JPS6173386A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6173386A
JPS6173386A JP59195312A JP19531284A JPS6173386A JP S6173386 A JPS6173386 A JP S6173386A JP 59195312 A JP59195312 A JP 59195312A JP 19531284 A JP19531284 A JP 19531284A JP S6173386 A JPS6173386 A JP S6173386A
Authority
JP
Japan
Prior art keywords
elements
substrate
photovoltaic
regions
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59195312A
Other languages
Japanese (ja)
Inventor
Hideaki Shibata
柴田 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59195312A priority Critical patent/JPS6173386A/en
Publication of JPS6173386A publication Critical patent/JPS6173386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To fit a photovoltaic device for multikind and small quantity produc tion by forming a plurality of filmy unit photovoltaic elements capable of singly generating electromotive force for operating an electronic apparatus onto the insulated surface of a large-size substrate, electrically coupling output terminals from adjacent unit elements selectively and dividing the substrate while being made to correspond to coupling. CONSTITUTION:The surface of a large-sized substrate 1 consisting of light- transmitting glass and stainless, the surface thereof is insulated and treated, or a polyimide is divided into four in the direction such as X-Y axes directions, and filmy unit photovoltaic elements 2A-2D are loaded in these divided regions. These elements are constituted by photoelectric conversion regions 4a-4c under three-step series connection capable of operating a 1.5V system electronic apparatus by beam projection of 200 lux under a white fluorescent lamp, and plus and minus output terminals 8 and 9 are each fitted previously at the end sections of the regions 4a and 4c. According to such constitution, the elements 2A-2D are connected selectively as required, and the sections are cut, thus manufacturing a photovoltaic device having desired output voltage.

Description

【発明の詳細な説明】 ビ)産業上の利用分野 本発明は光照射を受けると起電力を生せしめる光起電力
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a method for manufacturing a photovoltaic device that generates an electromotive force when irradiated with light.

(ロ)従来の技術 光照射を受けると起電力を生せしめる光起電力装置とし
て、種々の材料、構造のものが研究開発されているが最
近従来の半導体単結晶ウェハを用いるものに較べ単位発
電量適シの低コスト化が図れるアモルファスシリコン系
半導体膜等の膜状半導体を光電変換に寄与する光活性層
に用いたものが実用化され脚光を浴びている。
(b) Conventional technology A variety of materials and structures have been researched and developed as photovoltaic devices that generate electromotive force when exposed to light, but recently, compared to devices using conventional semiconductor single-crystal wafers, unit power generation has been improved. BACKGROUND ART Film-like semiconductors such as amorphous silicon-based semiconductor films, which are suitable for quantity and cost reduction, are used in photoactive layers that contribute to photoelectric conversion, and have been put into practical use and are attracting attention.

上記光活性層は膜状をなすが故に支持基板は不可欠な存
在であり、ガラス、金属若しくは耐熱性高分子樹脂を支
持基板とするものが現存する。ガラスを基板とする場合
、該基板を受光面とし、該受光面に光電変換領域を形成
する透明電極層1元活性層及び金属電極層が順次積層さ
れた構造を持ち、金属基板或いは高分子樹脂基板にあっ
ては。
Since the above-mentioned photoactive layer is in the form of a film, a support substrate is essential, and there are currently existing photoactive layers that use glass, metal, or heat-resistant polymer resin as the support substrate. When glass is used as a substrate, the substrate is used as a light-receiving surface, and has a structure in which a transparent electrode layer forming a photoelectric conversion region on the light-receiving surface, a single active layer, and a metal electrode layer are sequentially laminated, and a metal substrate or a polymer resin is used. As for the board.

基板側から(金属電極層)、光活性層及び透明電極層(
半透明若しくはグリッド電極)が積層被着されている。
From the substrate side (metal electrode layer), photoactive layer and transparent electrode layer (
translucent or grid electrodes) are deposited in layers.

単一の光電変換領域から得られる出力は、受光面積に対
し電流が比例し、電圧は無関係に一定で通常約1v以下
である。従って、所望の電圧を得ようとすれば斯る単一
の光電変換領域を複数個電気的に直列接続しなければな
らない。
In the output obtained from a single photoelectric conversion region, the current is proportional to the light receiving area, and the voltage is constant regardless of the area and is usually about 1 V or less. Therefore, in order to obtain a desired voltage, a plurality of such single photoelectric conversion regions must be electrically connected in series.

