plurality of photoelectric conversion modules 1000 and output terminals 2013 and 2014.
 複数の光電変換モジュール1000はアレイ状に配列され直列に接続されている。図18には光電変換モジュール1000を直列に接続する配列を図示しているが、配列および接続方式はこれに限定されず、並列に接続して配列してもよいし、直列と並列とを組み合わせた配列としてもよい。なお光電変換モジュールアレイ2001に含まれる光電変換モジュール1000の数は2以上の任意の整数とすることができる。 A plurality of photoelectric conversion modules 1000 are arranged in an array and connected in series. FIG. 18 illustrates an arrangement in which the photoelectric conversion modules 1000 are connected in series. However, the arrangement and connection method are not limited to this, and the photoelectric conversion modules 1000 may be connected in parallel or may be combined in series and parallel. It is good also as an arrangement. Note that the number of photoelectric conversion modules 1000 included in the photoelectric conversion module array 2001 can be any integer of 2 or more.
 出力端子2013は、直列に接続された複数の光電変換モジュール1000の一方端に位置する光電変換モジュール1000に接続される。 The output terminal 2013 is connected to the photoelectric conversion module 1000 located at one end of the plurality of photoelectric conversion modules 1000 connected in series.
 出力端子2014は、直列に接続された複数の光電変換モジュール1000の他方端に位置する光電変換モジュール1000に接続される。 The output terminal 2014 is connected to the photoelectric conversion module 1000 located at the other end of the plurality of photoelectric conversion modules 1000 connected in series.
 なお以上の説明はあくまでも一例であり、本実施形態の太陽光発電システムは、複数の光電変換素子1001のうち、少なくとも1つが第1~第4実施形態の光電変換素子のいずれかからなる限り、上記の説明に限定されず如何なる構成もとり得るものとする。 Note that the above description is merely an example, and the photovoltaic power generation system of this embodiment is such that at least one of the plurality of photoelectric conversion elements 1001 includes any one of the photoelectric conversion elements of the first to fourth embodiments. The present invention is not limited to the above description, and any configuration can be taken.
 [第7実施形態]
 第7実施形態は、第6実施形態として説明した太陽光発電システムよりも大規模な太陽光発電システムである。第7実施形態にかかる太陽光発電システムも、第1~第4実施形態の光電変換素子のうち少なくとも1つを備えるものである。本発明の光電変換素子は高い変換効率を有するため、これを備える本発明の太陽光発電システムも高い変換効率を有することができる。
[Seventh Embodiment]
The seventh embodiment is a photovoltaic power generation system that is larger than the photovoltaic power generation system described as the sixth embodiment. The solar power generation system according to the seventh embodiment also includes at least one of the photoelectric conversion elements of the first to fourth embodiments. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
 <大規模太陽光発電システム>
 図19は、本実施形態にかかる太陽光発電システムの構成の他の一例を示す概略図である。図19を参照して、太陽光発電システム4000は、複数のサブシステム4001と、複数のパワーコンディショナ4003と、変圧器4004とを備える。太陽光発電システム4000は、図17に示す太陽光発電システム2000よりも大規模な太陽光発電システムである。本発明の光電変換素子は高い変換効率を有するため、これを備える本発明の太陽光発電システムも高い変換効率を有することができる。
<Large-scale solar power generation system>
FIG. 19 is a schematic diagram illustrating another example of the configuration of the solar power generation system according to the present embodiment. Referring to FIG. 19, solar power generation system 4000 includes a plurality of subsystems 4001, a plurality of power conditioners 4003, and a transformer 4004. The photovoltaic power generation system 4000 is a larger scale photovoltaic power generation system than the photovoltaic power generation system 2000 shown in FIG. Since the photoelectric conversion element of the present invention has high conversion efficiency, the photovoltaic power generation system of the present invention including the photoelectric conversion element can also have high conversion efficiency.
