JP3540149B2 - Thin film deposition method by plasma CVD - Google Patents

Thin film deposition method by plasma CVD Download PDF

Info

Publication number
JP3540149B2
JP3540149B2 JP09128598A JP9128598A JP3540149B2 JP 3540149 B2 JP3540149 B2 JP 3540149B2 JP 09128598 A JP09128598 A JP 09128598A JP 9128598 A JP9128598 A JP 9128598A JP 3540149 B2 JP3540149 B2 JP 3540149B2
Authority
JP
Japan
Prior art keywords
thin film
plasma cvd
substrate
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09128598A
Other languages
Japanese (ja)
Other versions
JPH11288889A (en
Inventor
仁 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP09128598A priority Critical patent/JP3540149B2/en
Publication of JPH11288889A publication Critical patent/JPH11288889A/en
Application granted granted Critical
Publication of JP3540149B2 publication Critical patent/JP3540149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁性基板上に形成された導電性の第1の薄膜上にプラズマCVDによって第2の薄膜を堆積させる方法の改善に関するものである。
【0002】
【従来の技術】
プラズマCVDによる薄膜堆積方法を利用して製造される装置の一例として、集積型薄膜太陽電池がある。一般に、集積型薄膜太陽電池モジュールにおいては、比較的大きな単一の絶縁性基板上に順次積層された第1電極層、半導体光電変換層および第2電極層が複数の光電変換セルを形成するように実質的に直線状で互いに平行な複数の分離溝によって分離されていて、それらの複数のセルが電気的に直列接続された構造が採用されている。そして、その半導体光電変換層は、一般にプラズマCVDによって堆積される。このような集積型薄膜太陽電池モジュールの一部の例が、図2の概略的な断面図において示されている。
【0003】
図2に示されている集積型薄膜太陽電池モジュール20においては、たとえばガラス等の透光性絶縁基板3上に透光性導電薄膜からなる第1電極層5が形成されており、これは互いに平行な直線状の複数の第1電極分離溝7によって複数の第1電極5a,5b,5cに分離されている。第1電極層5上には、pin接合などの半導体接合を含む薄膜半導体光電変換層11がプラズマCVDによって堆積されており、これは第1電極分離溝7に平行な複数の接続用開口溝8によって複数の光電変換領域11a,11b,11cに分割されている。光電変換層11上には適当な金属からなる第2電極層15が形成されており、これも第1電極分離溝7に平行な複数の分離溝9によって複数の第2電極15a,15b,15cに分離されている。
【0004】
このようにして、1つの基板3上で、複数の光電変換領域11a,11b,11cに対応して複数の光電変換セル17a,17b,17cが形成されている。これらの光電変換セルの任意のセル17bの第1電極5bは、接続用溝8を介して、隣接するセル17aの第2電極15aに電気的に接続されている。すなわち、基板3上で、複数の光電変換セル17a,17b,17cが電気的に直列接続されて集積化されている。
【0005】