支持基板の表面に絶縁性が付与されている場合。When the surface of the support substrate has insulation properties.

斯る基板の絶縁表面上に複数の光電変換領域を同時に製
造することができると共に、上記製造プロセス中に於い
て複数の光電変換領域の直列接続を施すことができる。
A plurality of photoelectric conversion regions can be simultaneously manufactured on the insulating surface of such a substrate, and a plurality of photoelectric conversion regions can be connected in series during the manufacturing process.

通常直列接続された光起電力装置の起電圧は動作電圧に
して白色螢光打丁2001ux の光照射により、少な
くとも標準動作電圧1.5v系の電子機器を動作せしめ
ることができる電圧を発生すべψ く約3段乃至5段光電変換領域が直列接続されて△ いる。
Normally, the electromotive voltage of the photovoltaic devices connected in series should be set to the operating voltage, and when irradiated with light from the white fluorescent knife 2001ux, a voltage that can operate at least an electronic device with a standard operating voltage of 1.5V should be generated. Approximately three to five stages of photoelectric conversion regions are connected in series.

然し乍ら、電子機器の電源電圧は1.5v系のみではな
く、その整数倍例えば五〇v系のものも存在してお9.
また標準動作電圧が同じであっても。
However, the power supply voltage for electronic devices is not only 1.5V, but also an integral multiple of that, for example, 50V.9.
Also, even if the standard operating voltage is the same.

その電子機器の使用を低照度の下で可能ならしめるたり
、同じ照度下であっても大電流を必要とする電子機器は
光起電力装置から出力される動作電流が小さければ動作
することができない、即ち。
Electronic devices can be used under low illuminance, and even under the same illumination, electronic devices that require a large current cannot operate if the operating current output from the photovoltaic device is small. , ie.

高い起電圧を得ようとすれば直列接続段数を増やし、ま
た大きな定格電流を得ようとすれば1つの光電変換領域
の面積を増加させなければならない。
In order to obtain a high electromotive voltage, the number of series-connected stages must be increased, and in order to obtain a large rated current, the area of one photoelectric conversion region must be increased.

従来斯る種々の起電圧及び電流を提供すべく、それ専用
に設計された直列接続段数や受光面積の異なった光起電
力装置を多機種少量生産することによって対処していた
Conventionally, in order to provide such various electromotive voltages and currents, a solution has been to produce a wide variety of photovoltaic devices in small quantities, each with a different number of series connection stages and a different light-receiving area.

(ハ)発明が解決しようとする問題点 本発明は上述の如く多機種少量生産することによる作業
能率の低下を解決しようとするものである。
(c) Problems to be Solved by the Invention The present invention attempts to solve the above-mentioned decrease in work efficiency caused by the production of multiple models in small quantities.

に)問題点を解決するための手段 本発明は上記問題点を解決するために、大型基板の絶縁
表面に単独で電子機器を動作し得る起電圧を発生する膜
状単位光起電力素子を複数個同時に形成し、任意の出力
を得るべく上記絶縁表面上に於いて隣接する単位光起電
力素子の出力端を選択的に電気結合した後、その電気結
合に対応して上記大型基板を個別の光起電力装置毎に分
割する構成にある。
B) Means for Solving the Problems In order to solve the above problems, the present invention provides a plurality of film-like unit photovoltaic elements that generate an electromotive voltage that can independently operate an electronic device on the insulating surface of a large substrate. After selectively electrically coupling the output ends of adjacent unit photovoltaic devices on the insulating surface to obtain a desired output, the large substrates are separated into individual photovoltaic devices corresponding to the electrical coupling. It has a configuration in which it is divided for each photovoltaic device.

(ホ)作 用 上述の如くそれ自体で単独で電子機器を動作せしめ得る
膜状の単位光起電力素子を大型基板の絶縁表面に複数個
同時に形成し、その単位光起電力素子を選択的に電気結
合することによって、任意の出力を備えた光起電力装置
が形成される。
(E) Function: As described above, a plurality of film-like unit photovoltaic elements, which can operate an electronic device by themselves, are simultaneously formed on the insulating surface of a large substrate, and the unit photovoltaic elements are selectively activated. By electrically coupling, a photovoltaic device with arbitrary output power is formed.

(へ)実施例 第1図は本発明製造方法の途中の状態を示し。(f) Example FIG. 1 shows a state in the middle of the manufacturing method of the present invention.

第2図は第1図に於ける■−■線断面図である。FIG. 2 is a sectional view taken along the line ■--■ in FIG. 1.