 複数のパワーコンディショナ4003は、それぞれサブシステム4001に接続される。太陽光発電システム4000において、パワーコンディショナ4003およびそれに接続されるサブシステム4001の数は2以上の任意の整数とすることができる。 The plurality of power conditioners 4003 are each connected to the subsystem 4001. In the photovoltaic power generation system 4000, the number of the power conditioners 4003 and the subsystems 4001 connected thereto can be any integer of 2 or more.
 なお、図21に示すようにパワーコンディショナ4003には蓄電池4100が接続されていても良い。この場合、日照量の変動による出力変動を抑制することができるとともに、日照のない時間帯であっても蓄電池4100に蓄積された電力を供給することができる。また、前記蓄電池4100はパワーコンディショナ4003に内蔵されていても良い。 Note that a storage battery 4100 may be connected to the power conditioner 4003 as shown in FIG. In this case, output fluctuation due to fluctuations in the amount of sunshine can be suppressed, and power stored in the storage battery 4100 can be supplied even in a time zone without sunshine. The storage battery 4100 may be built in the power conditioner 4003.
 変圧器4004は、複数のパワーコンディショナ4003および商用電力系統に接続される。 The transformer 4004 is connected to a plurality of power conditioners 4003 and a commercial power system.
 複数のサブシステム4001の各々は、複数のモジュールシステム3000から構成される。サブシステム4001内のモジュールシステム3000の数は2以上の任意の整数とすることができる。 Each of the plurality of subsystems 4001 includes a plurality of module systems 3000. The number of module systems 3000 in the subsystem 4001 can be any integer greater than or equal to two.
 複数のモジュールシステム3000の各々は、複数の光電変換モジュールアレイ2001と、複数の接続箱3002と、集電箱3004とを含む。モジュールシステム3000内の接続箱3002およびそれに接続される光電変換モジュールアレイ2001の数は2以上の任意の整数とすることができる。 Each of the plurality of module systems 3000 includes a plurality of photoelectric conversion module arrays 2001, a plurality of connection boxes 3002, and a current collection box 3004. The number of the junction box 3002 in the module system 3000 and the photoelectric conversion module array 2001 connected to the junction box 3002 can be any integer of 2 or more.
 集電箱3004は複数の接続箱3002に接続される。またパワーコンディショナ4003はサブシステム4001内の複数の集電箱3004に接続される。 The current collection box 3004 is connected to a plurality of connection boxes 3002. The power conditioner 4003 is connected to a plurality of current collection boxes 3004 in the subsystem 4001.
 (動作)
 太陽光発電システム4000の動作を説明する。
(Operation)
The operation of the solar power generation system 4000 will be described.
 モジュールシステム3000の複数の光電変換モジュールアレイ2001は、太陽光を電気に変換して直流電力を発電し、直流電力を接続箱3002を介して集電箱3004へ供給する。サブシステム4001内の複数の集電箱3004は、直流電力をパワーコンディショナ4003へ供給する。さらに複数のパワーコンディショナ4003は、直流電力を交流電力に変換して、交流電力を変圧器4004へ供給する。 The plurality of photoelectric conversion module arrays 2001 of the module system 3000 convert sunlight into electricity to generate DC power, and supply the DC power to the current collection box 3004 via the connection box 3002. A plurality of current collection boxes 3004 in the subsystem 4001 supplies DC power to the power conditioner 4003. Further, the plurality of power conditioners 4003 convert DC power into AC power and supply the AC power to the transformer 4004.
 なお、図21に示すようにパワーコンディショナ4003に蓄電池4100が接続されている場合(または、蓄電池4100がパワーコンディショナ4003に内蔵される場合)、パワーコンディショナ4003は集電箱3004から受けた直流電力の一部または全部を適切に電力変換して、蓄電池4100に蓄電することができる。蓄電池4100に蓄電された電力は、サブシステム4001の発電量に応じて適宜パワーコンディショナ4003側に供給され、適切に電力変換されて変圧器4004へ供給される。 In addition, as shown in FIG. 21, when the storage battery 4100 is connected to the power conditioner 4003 (or when the storage battery 4100 is built in the power conditioner 4003), the power conditioner 4003 is received from the current collection box 3004. A part or all of the DC power can be appropriately converted into power and stored in the storage battery 4100. The electric power stored in the storage battery 4100 is appropriately supplied to the power conditioner 4003 side according to the power generation amount of the subsystem 4001, appropriately converted into electric power, and supplied to the transformer 4004.