図3は、図2に示された集積型薄膜太陽電池モジュールの半導体層11を堆積する前において、基板3上の第1電極層5が第1電極分離溝7によって複数の第1電極5a,5b,5cに分離された状態を断面図で示しており、図4は図3の状態に対応する上面図である。図3と図4からわかるように、第1電極層5の電極分離溝7は、長方形基板3の長手方向のほぼ全長にわたって形成されている。これは、基板面積に占める光電変換セルの面積をできる限り多く取って、光発電のための有効面積を大きくすることによって、太陽電池モジュール全体としての出力を高めるためである。すなわち、こうすることによって、光電変換セルの単位面積あたりの真性効率が同じであっても、太陽電池モジュール全体としての出力を向上させることができる。
【0006】
【発明が解決しようとする課題】
他方、このような集積型薄膜太陽電池モジュール20においては、当然のことながら1枚の基板3あたりの出力を少しでも高くする必要があり、そのためには、特に光発電に寄与する半導体薄膜層11の局所的な膜厚変動をできるだけ小さくしなければならない。たとえば、50段の光電変換セルを直列接続した集積型薄膜太陽電池モジュール20を想定した場合、50段のセル中で1段のセルの短絡光電流(ISC)が他の49段のセルに比較して10%だけ低い場合でも、実際にそのモジュール20全体を流れるISCとしても、その10%だけ低い値になってしまう。このとき、半導体薄膜層11の局所的な膜厚変動が直接的にISCに影響するわけではないが、密接な相関関係があることは確かである。また、半導体薄膜層11中で局所的に膜厚が異常に薄い部分が存在すれば、第1電極層5と第2電極層15との間で局所的な短絡欠陥部分ができやすくなる。もしそうなれば、集積型薄膜太陽電池モジュール20の開放端電圧(VOC)や曲線因子(FF)も低下してしまう。
【0007】
ここで、プラズマCVDのようにグロー放電分解による薄膜堆積法において、膜厚の局所的変動が発生する原因としては、高周波電極と接地電極との間の距離の局所的な変動、膜堆積面内におけるプロセスガス濃度の分布、さらには絶縁性基板の使用に起因する膜堆積面内における電位勾配の分布などが考えられる。
【0008】
たとえば、絶縁性基板11上に形成された透光性の導電性酸化物層のように導電率が比較的小さな導電体層5を分離溝7によって分離し、それらの互いに分離された複数の島状導電体領域を覆うようにプラズマCVDで半導体薄膜11を堆積する場合、導電体層5内において接地電極に対する抵抗値の局所的な差異がかなり大きくなり、かつ平均の抵抗値の上昇が生じる。また、接地電極と同電位にある基板装着用治具と基板3とは膜堆積を期待していない基板周囲部で機械的に接触しているだけであり、その治具の変形や基板の寸法精度等に依存して電気的な接続状態が変動し得るという問題がある。この問題が解決されている場合でも導電率が大きくない導電体層5が用いられているときには、接地電位部に対して膜堆積面の周囲部と中央部における抵抗値について大きな差があり、この差は基板サイズが大きくなればなるほど顕著になる。このような比較的小さな導電率を有する導電体層5上に半導体薄膜11を堆積するとき、特に放電状態が不安定な場合や放電電力が弱いときには、半導体層11の局所的な膜厚変動が増大してしまう。
【0009】
このような状況下において、大面積の絶縁性基板3上に堆積する半導体薄膜11の局所的な膜厚変動を低減させるために、従来からさまざまな方法が採用されている。
【0010】
その第1の方法においては、基板面とそれに対向する高周波電極面の平坦性を確保し、かつそれら両面が正確に平行になるように基板と電極の間の距離が調整される。これによって、基板と高周波電極との間の局所的な電位変動が低減され、堆積される薄膜の局所的な厚さ変動が低減され得る。しかし、この方法では、長期間にわたる電極の変形のような経時変化には対応できないので、電極の配置の定期的な修正が必要となる。
【0011】
第2の方法としては、プロセスガスの導入方法を工夫して、膜堆積面の全体に均一にガスが供給されるようにする方法がある。一般的なガスの導入法としては、高周波電極板を中空にして、基板3に対向する面に微小な開口孔を均一に多数設ける方法がある。また、この高周波電極の中空内部でそれらの開口孔までに複数の邪魔板を電極面に平行に配置することによって、基板表面に向けて均一にガスを導入する方法もある。さらには、基板に平行な面内においてガス導入用配管のコンダクタンスが等しくなるように、その面内に配管を対称形の配置にして、適当な部位にガス導入用開口を設けることによって均一にガスを導入する方法もある。
【0012】