第1図及び第2図に於いて、(11は絶縁表面を備えた
大型基板で、透光性のガラス、表面が絶縁処理されたス
テンレス、アルミニウム、或いはポリイミド等からなり
、以下透光性のガラスを基板材料とし、斯る基板側から
光照射がなされる実施例につき説明する。
In Figures 1 and 2, (11 is a large substrate with an insulating surface, made of transparent glass, stainless steel with an insulated surface, aluminum, polyimide, etc.); An embodiment in which glass is used as the substrate material and light is irradiated from the substrate side will be described.

(2A)〜(2D)は上記大型基板(11の絶縁表面の
第3図に示す如きX軸及びY軸によって4分割された第
1〜第4領域(3A)〜(3D)に分割配置された膜状
単位光起電力素子で、該膜状単位光起電力素子(2人)
〜(2D)の各々は、そた第1〜第3の光電変換領域(
4a)〜(4c)を備えている。上記第1〜第5の光電
変換領域(4a)〜(4C)の各々は、基板(1)側か
ら見てSn OZ % X T O等の透光性導電酸化
物からなる透明電極層(5a)〜(5c)と、シリコン
化合物雰囲気中でのグロー放電により形成され膜面に平
行なpin 接合等の半導体接合を有するアモルファス
シリコン系の光活性層(6a)〜(6C)と。
(2A) to (2D) are divided into first to fourth regions (3A) to (3D) which are divided into four by the X-axis and Y-axis as shown in FIG. 3 on the insulating surface of the large substrate (11). The film-like unit photovoltaic device (2 people)
~(2D) are each of the first to third photoelectric conversion regions (
4a) to (4c). Each of the first to fifth photoelectric conversion regions (4a) to (4C) has a transparent electrode layer (5a) made of a transparent conductive oxide such as SnOZ%XTO when viewed from the substrate (1) side. ) to (5c), and amorphous silicon-based photoactive layers (6a) to (6C) that are formed by glow discharge in a silicon compound atmosphere and have semiconductor junctions such as pin junctions parallel to the film surface.

アルミニウム、クロム等のオーミック性の背面電極層(
7a)〜(7c)と、の積層構造を持ち。
Ohmic back electrode layer made of aluminum, chromium, etc.
It has a laminated structure of 7a) to (7c).

当該単位光起電力素子(2N)〜(2D)に於いて互い
に隣接せる光電変換領域(4a)〜(4c)はその隣接
間隔部に於いて左何から露出した透明電極層(5a)(
5b)の露出部分に右側から延在した背面電極石(7b
)(7c)の延長部分が重畳することにより電気的に直
列接続されている。
In the unit photovoltaic elements (2N) to (2D), the photoelectric conversion regions (4a) to (4c) that are adjacent to each other have transparent electrode layers (5a) (
The back electrode stone (7b) extends from the right side to the exposed part of 5b).
) (7c) are electrically connected in series by overlapping each other.

f81(91は単位光起電力素子(2A)〜(2D)の
各々の電気的両端に設けられたプラス及びマイナス出力
端で、第3光電変換領域(4C)から露出した透明電極
層(5c)側がプラス出力端(8)を司どり、第1元電
変換領域(4a)の背面電極層(7a)の延長部分がマ
イナス出力端(9)を司どる。
f81 (91 is the positive and negative output terminals provided at both electrical ends of each of the unit photovoltaic elements (2A) to (2D), and the transparent electrode layer (5c) exposed from the third photoelectric conversion region (4C) The side controls the positive output end (8), and the extended portion of the back electrode layer (7a) of the first power conversion region (4a) controls the negative output end (9).

而して、上記大型基板(11の絶縁表面の第1〜第4領
域(3A)〜(3D)に分割配置された単位光起電力素
子(2A)〜(2D)の各々は、基板(1:を介して白
色螢光打丁200fux の光照射に於いて標準動作電
圧1.5■、標準動作電流10μAを出力すると仮定す
る。従って、この状態に於いて第5図に示したX軸及び
Y軸に沿って大型基板[11を4分割すると、第4図の
如く上記光照射条件に於いて標準動作電圧1.5v、標
準動作電流10μAの光起電力装置が4個形成され、そ
れ自体で電源電圧1.5v系の小消費電力型の電子機器
が動作せしめられる。
Each of the unit photovoltaic elements (2A) to (2D) dividedly arranged in the first to fourth regions (3A) to (3D) of the insulating surface of the large substrate (11) is connected to the large substrate (11). It is assumed that a standard operating voltage of 1.5 µA and a standard operating current of 10 μA are output when a white fluorescent knife is irradiated with 200 fux of light through the By dividing the large substrate [11] into four parts along the Y axis, four photovoltaic devices with a standard operating voltage of 1.5 V and a standard operating current of 10 μA are formed under the above light irradiation conditions as shown in Fig. This allows low power consumption electronic equipment with a power supply voltage of 1.5V to operate.