 変圧器4004は複数のパワーコンディショナ4003から受けた交流電力の電圧レベルを変換して商用電力系統へ供給する。 The transformer 4004 converts the voltage level of AC power received from a plurality of power conditioners 4003 and supplies it to the commercial power system.
 なお太陽光発電システム4000は第1~第4実施形態の光電変換素子のうち少なくとも1つを備えるものであればよく、太陽光発電システム4000に含まれるすべての光電変換素子が第1~第4実施形態の光電変換素子である必要はない。例えば、あるサブシステム4001に含まれる光電変換素子のすべてが第1~第4実施形態の光電変換素子のいずれかであり、別のサブシステム4001に含まれる光電変換素子の一部または全部が、第1~第4実施形態の光電変換素子でない場合等もあり得るものとする。 Note that the solar power generation system 4000 only needs to have at least one of the photoelectric conversion elements of the first to fourth embodiments, and all the photoelectric conversion elements included in the solar power generation system 4000 are the first to fourth. It is not necessary to be the photoelectric conversion element of the embodiment. For example, all of the photoelectric conversion elements included in one subsystem 4001 are any of the photoelectric conversion elements of the first to fourth embodiments, and a part or all of the photoelectric conversion elements included in another subsystem 4001 are There may be cases where the photoelectric conversion elements of the first to fourth embodiments are not used.
 以上のように本発明の実施形態について説明を行ったが、上述した各実施形態の構成を適宜組み合わせることも当初から予定している。 As described above, the embodiments of the present invention have been described, but it is also planned from the beginning to appropriately combine the configurations of the embodiments described above.
 本発明の一実施形態にかかる光電変換装置は、シリコン基板と、シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、シリコン基板の一方の面に形成され、第1導電型半導体層と第2導電型半導体層とを絶縁する絶縁層とを備える。第1導電型半導体層と第2導電型半導体層とは、シリコン基板の面内方向において絶縁層を挟んで隣接する。シリコン基板と絶縁層との間には、第1導電型半導体層および第2導電型半導体層のいずれも形成されていない(第1の構成)。 A photoelectric conversion device according to an embodiment of the present invention includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed on one surface of the silicon substrate and have opposite conductivity types, silicon An insulating layer is formed on one surface of the substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer (first configuration).
 上記の構成によれば、第1導電型半導体層と第2導電型半導体層とは、シリコン基板の面内方向において絶縁層を挟んで隣接している。シリコン基板と絶縁層との間には、第1導電型半導体層および第2導電型半導体層のいずれも形成されていない。そのため、第1導電型半導体層と第2導電型半導体層とが絶縁層によって確実に分離される。 According to the above configuration, the first conductive type semiconductor layer and the second conductive type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. Neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer. Therefore, the first conductive type semiconductor layer and the second conductive type semiconductor layer are reliably separated by the insulating layer.
 上記第1の構成において、絶縁層の層厚は、シリコン基板の一方の面の凹凸の高低差よりも大きいことが好ましい(第2の構成)。 In the first configuration, it is preferable that the thickness of the insulating layer is larger than the height difference of the unevenness on one surface of the silicon substrate (second configuration).