通常は、上述のような方法のいくつかを適当に組合せて、均一な半導体薄膜11の堆積が行なわれている。ただし、絶縁性基板3が大きくなって膜堆積面積が大きくなればなるほど、プラズマCVDにおける放電状態が不安定な場合や放電電力が小さいときには、堆積される半導体膜11の局所的な膜厚変動が大きくなる傾向がある。
【0013】
以上のような従来の技術の状況に鑑み、本発明は、絶縁性基板上で複数の領域に分離された導電性の第1の薄膜を覆うように第2の薄膜をプラズマCVDで堆積する場合に、主にプラズマCVD装置側のパラメータのみで制御していた第2の薄膜の局所的な厚さ変動の抑制をさらに基板側の構造を工夫して抑制し、局所的な膜厚変動の非常に少ない第2の薄膜を堆積する方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明におけるプラズマCVDによる薄膜堆積方法は、絶縁性基板の1主面全体を覆うように導電性の第1の薄膜を形成し、その第1薄膜を複数の領域に分離するように実質的に直線状で互いに平行な複数の分離溝を形成し、そして第1薄膜を覆うようにプラズマCVDによって第2の薄膜を堆積させる方法であって、それらの分離溝の各々が所定長さの溝中断領域の少なくとも1つを含んでいることを特徴としている。
【0015】
本発明のこのような薄膜堆積方法によれば、絶縁性基板上に形成された透光性の導電性酸化物層のように比較的導電率が小さな導電体層を複数の分離溝によって分離し、それらの分離された複数の島状導電体領域を覆うように第2の薄膜をプラズマCVDで堆積する場合に、接地電位に対する導電体層の局所的な抵抗値の変動と抵抗値の平均値が低減されるので、プラズマCVDにおける放電状態が不安定な場合や放電電力が小さいときでも、導電体層上に堆積される第2の薄膜の局所的な膜厚変動を小さくすることができる。
【0016】
【発明の実施の形態】
図1において、本発明の実施の形態の一例を説明するために、絶縁性基板3上に形成された導電性の第1の薄膜5が模式的な上面図で示されている。この図1においては、図4の場合と同様に、基板3上に形成された第1電極層5の電極分離溝7が、長方形基板3の長手方向のほぼ全域にわたって形成されている。しかし、基板3の長手方向の中央部においては、電極分離溝7の各々について溝中断領域7xが1ヶ所設けられている。なお、この透明電極層5中の溝中断領域7xに関しては、分離溝1本あたりのその数、位置、および長さについて特に限定されるものではない。
【0017】
基板3としてガラスや透明樹脂等の透光性絶縁基板が用いられる場合、通常は、第1電極層5として透光性酸化物導電材料が用いられる。しかし、この第1電極層5のための具体的な材料は特に限定されるものではなく、周知の導電材料から適宜に選択して用いることができる。
【0018】
第1電極層5上に形成される第2の薄膜に用いられる材料も特に限定されるものではなく、プラズマCVDによって堆積され得る材料であればよい。たとえばそれが非晶質シリコン系半導体材料の場合には、非晶質シリコン、水素化非晶質シリコン、水素化非晶質シリコンカーバイド、水素化非晶質シリコンナイトライドの他に、炭素、ゲルマニウム、錫などを含む非晶質シリコン合金も含まれる。さらに、これらの各種半導体材料に、p型またはn型のドーパント元素を添加することによって、荷電子制御を行なった材料の薄膜も堆積され得る。
【0019】
図1に示されているような絶縁性基板3上の導電性薄膜5を覆うように第2の薄膜の堆積がプラズマCVDで行なわれるわけであるが、透光性の導電性酸化物のように比較的導電率が小さな導電体膜5を分離溝7によって分離して、それらの分離された複数の島状導電体薄膜領域を覆うように第2の薄膜をプラズマCVDで堆積する場合に、膜堆積面内における接地電位に対する抵抗値の局所的変動および平均の抵抗値がかなり低減され得る。
【0020】
接地電位と同電位である基板装着用治具と基板3との接続は、基板3の周囲部の四辺における接触によって行なわれるが、図4の場合に比較すれば、長方形基板3の長手方向の中央部における電極分離溝中断領域7xを通じて電流の経路が存在するので、膜堆積面の全体にわたって抵抗値の局所的な変動と平均抵抗値がかなり低減され得る。その結果、第1電極層5を覆うように第2の薄膜をプラズマCVDで堆積する場合に、横堆積面と高周波電極面との間における局所的な電位変動がかなり低減され得て、それに伴って、発生する膜堆積前駆体の密度の局所的変動をも抑制することができ、第2の薄膜の局所的な膜厚変動を低減させることが可能になる。