一方、上記単位光起電力素子(2A)〜(2D)の起電
圧である標準動作電圧1.5vでは低電圧でありその2
倍の!h、OVの電圧を必要とする場合。
On the other hand, the standard operating voltage of 1.5 V, which is the electromotive voltage of the unit photovoltaic elements (2A) to (2D), is a low voltage.
Double! h, when OV voltage is required.

第1・第2の領域(3A)(3B)の単位光起電力素子
(2A)(2B)の隣接間隔部及び第3・第4の領域(
?)C)(3D)の単位光起電力素子(20)(2D)
の隣接間隔部の各々に於いてY軸を境界に近接するプラ
ス出力端(8)とマイナス出力端(9)とを第5図及び
第6図に於いてハツチングにて示す如く金属蒸着膜(1
0iにより電気的に結合する。その後、X軸に沿って大
型基板(1)を2分割すると、左右方向に隣接する2つ
の単位光起電力素子(2A)(2E)及び(20)(2
D)は′電気的に直列接続され標準動作電圧6.Ovを
出力する2個の光起電力装置を形成することができる(
第7図)。
Adjacent spacing parts of the unit photovoltaic elements (2A) (2B) of the first and second regions (3A) (3B) and the third and fourth regions (
? )C) (3D) unit photovoltaic device (20) (2D)
As shown by hatching in FIGS. 5 and 6, a positive output end (8) and a negative output end (9) adjacent to the boundary on the Y axis in each of the adjacent interval parts are formed with a metal vapor deposited film ( 1
Electrically coupled by 0i. After that, when the large substrate (1) is divided into two along the X axis, two unit photovoltaic elements (2A) (2E) and (20) (2
D) are electrically connected in series and have a standard operating voltage of 6. Two photovoltaic devices can be formed that output Ov (
Figure 7).

第8図及び第9図は単位光起電力素子(2八)〜(2D
)の各々が発生する動作電流の2倍の電流値を得る場合
の実施例である。即ち、大型基板(11の第1領域(3
A)及び第3伽域(3C)に位置する単位光起電力素子
(2A)(2G)の同極性の出力端(s+(s+、 (
91(91同士を、また同じく第2゜第4領域(3B)
(3D)に位置する単位光起電力素子(2B)(2D)
の同極性の出力端f81f81、(91(9)同士を両
図に於いてハツチングにて示す金属蒸着膜α1oiz、
uazによって電気的に結合しである。
Figures 8 and 9 show unit photovoltaic elements (28) to (2D
) is an example in which a current value twice the operating current generated by each of the above is obtained. That is, the first region (3
A) and the output terminals of the same polarity (s+(s+,
91 (91 together, also the 2nd ° 4th area (3B)
Unit photovoltaic element (2B) located at (3D) (2D)
Output ends f81f81 of the same polarity, (91(9) are shown by hatching in both figures, metal vapor deposition film α1oiz,
They are electrically coupled by uaz.

従って、上下方向に位置する単位光起電力素子(2A)
(2C)、(2B)(2D)は電気的に並列接続された
状態となり、Y軸に沿って大型基板(1)を2分割する
と第10図の状態となり、両端の金属蒸着膜(1皿3.
 filRL6から単位光起電力素子(2A)〜(2D
)の−2倍の標準動作電流20μ八を出力する光起電力
装置が2個製造される。
Therefore, unit photovoltaic elements (2A) located in the vertical direction
(2C), (2B) and (2D) are electrically connected in parallel, and when the large substrate (1) is divided into two along the Y axis, the state shown in Figure 10 is obtained, and the metal vapor deposited film on both ends (one plate 3.
Unit photovoltaic elements (2A) to (2D
) Two photovoltaic devices are manufactured which output a standard operating current of 20 μ8, which is −2 times the standard operating current of 20μ8.