 本発明の他の実施形態にかかる光電変換装置は、シリコン基板と、シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、シリコン基板の一方の面に形成され、第1導電型半導体層と第2導電型半導体層とを絶縁する絶縁層とを備える。第1導電型半導体層と第2導電型半導体層とは、シリコン基板の面内方向において絶縁層を挟んで隣接する。絶縁層の層厚は、シリコン基板の一方の面の凹凸の高低差よりも大きい(第3の構成)。 A photoelectric conversion device according to another embodiment of the present invention includes a silicon substrate, a first conductivity type semiconductor layer and a second conductivity type semiconductor layer which are formed on one surface of the silicon substrate and have opposite conductivity types, An insulating layer is provided on one surface of the silicon substrate and insulates the first conductive semiconductor layer from the second conductive semiconductor layer. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. The thickness of the insulating layer is larger than the level difference of the irregularities on one surface of the silicon substrate (third configuration).
 上記の構成によれば、第1導電型半導体層と第2導電型半導体層とは、シリコン基板の面内方向において絶縁層を挟んで隣接している。絶縁層の層厚は、シリコン基板の一方の面の凹凸の高低差よりも大きい。これによって、絶縁層がシリコン基板の一方の面から突出する。そのため、第1導電型半導体層および第2導電型半導体層が互いに接触しないようにすることができる。これによって、第1導電型半導体層と第2導電型半導体層とが絶縁層によって確実に分離される。 According to the above configuration, the first conductive type semiconductor layer and the second conductive type semiconductor layer are adjacent to each other with the insulating layer interposed therebetween in the in-plane direction of the silicon substrate. The thickness of the insulating layer is larger than the height difference of the irregularities on one surface of the silicon substrate. As a result, the insulating layer protrudes from one surface of the silicon substrate. Therefore, the first conductive semiconductor layer and the second conductive semiconductor layer can be prevented from contacting each other. Thereby, the first conductive semiconductor layer and the second conductive semiconductor layer are reliably separated by the insulating layer.
 上記第1~第3のいずれかの構成において、絶縁層の幅は、20~500μmであることが好ましい(第4の構成)。 In any of the first to third configurations, the width of the insulating layer is preferably 20 to 500 μm (fourth configuration).
 上記第1~第4のいずれかの構成において、絶縁層は、シリコンの酸化物、シリコンの窒化部物、シリコンの酸窒化物、多結晶シリコン、アルミニウムの酸化物、アルミニウムの窒化物、アルミニウムの酸窒化物、イミド系樹脂、エポキシ樹脂、フッ素樹脂、ポリカーボネート、および液晶ポリマーからなる群から選択される1種とすることができる(第5の構成)。 In any one of the first to fourth configurations, the insulating layer includes silicon oxide, silicon nitride, silicon oxynitride, polycrystalline silicon, aluminum oxide, aluminum nitride, aluminum It may be one kind selected from the group consisting of oxynitrides, imide resins, epoxy resins, fluororesins, polycarbonates, and liquid crystal polymers (fifth configuration).
 上記第1~第5のいずれかの構成において、少なくともシリコン基板と絶縁層との間に形成されたパッシベーション層をさらに備えていても良い(第6の構成)。 Any of the first to fifth configurations may further include a passivation layer formed at least between the silicon substrate and the insulating layer (sixth configuration).
 上記の構成によれば、絶縁層の下部におけるパッシベーション性をさらに高めることができる。 According to the above configuration, the passivation property in the lower part of the insulating layer can be further enhanced.
 上記第1~第6のいずれかの構成において、シリコン基板と第1導電型半導体層との間に形成された第1i型半導体層と、シリコン基板と第2導電型半導体層との間に形成された第2i型半導体層とをさらに備えていても良い(第7の構成)。 In any one of the first to sixth configurations, the first i-type semiconductor layer formed between the silicon substrate and the first conductivity type semiconductor layer and the silicon substrate and the second conductivity type semiconductor layer are formed. The second i-type semiconductor layer may be further provided (seventh configuration).
 上記の構成によれば、シリコン基板と第1導電型半導体層との界面、およびシリコン基板と第2導電型半導体層との界面の欠陥を低減することができる。 According to the above configuration, defects at the interface between the silicon substrate and the first conductivity type semiconductor layer and the interface between the silicon substrate and the second conductivity type semiconductor layer can be reduced.