【0021】
【実施例】
図1を参照して説明された本発明の実施の形態に対応して、絶縁性基板上に形成された導電性の複数の第1薄膜領域を覆うようにプラズマCVDによって第2の薄膜が実施例として堆積させられた。
【0022】
まず、910mm×455mmの長方形と4mmの厚さを有するガラス基板3上に、第1電極層5として透明酸化物導電薄膜が熱CVDによって形成された。この透明電極層5は、0.53μmの波長を有するYAGレーザの第2高調波を膜面側から照射して複数の分離溝7を形成することによって、複数の短冊状の透明電極領域に分離された。その後、基板3と透明電極層5が純水中で洗浄され、この透明電極層5上には第2薄膜層がプラズマCVDによって堆積された。
【0023】
この実施例による透明電極層5では、長さ88cmで幅50μmの分離溝7が、0.9cmのピッチで51本形成され、それらの分離溝7の中央部に適当な長さの溝中断領域7xが設けられた。
【0024】
以上のような電極分離溝7中の溝中断領域7xの長さを0.5mmから12mmまで変化させて、接地電極と透明電極層5の表面との間の抵抗値の変化の様子が調べられた。表1は、作製された5枚の基板について、図1に示されているように基板3において一点鎖線で表わされた長手方向の中心線に沿った位置a〜eに依存する抵抗値のばらつきを示している。
【0025】
【表1】

Figure 0003540149
【0026】
なお、この透明電極層5の面積抵抗値は、約10〜12Ω/□であった。表1においては、参考のために、電極分離溝7が形成される前における透明電極層5上の各点a〜eと接地電極との間の抵抗値も示されており、この平均値は18Ωであるが、図4に示されている従来例と同様に分離溝7が形成された状態(7x=0mm)では、抵抗の平均値が168Ωのように大幅に増大している。他方、分離溝7の中断長さ7xを0.5mmにした状態では、抵抗の平均値が101Ωとなり、従来の方法に比較すれば4割程度低減されている。また、7x=2mmでは平均抵抗値が93Ωであり、7x=12mmでは平均抵抗が87Ωになっており、溝中断長さ7xが大きいほど平均抵抗値が小さくなっている。さらに、その平均抵抗値の低下に伴って、各抵抗値のばらつきも小さくなっている。
【0027】
なお、図1に示されているような基板上に集積型薄膜太陽電池モジュールが形成された場合には、たとえば、溝中断領域7xを除去するように基板3ごとそのモジュールを切断すればよい。
【0028】
【発明の効果】
以上のように、本発明の薄膜堆積方法によれば、絶縁性基板上に形成された透明導電性酸化物のような比較的導電率が小さな第1の薄膜を分離溝によって分離して、それらの分離された複数の島状導電領域を覆うように第2の薄膜をプラズマCVDにて堆積する場合に、膜堆積面内における接地電位に対する抵抗値の局所的な変動や平均値をかなり低減させることができるので、プラズマCVDにおける放電状態が不安定な場合や放電電力が弱いときでも、均一な膜厚分布を有する第2の薄膜の堆積が行なわれ得る。特に、大面積の基板上に堆積される薄膜の局所的な膜厚変動を大幅に低減させることができるとともに、薄膜の生産歩留りを大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例による絶縁性基板上に形成された導電層と複数の分離溝を示す模式的な上面図である。
【図2】集積型薄膜太陽電池モジュールの一部を図解する模式的な断面図である。
【図3】従来の方法によって絶縁性基板上に形成された導電層と複数の分離溝を示す模式的な断面図である。
【図4】図3に対応する状態を示す概略的な上面図である。
【符号の説明】
3 ガラス等の基板
5 第1電極層
7 第1電極分離溝
8 接続用溝
9 第2電極分離溝
11 半導体光電変換層
15 第2電極層
17 光電変換セル
20 集積型薄膜太陽電池モジュール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a method for depositing a second thin film by plasma CVD on a first conductive thin film formed on an insulating substrate.