(ト)発明の効果 本発明は以上の説明から明らかな如く、それ自体で単独
で電子機器を動作せしめ得る膜状の単位光起電力素子を
大型基板の絶縁表面に複数個同時に形成したので、斯る
単位光起電力素子毎に分割して得られた光起電力装置で
あっても、単独で低消費電力型の電子機器を動作せしめ
ることができ、また単位光起電力素子のほぼ整数倍の動
作電圧や、動作電流を必要とした場合であってもそれら
を電気的に直列、並列或いは直並列に結合するだけで任
意の出力を提供可能な光起電力装置を製造することがで
きる。従って、単位光起電力素子を形成するところまで
1作菜を共通化することができ作業能率の向上が図れ、
多機埋少量生産に好適である。
(g) Effects of the Invention As is clear from the above description, the present invention simultaneously forms a plurality of film-like unit photovoltaic elements on the insulating surface of a large substrate, which can operate an electronic device by itself. Even a photovoltaic device obtained by dividing into unit photovoltaic elements can operate a low power consumption type electronic device by itself, and it is possible to operate a low power consumption type electronic device by itself, and it is also possible to operate a low power consumption type electronic device by itself. Even if an operating voltage or operating current is required, a photovoltaic device capable of providing any output can be manufactured simply by electrically connecting them in series, parallel, or series-parallel. Therefore, one crop can be shared even to the point of forming a unit photovoltaic element, improving work efficiency.
Suitable for multi-machine, low-volume production.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明製造方法を説明するためのものであって、1
Iti図は大型基板に4個の単位光起電力素子が形成さ
れた状態の平面図、第2図は第1図に於ける■−■線断
面図、第5図は大型基板の第1〜第4の領域を示す平面
図、第4図は単位光起電力装置の平面図、第5図は単位
光起電力素子を2個電気的に直列接続した状態の平面図
、第6図は第5図に於けるV[−Vl線断面図、第7図
は第5図のX軸に沿って分割した光起電力装置の平面図
、第8図は単位光起電力素子を2個電気的に並列接続し
た状態の平面図、第9図は第8図に於ける■−IX線断
面図、第10図は第8図のY軸に沿って分割した光起電
力装置の平面図、を夫々示している。 fll・・・大型基板、 (2八)〜(2D)・・・単
位光起電力素子、 (4a)〜(4C)・・・光電変換
領域、 (8191・・・プラス・マイナス出力端。 Q、01(1皿2・・・金属蒸着膜。
The figures are for explaining the manufacturing method of the present invention, and include 1
The Iti diagram is a plan view of four unit photovoltaic elements formed on a large substrate, FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. FIG. 4 is a plan view of the unit photovoltaic device, FIG. 5 is a plan view of two unit photovoltaic devices electrically connected in series, and FIG. 6 is a plan view showing the fourth area. 5 is a sectional view taken along the line V[-Vl, FIG. 7 is a plan view of the photovoltaic device divided along the X axis in FIG. 5, and FIG. 9 is a cross-sectional view taken along the line ■-IX in FIG. 8, and FIG. 10 is a plan view of the photovoltaic device divided along the Y axis in FIG. 8. shown respectively. fll...Large substrate, (28) to (2D)...Unit photovoltaic element, (4a) to (4C)...Photoelectric conversion area, (8191...Plus/minus output terminal. Q , 01 (1 plate 2...metal vapor deposition film.

Claims (1)

【特許請求の範囲】[Claims] (1)白色螢光灯下200luxの光照射により少なく
とも単独で電子機器を動作し得る起電圧を発生する膜状
単位光起電力素子を複数個同時に大型基板の絶縁表面に
形成し、任意の出力を得るべく上記絶縁表面上に於いて
隣接する単位光起電力素子の出力端を選択的に電気結合
した後、その電気結合に対応して上記大型基板を個別の
光起電力装置毎に分割することを特徴とした光起電力装
置の製造方法。
(1) A plurality of film-like unit photovoltaic elements that generate an electromotive voltage capable of operating at least an electronic device by themselves when irradiated with light of 200 lux under a white fluorescent lamp are simultaneously formed on the insulating surface of a large substrate, and arbitrary output After selectively electrically coupling the output ends of adjacent unit photovoltaic devices on the insulating surface in order to obtain the above, the large substrate is divided into individual photovoltaic devices according to the electrical coupling. A method of manufacturing a photovoltaic device characterized by the following.
JP59195312A 1984-09-18 1984-09-18 Manufacture of photovoltaic device Pending JPS6173386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59195312A JPS6173386A (en) 1984-09-18 1984-09-18 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59195312A JPS6173386A (en) 1984-09-18 1984-09-18 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6173386A true JPS6173386A (en) 1986-04-15