 本発明の一実施態様にかかる光電変換装置の製造方法は、シリコン基板を準備する工程と、シリコン基板の一方の面に絶縁層を形成する工程と、絶縁層によって挟まれた領域の一部に、第1導電型半導体層を形成する工程と、絶縁層によって挟まれた領域の他の一部に、第1導電型半導体層と反対の導電型の第2導電型半導体層を形成する工程とを備える(第1の態様)。 A method for manufacturing a photoelectric conversion device according to an embodiment of the present invention includes a step of preparing a silicon substrate, a step of forming an insulating layer on one surface of the silicon substrate, and a part of a region sandwiched between the insulating layers. A step of forming a first conductivity type semiconductor layer, a step of forming a second conductivity type semiconductor layer of a conductivity type opposite to the first conductivity type semiconductor layer in another part of the region sandwiched by the insulating layers, (First aspect).
 上記の態様によれば、第1導電型半導体層と第2導電型半導体層とを形成する前に、絶縁層を形成する。そのため、シリコン基板と絶縁層との間には、第1導電型半導体層および第2導電型半導体層のいずれも形成されない。そのため、第1導電型半導体層と第2導電型半導体層とが絶縁層によって確実に分離される。 According to the above aspect, the insulating layer is formed before forming the first conductive type semiconductor layer and the second conductive type semiconductor layer. For this reason, neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer. Therefore, the first conductive type semiconductor layer and the second conductive type semiconductor layer are reliably separated by the insulating layer.
 本発明の他の実施態様にかかる光電変換装置の製造方法は、シリコン基板を準備する工程と、シリコン基板の一方の面に、シリコン基板の一方の面の凹凸の高低差よりも厚く絶縁層を形成する工程と、シリコン基板の一方の面に第1導電型半導体層を形成する工程と、シリコン基板の一方の面に、第1導電型半導体層と反対の導電型の第2導電半導体層を形成する工程とを備える。第1導電型半導体層を形成する工程および第2導電型半導体層を形成する工程の少なくとも一方が、絶縁層を形成する工程よりも後に行われる(第2の態様)。 According to another aspect of the present invention, there is provided a method for manufacturing a photoelectric conversion device, comprising: preparing a silicon substrate; and forming an insulating layer on one surface of the silicon substrate thicker than a difference in height of one surface of the silicon substrate. Forming a first conductive semiconductor layer on one surface of the silicon substrate; and forming a second conductive semiconductor layer of a conductivity type opposite to the first conductive semiconductor layer on one surface of the silicon substrate. Forming. At least one of the process of forming a 1st conductivity type semiconductor layer and the process of forming a 2nd conductivity type semiconductor layer is performed after the process of forming an insulating layer (2nd aspect).
 上記の態様によれば、絶縁層の層厚は、シリコン基板の一方の面の凹凸の高低差よりも大きい。そのため、絶縁層は、シリコン基板の一方の面から突出する。第1導電型半導体層を形成する工程および第2導電型半導体層を形成する工程の少なくとも一方は、絶縁層を形成する工程よりも後に行われる。そのため、第1導電型半導体層および第2導電型半導体層の少なくとも一方は、絶縁層によって遮られる。これによって、第1導電型半導体層と第2導電型半導体層とを確実に分離することができる。 According to the above aspect, the layer thickness of the insulating layer is larger than the height difference of the irregularities on one surface of the silicon substrate. Therefore, the insulating layer protrudes from one surface of the silicon substrate. At least one of the step of forming the first conductive type semiconductor layer and the step of forming the second conductive type semiconductor layer is performed after the step of forming the insulating layer. Therefore, at least one of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer is blocked by the insulating layer. Thereby, the first conductive semiconductor layer and the second conductive semiconductor layer can be reliably separated.