[0002]
[Prior art]
An example of an apparatus manufactured using a thin film deposition method by plasma CVD is an integrated thin film solar cell. Generally, in an integrated thin-film solar cell module, a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially stacked on a relatively large single insulating substrate form a plurality of photoelectric conversion cells. A structure is adopted in which the cells are separated by a plurality of substantially linear and parallel separation grooves, and the plurality of cells are electrically connected in series. Then, the semiconductor photoelectric conversion layer is generally deposited by plasma CVD. An example of a part of such an integrated thin-film solar cell module is shown in the schematic sectional view of FIG.
[0003]
In the integrated thin-film solar cell module 20 shown in FIG. 2, a first electrode layer 5 made of a light-transmitting conductive thin film is formed on a light-transmitting insulating substrate 3 made of, for example, glass. The plurality of first electrodes 5a, 5b, 5c are separated by a plurality of parallel linear first electrode separation grooves 7. On the first electrode layer 5, a thin film semiconductor photoelectric conversion layer 11 including a semiconductor junction such as a pin junction is deposited by plasma CVD, and this is formed by a plurality of connection opening grooves 8 parallel to the first electrode separation groove 7. Is divided into a plurality of photoelectric conversion areas 11a, 11b, 11c. A second electrode layer 15 made of a suitable metal is formed on the photoelectric conversion layer 11, and is also formed by a plurality of second electrodes 15 a, 15 b, and 15 c by a plurality of separation grooves 9 parallel to the first electrode separation grooves 7. Are separated.
[0004]
In this way, a plurality of photoelectric conversion cells 17a, 17b, 17c are formed on one substrate 3 corresponding to the plurality of photoelectric conversion regions 11a, 11b, 11c. The first electrode 5b of any of the photoelectric conversion cells 17b is electrically connected to the second electrode 15a of the adjacent cell 17a via the connection groove 8. That is, the plurality of photoelectric conversion cells 17a, 17b, 17c are electrically connected in series and integrated on the substrate 3.
[0005]
FIG. 3 shows that before the semiconductor layer 11 of the integrated thin-film solar cell module shown in FIG. 2 is deposited, the first electrode layer 5 on the substrate 3 is formed by a plurality of first electrodes 5 a, FIG. 4 is a cross-sectional view showing a state of being separated into 5b and 5c, and FIG. 4 is a top view corresponding to the state of FIG. As can be seen from FIGS. 3 and 4, the electrode separation groove 7 of the first electrode layer 5 is formed over substantially the entire length of the rectangular substrate 3 in the longitudinal direction. This is because the output of the solar cell module as a whole is increased by taking as much as possible the area of the photoelectric conversion cells in the substrate area and increasing the effective area for photovoltaic power generation. That is, by doing so, even if the intrinsic efficiency per unit area of the photoelectric conversion cells is the same, the output of the entire solar cell module can be improved.