Family

ID=16339058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59195312A Pending JPS6173386A (en) 1984-09-18 1984-09-18 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6173386A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055186A1 (en) * 2004-11-16 2006-05-24 Beck Energie Gmbh Photovoltaic module for electronic device comprises strip-like support plate with cells arranged the direction of longitudinal axis of plate
DE102004055185A1 (en) * 2004-11-16 2006-05-24 Beck Energie Gmbh Photovoltaic module for an electronic device comprises photovoltaic cells arranged on a support plate below which is located a support element in a detachedly connected manner
DE102009006962A1 (en) * 2009-01-31 2010-08-19 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Photovoltaic module for building-, architectural- or automotive glazing, has transparent plate, transparent composite film provided on transparent plate, and strips of thin film solar cell on transparent composite film
WO2011151048A2 (en) 2010-06-02 2011-12-08 Calyxo Gmbh Thin film solar module and method for producing same
JP2014120733A (en) * 2012-12-19 2014-06-30 Kaneka Corp Solar cell module and window
DE102013211179A1 (en) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Solar module and system of solar modules
DE102017130162A1 (en) * 2017-12-15 2019-06-19 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Thin-film photovoltaic module with two output powers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055186A1 (en) * 2004-11-16 2006-05-24 Beck Energie Gmbh Photovoltaic module for electronic device comprises strip-like support plate with cells arranged the direction of longitudinal axis of plate
DE102004055185A1 (en) * 2004-11-16 2006-05-24 Beck Energie Gmbh Photovoltaic module for an electronic device comprises photovoltaic cells arranged on a support plate below which is located a support element in a detachedly connected manner
DE102004055186B4 (en) * 2004-11-16 2012-07-19 Beck Energy Gmbh Photovoltaic module with submodules
DE102009006962A1 (en) * 2009-01-31 2010-08-19 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Photovoltaic module for building-, architectural- or automotive glazing, has transparent plate, transparent composite film provided on transparent plate, and strips of thin film solar cell on transparent composite film
WO2011151048A2 (en) 2010-06-02 2011-12-08 Calyxo Gmbh Thin film solar module and method for producing same
DE102010017223A1 (en) * 2010-06-02 2011-12-08 Calyxo Gmbh Thin-film solar module and manufacturing method therefor
US9425339B2 (en) 2010-06-02 2016-08-23 Calyxo Gmbh Thin film solar module and method for production of the same
JP2014120733A (en) * 2012-12-19 2014-06-30 Kaneka Corp Solar cell module and window
DE102013211179A1 (en) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Solar module and system of solar modules
DE102017130162A1 (en) * 2017-12-15 2019-06-19 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Thin-film photovoltaic module with two output powers
DE102017130162B4 (en) 2017-12-15 2023-06-07 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Thin-film photovoltaic module with two power outputs

Similar Documents

Publication Publication Date Title
US7498508B2 (en) High voltage solar cell and solar cell module
EP0195148A1 (en) Photovoltaic device and method of manufacture
US3571915A (en) Method of making an integrated solar cell array
US4454372A (en) Photovoltaic battery
JPS60240171A (en) Solar electric generator
WO1994027327A1 (en) Series interconnected photovoltaic cells and method for making same
JPS6173386A (en) Manufacture of photovoltaic device
US20020153037A1 (en) Electric power generating film and method of fabrication
US4357400A (en) Photoelectrochemical cell employing discrete semiconductor bodies
US5035753A (en) Photoelectric conversion device
JPH0225079A (en) Amorphous semiconductor solar cell
JPS5927615Y2 (en) solar cell assembly unit
JPS58196060A (en) Thin film semiconductor device
JP3696757B2 (en) Solar cell connection method, connecting metal fitting, and solar cell module
JPH03132080A (en) Photovoltaic device
JPS6441278A (en) Manufacture of thin film photovoltaic element
JP2726045B2 (en) Light power generator
JPS62147784A (en) Amorphous solar cell and manufacture thereof
KR20210000211A (en) A solar cell module designed by serial/parallel combination of solar cell
JPS5832477A (en) Photovoltaic element module
JPS6260272A (en) Solar battery
JPH0250486A (en) Photoelectric transfer element
JPS6326555B2 (en)
JPH0297071A (en) Solar cell
JPH031577A (en) Photoelectric converter