 上記第1または第2の態様において、第1導電型半導体層を形成する工程および第2導電型半導体層を形成する工程の早い方の工程の前に、シリコン基板の一方の面にパッシベーション層を形成する工程をさらに備えても良い(第3の態様)。 In the first or second aspect, the passivation layer is formed on one surface of the silicon substrate before the earlier step of forming the first conductivity type semiconductor layer and the step of forming the second conductivity type semiconductor layer. You may further provide the process to form (3rd aspect).
 上記第1~第3のいずれかの態様において、第1導電型半導体層を形成する工程の前に、シリコン基板の一方の面に第1i型半導体層を形成する工程と、第2導電型半導体層を形成する工程の前に、シリコン基板の一方の面に第2i型半導体層を形成する工程とをさらに備えていても良い(第4の態様)。 In any one of the first to third aspects, the step of forming the first i-type semiconductor layer on one surface of the silicon substrate before the step of forming the first conductivity type semiconductor layer, and the second conductivity type semiconductor Before the step of forming the layer, a step of forming the second i-type semiconductor layer on one surface of the silicon substrate may be further provided (fourth aspect).
 上記第1~第4のいずれかの態様において、第1導電型半導体層、第2導電型半導体層、および絶縁層を覆って導電層を形成する工程と、平面視において絶縁層と重なる部分の導電層に溝を形成する工程とをさらに備えても良い(第5の態様)。 In any of the first to fourth aspects, the step of forming a conductive layer covering the first conductive type semiconductor layer, the second conductive type semiconductor layer, and the insulating layer, and a portion overlapping the insulating layer in plan view And a step of forming a groove in the conductive layer (fifth aspect).
 上記の態様によれば、第1半導体層に電気的に接続する電極と、第2半導体層に電気的に接続する電極とを製造することができる。また、平面視において絶縁層と重なる部分の導電層に溝を形成することで、シリコン基板に与えるダメージを抑制することができる。 According to the above aspect, an electrode electrically connected to the first semiconductor layer and an electrode electrically connected to the second semiconductor layer can be manufactured. Further, by forming a groove in a portion of the conductive layer that overlaps with the insulating layer in plan view, damage to the silicon substrate can be suppressed.
 上記第5の態様において、導電層をメッキする工程をさらに備えていても良い(第6の態様)。 In the fifth aspect, the method may further include a step of plating the conductive layer (sixth aspect).
 上記の態様によれば、低コストで電極を形成することができる。 According to the above aspect, the electrode can be formed at low cost.

Claims (9)

  1.  シリコン基板と、
     前記シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、
     前記シリコン基板の前記一方の面に形成され、前記第1導電型半導体層と前記第2導電型半導体層とを絶縁する絶縁層とを備え、
     前記第1導電型半導体層と前記第2導電型半導体層とは、前記シリコン基板の面内方向において前記絶縁層を挟んで隣接し、
     前記シリコン基板と前記絶縁層との間には、前記第1導電型半導体層および前記第2導電型半導体層のいずれも形成されていない、光電変換装置。
    A silicon substrate;
    A first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types;
    An insulating layer formed on the one surface of the silicon substrate and insulating the first conductive semiconductor layer and the second conductive semiconductor layer;
    The first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate,
    A photoelectric conversion device, in which neither the first conductive semiconductor layer nor the second conductive semiconductor layer is formed between the silicon substrate and the insulating layer.
  2.  前記絶縁層の層厚は、前記シリコン基板の前記一方の面の凹凸の高低差よりも大きい、請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein a thickness of the insulating layer is greater than a difference in height of unevenness on the one surface of the silicon substrate.