[0006]
[Problems to be solved by the invention]
On the other hand, in such an integrated thin-film solar cell module 20, it is naturally necessary to increase the output per one substrate 3 as much as possible. Must be as small as possible. For example, assuming an integrated thin-film solar cell module 20 in which 50-stage photoelectric conversion cells are connected in series, the short-circuit photocurrent (I SC ) of one of the 50-stage cells is reduced to that of the other 49-stage cells. Even if it is lower by 10%, the value of I SC actually flowing through the entire module 20 is lower by 10%. At this time, local film thickness variation of the semiconductor thin film layer 11 does not directly affect I SC , but it is certain that there is a close correlation. In addition, if there is a locally abnormally thin portion in the semiconductor thin film layer 11, a local short-circuit defect easily occurs between the first electrode layer 5 and the second electrode layer 15. If this happens, the open-circuit voltage (V OC ) and fill factor (FF) of the integrated thin-film solar cell module 20 will also decrease.
[0007]
Here, in a thin film deposition method by glow discharge decomposition such as plasma CVD, local fluctuations in the film thickness are caused by local fluctuations in the distance between the high-frequency electrode and the ground electrode, in the film deposition plane. And the distribution of the potential gradient in the film deposition surface due to the use of the insulating substrate.
[0008]
For example, a conductive layer 5 having relatively low conductivity, such as a light-transmitting conductive oxide layer formed on an insulating substrate 11, is separated by a separation groove 7, and a plurality of islands separated from each other are separated. When the semiconductor thin film 11 is deposited by plasma CVD so as to cover the conductor-like region, a local difference in resistance value with respect to the ground electrode in the conductor layer 5 becomes considerably large, and an average resistance value increases. Further, the substrate mounting jig having the same potential as the ground electrode and the substrate 3 are only in mechanical contact at the periphery of the substrate where film deposition is not expected. There is a problem that an electrical connection state may fluctuate depending on accuracy or the like. Even when this problem is solved, when the conductor layer 5 having a low conductivity is used, there is a large difference in the resistance value between the peripheral portion and the central portion of the film deposition surface with respect to the ground potential portion. The difference becomes more pronounced as the substrate size increases. When the semiconductor thin film 11 is deposited on the conductor layer 5 having such a relatively small conductivity, particularly when the discharge state is unstable or the discharge power is weak, the local thickness variation of the semiconductor layer 11 may be reduced. Will increase.
[0009]
Under such circumstances, various methods have conventionally been adopted in order to reduce local thickness fluctuation of the semiconductor thin film 11 deposited on the large-area insulating substrate 3.
[0010]
In the first method, the flatness between the substrate surface and the high-frequency electrode surface facing the substrate surface is ensured, and the distance between the substrate and the electrode is adjusted such that both surfaces are exactly parallel. Thereby, local potential fluctuation between the substrate and the high-frequency electrode can be reduced, and local thickness fluctuation of the deposited thin film can be reduced. However, this method cannot cope with time-dependent changes such as deformation of the electrodes over a long period of time, so that it is necessary to periodically correct the arrangement of the electrodes.
[0011]
As a second method, there is a method in which a method of introducing a process gas is devised so that the gas is uniformly supplied to the entire film deposition surface. As a general gas introduction method, there is a method in which a high-frequency electrode plate is hollow, and a large number of minute opening holes are uniformly provided on a surface facing the substrate 3. There is also a method in which a plurality of baffles are arranged in parallel with the electrode surface in the hollow interior of the high-frequency electrode up to their opening holes, thereby uniformly introducing gas toward the substrate surface. Furthermore, the gas introduction pipes are arranged symmetrically in the plane parallel to the substrate so that the conductance of the gas introduction pipes becomes equal, and the gas introduction openings are provided at appropriate locations to uniformly distribute the gas. There is also a method to introduce.
[0012]
Usually, a uniform deposition of the semiconductor thin film 11 is performed by appropriately combining some of the above methods. However, as the insulating substrate 3 becomes larger and the film deposition area becomes larger, when the discharge state in the plasma CVD is unstable or when the discharge power is small, the local film thickness variation of the deposited semiconductor film 11 becomes larger. Tends to be larger.