  3.  シリコン基板と、
     前記シリコン基板の一方の面に形成され、互いに反対の導電型を有する第1導電型半導体層および第2導電型半導体層と、
     前記シリコン基板の前記一方の面に形成され、前記第1導電型半導体層と前記第2導電型半導体層とを絶縁する絶縁層とを備え、
     前記第1導電型半導体層と前記第2導電型半導体層とは、前記シリコン基板の面内方向において前記絶縁層を挟んで隣接し、
     前記絶縁層の層厚は、前記シリコン基板の前記一方の面の凹凸の高低差よりも大きい、光電変換装置。
    A silicon substrate;
    A first conductivity type semiconductor layer and a second conductivity type semiconductor layer formed on one surface of the silicon substrate and having opposite conductivity types;
    An insulating layer formed on the one surface of the silicon substrate and insulating the first conductive semiconductor layer and the second conductive semiconductor layer;
    The first conductive semiconductor layer and the second conductive semiconductor layer are adjacent to each other across the insulating layer in the in-plane direction of the silicon substrate,
    The photoelectric conversion device, wherein a thickness of the insulating layer is larger than a difference in height of the unevenness of the one surface of the silicon substrate.
  4.  前記絶縁層の幅は、20~500μmである、請求項1~3のいずれか一項に記載の光電変換装置。 4. The photoelectric conversion device according to claim 1, wherein the insulating layer has a width of 20 to 500 μm.
  5.  少なくとも前記シリコン基板と前記絶縁層との間に形成されたパッシベーション層をさらに備える、請求項1~4のいずれか一項に記載の光電変換装置。 The photoelectric conversion device according to any one of claims 1 to 4, further comprising a passivation layer formed at least between the silicon substrate and the insulating layer.
  6.  前記シリコン基板と前記第1導電型半導体層との間に形成された第1i型半導体層と、
     前記シリコン基板と前記第2導電型半導体層との間に形成された第2i型半導体層とをさらに備える、請求項1~5のいずれか一項に記載の光電変換装置。
    A first i-type semiconductor layer formed between the silicon substrate and the first conductive semiconductor layer;
    The photoelectric conversion device according to claim 1, further comprising a second i-type semiconductor layer formed between the silicon substrate and the second conductive semiconductor layer.
  7.  シリコン基板を準備する工程と、
     前記シリコン基板の一方の面に絶縁層を形成する工程と、
     前記絶縁層によって挟まれた領域の一部に、第1導電型半導体層を形成する工程と、
     前記絶縁層によって挟まれた領域の他の一部に、前記第1導電型半導体層と反対の導電型の第2導電型半導体層を形成する工程とを備える、光電変換装置の製造方法。
    Preparing a silicon substrate;
    Forming an insulating layer on one surface of the silicon substrate;
    Forming a first conductivity type semiconductor layer in a part of a region sandwiched between the insulating layers;
    Forming a second conductivity type semiconductor layer of a conductivity type opposite to the first conductivity type semiconductor layer in another part of the region sandwiched between the insulating layers.
  8.  シリコン基板を準備する工程と、
     前記シリコン基板の一方の面に、前記シリコン基板の前記一方の面の凹凸の高低差よりも厚く絶縁層を形成する工程と、
     前記シリコン基板の前記一方の面に第1導電型半導体層を形成する工程と、
     前記シリコン基板の前記一方の面に、前記第1導電型半導体層と反対の導電型の第2導電半導体層を形成する工程とを備え、
     前記第1導電型半導体層を形成する工程および前記第2導電型半導体層を形成する工程の少なくとも一方が、前記絶縁層を形成する工程よりも後に行われる、光電変換装置の製造方法。
    Preparing a silicon substrate;
    Forming an insulating layer on one surface of the silicon substrate to be thicker than the height difference of the unevenness of the one surface of the silicon substrate;
    Forming a first conductivity type semiconductor layer on the one surface of the silicon substrate;
    Forming a second conductive semiconductor layer of a conductivity type opposite to the first conductivity type semiconductor layer on the one surface of the silicon substrate,
    A method for manufacturing a photoelectric conversion device, wherein at least one of the step of forming the first conductive semiconductor layer and the step of forming the second conductive semiconductor layer is performed after the step of forming the insulating layer.