[0013]
In view of the state of the prior art as described above, the present invention provides a method of depositing a second thin film by plasma CVD so as to cover a conductive first thin film separated into a plurality of regions on an insulating substrate. In addition, the local thickness variation of the second thin film, which was mainly controlled only by the parameters of the plasma CVD apparatus, is suppressed by further devising the structure on the substrate side. It is an object of the present invention to provide a method of depositing a second thin film with a smaller number.
[0014]
[Means for Solving the Problems]
In the method of depositing a thin film by plasma CVD according to the present invention, a conductive first thin film is formed so as to cover one entire main surface of an insulating substrate, and the first thin film is substantially separated into a plurality of regions. A method of forming a plurality of straight and parallel separation grooves and depositing a second thin film by plasma CVD so as to cover the first thin film, wherein each of the separation grooves has a predetermined length of groove interruption. It is characterized by including at least one of the regions.
[0015]
According to such a thin film deposition method of the present invention, a conductive layer having relatively small conductivity such as a light-transmitting conductive oxide layer formed on an insulating substrate is separated by a plurality of separation grooves. In the case where the second thin film is deposited by plasma CVD so as to cover the plurality of isolated island-shaped conductor regions, the local variation of the resistance value of the conductor layer with respect to the ground potential and the average value of the resistance value Therefore, even when the discharge state in the plasma CVD is unstable or when the discharge power is small, local variation in the thickness of the second thin film deposited on the conductor layer can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIG. 1, a conductive first thin film 5 formed on an insulating substrate 3 is shown in a schematic top view to explain an example of the embodiment of the present invention. In FIG. 1, as in the case of FIG. 4, the electrode separation groove 7 of the first electrode layer 5 formed on the substrate 3 is formed over substantially the entire area in the longitudinal direction of the rectangular substrate 3. However, at the central portion in the longitudinal direction of the substrate 3, one groove interruption region 7x is provided for each of the electrode separation grooves 7. It should be noted that the number, position, and length of each groove in the transparent electrode layer 5 are not particularly limited.
[0017]
When a light-transmitting insulating substrate such as glass or transparent resin is used as the substrate 3, a light-transmitting oxide conductive material is usually used for the first electrode layer 5. However, a specific material for the first electrode layer 5 is not particularly limited, and can be appropriately selected from known conductive materials and used.
[0018]
The material used for the second thin film formed on the first electrode layer 5 is not particularly limited as long as it can be deposited by plasma CVD. For example, when it is an amorphous silicon-based semiconductor material, in addition to amorphous silicon, hydrogenated amorphous silicon, hydrogenated amorphous silicon carbide, hydrogenated amorphous silicon nitride, carbon, germanium And an amorphous silicon alloy containing tin or the like. Further, by adding a p-type or n-type dopant element to these various semiconductor materials, a thin film of a material subjected to valence control can be deposited.
[0019]
The second thin film is deposited by plasma CVD so as to cover the conductive thin film 5 on the insulating substrate 3 as shown in FIG. When the conductive film 5 having relatively small conductivity is separated by the separation groove 7 and the second thin film is deposited by plasma CVD so as to cover the separated island-shaped conductive thin film regions, Local fluctuations and average resistances of the resistance to ground potential in the film deposition plane can be significantly reduced.
[0020]
The connection between the substrate mounting jig having the same potential as the ground potential and the substrate 3 is performed by contact on four sides around the substrate 3, but as compared with the case of FIG. Since there is a current path through the electrode separation groove interruption region 7x in the central portion, the local fluctuation of the resistance value and the average resistance value over the entire film deposition surface can be considerably reduced. As a result, when depositing the second thin film by plasma CVD so as to cover the first electrode layer 5, local potential fluctuation between the lateral deposition surface and the high-frequency electrode surface can be considerably reduced, and accordingly, Thus, local fluctuations in the density of the generated film deposition precursor can be suppressed, and local fluctuations in the thickness of the second thin film can be reduced.
[0021]
【Example】
According to the embodiment of the present invention described with reference to FIG. 1, a second thin film is formed by plasma CVD so as to cover a plurality of conductive first thin film regions formed on an insulating substrate. Deposited as an example.