  9.  前記第1導電型半導体層、前記第2導電型半導体層、および前記絶縁層を覆って導電層を形成する工程と、
     平面視において前記絶縁層と重なる部分の前記導電層に溝を形成する工程とをさらに備える、請求項7または8に記載の光電変換装置の製造方法。
    Forming a conductive layer covering the first conductive semiconductor layer, the second conductive semiconductor layer, and the insulating layer;
    The method for manufacturing a photoelectric conversion device according to claim 7, further comprising a step of forming a groove in the conductive layer in a portion overlapping with the insulating layer in a plan view.
PCT/JP2015/067694 2014-06-27 2015-06-19 Photoelectric conversion device and method for manufacturing same WO2015198978A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014132665A JP5913446B2 (en) 2014-06-27 2014-06-27 Photoelectric conversion device and manufacturing method thereof
JP2014-132665 2014-06-27
JP2014132666A JP5871996B2 (en) 2014-06-27 2014-06-27 Photoelectric conversion device and manufacturing method thereof
JP2014-132666 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198978A1 true WO2015198978A1 (en) 2015-12-30

Family

ID=54938062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067694 WO2015198978A1 (en) 2014-06-27 2015-06-19 Photoelectric conversion device and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015198978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056378A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Solar cell production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101240A (en) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd Photosensor and its manufacturing method
JP2008021993A (en) * 2006-06-30 2008-01-31 General Electric Co <Ge> Photovoltaic device including all-back-contact configuration, and related method
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
JP2012164961A (en) * 2011-02-08 2012-08-30 Samsung Sdi Co Ltd Solar cell and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101240A (en) * 2003-09-24 2005-04-14 Sanyo Electric Co Ltd Photosensor and its manufacturing method
JP2008529265A (en) * 2005-01-20 2008-07-31 コミツサリア タ レネルジー アトミーク Semiconductor device having heterojunction and interfinger structure
JP2008021993A (en) * 2006-06-30 2008-01-31 General Electric Co <Ge> Photovoltaic device including all-back-contact configuration, and related method
JP2012164961A (en) * 2011-02-08 2012-08-30 Samsung Sdi Co Ltd Solar cell and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056378A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Solar cell production method

Similar Documents

Publication Publication Date Title
WO2015060437A1 (en) Photoelectric conversion element, photoelectric conversion module, and solar photovoltaic power generation system
US11316061B2 (en) Photovoltaic devices, photovoltaic modules provided therewith, and solar power generation systems
CN102893411A (en) Solar cell element, process for producing same, and solar cell module
TWI524544B (en) Solar cell and solar cell module
US9997647B2 (en) Solar cells and manufacturing method thereof
WO2017164099A1 (en) Photoelectric conversion device, photoelectric conversion module and solar photovoltaic power generation system
JP5913446B2 (en) Photoelectric conversion device and manufacturing method thereof
JP6639496B2 (en) Photoelectric conversion device
WO2014175066A1 (en) Photoelectric conversion element
WO2016076300A1 (en) Photoelectric conversion element
WO2013161145A1 (en) Backside bonded solar cell and method for manufacturing same
WO2017047375A1 (en) Photoelectric conversion element, solar cell module provided with same, and photovoltaic power generation system
JP6133465B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5871996B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2015198978A1 (en) Photoelectric conversion device and method for manufacturing same
JP6639407B2 (en) Photoelectric conversion element
JP6143520B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP6653696B2 (en) Photoelectric conversion element
WO2015178307A1 (en) Photoelectric conversion element
WO2016114371A1 (en) Photoelectric conversion element, solar cell module equipped with same, and solar-light-generating system
CN107667435B (en) Photoelectric conversion device
JP6313086B2 (en) Crystalline silicon solar cell and method for manufacturing the same, method for manufacturing solar cell module, method for manufacturing concentrating solar cell module
WO2015178305A1 (en) Photoelectric conversion element and production method therefor
WO2016076299A1 (en) Photoelectric converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810839

Country of ref document: EP

Kind code of ref document: A1