[0022]
First, a transparent conductive oxide thin film was formed as a first electrode layer 5 on a glass substrate 3 having a rectangle of 910 mm × 455 mm and a thickness of 4 mm by thermal CVD. The transparent electrode layer 5 is separated into a plurality of strip-shaped transparent electrode regions by irradiating the second harmonic of a YAG laser having a wavelength of 0.53 μm from the film surface side to form a plurality of separation grooves 7. Was done. Thereafter, the substrate 3 and the transparent electrode layer 5 were washed in pure water, and a second thin film layer was deposited on the transparent electrode layer 5 by plasma CVD.
[0023]
In the transparent electrode layer 5 according to this embodiment, 51 separation grooves 7 having a length of 88 cm and a width of 50 μm are formed at a pitch of 0.9 cm, and a groove interruption region of an appropriate length is formed at the center of the separation grooves 7. 7x were provided.
[0024]
By changing the length of the groove interruption region 7x in the electrode separation groove 7 from 0.5 mm to 12 mm as described above, the state of the change in the resistance value between the ground electrode and the surface of the transparent electrode layer 5 is examined. Was. Table 1 shows that the resistance values depending on the positions a to e along the longitudinal center line represented by the dashed line on the substrate 3 as shown in FIG. The variation is shown.
[0025]
[Table 1]
Figure 0003540149
[0026]
The sheet resistance of the transparent electrode layer 5 was about 10 to 12 Ω / □. Table 1 also shows, for reference, resistance values between the points a to e on the transparent electrode layer 5 and the ground electrode before the electrode separation groove 7 is formed, and the average value is Although it is 18Ω, the average value of the resistance is greatly increased to 168Ω in a state where the separation groove 7 is formed (7x = 0 mm) as in the conventional example shown in FIG. On the other hand, when the interruption length 7x of the separation groove 7 is 0.5 mm, the average value of the resistance is 101Ω, which is reduced by about 40% as compared with the conventional method. Further, at 7x = 2 mm, the average resistance value is 93Ω, at 7x = 12 mm, the average resistance is 87Ω, and the larger the groove interruption length 7x, the smaller the average resistance value. Further, as the average resistance value decreases, the variation in each resistance value also decreases.
[0027]
When the integrated thin-film solar cell module is formed on the substrate as shown in FIG. 1, for example, the module may be cut together with the substrate 3 so as to remove the groove interruption region 7x.
[0028]
【The invention's effect】
As described above, according to the thin film deposition method of the present invention, the first thin film having relatively small conductivity such as the transparent conductive oxide formed on the insulating substrate is separated by the separation groove, and In the case where the second thin film is deposited by plasma CVD so as to cover the plurality of isolated island-shaped conductive regions, the local variation and the average value of the resistance value with respect to the ground potential in the film deposition surface are considerably reduced. Accordingly, the second thin film having a uniform film thickness distribution can be deposited even when the discharge state in plasma CVD is unstable or when the discharge power is weak. In particular, local variation in thickness of a thin film deposited on a large-area substrate can be significantly reduced, and the production yield of the thin film can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a schematic top view showing a conductive layer and a plurality of separation grooves formed on an insulating substrate according to an example of an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view illustrating a part of the integrated thin-film solar cell module.
FIG. 3 is a schematic cross-sectional view showing a conductive layer and a plurality of separation grooves formed on an insulating substrate by a conventional method.
FIG. 4 is a schematic top view showing a state corresponding to FIG. 3;
[Explanation of symbols]
3 Substrate made of glass or the like 5 First electrode layer 7 First electrode separation groove 8 Connection groove 9 Second electrode separation groove 11 Semiconductor photoelectric conversion layer 15 Second electrode layer 17 Photoelectric conversion cell 20 Integrated thin-film solar cell module

Claims (4)

絶縁性基板の1主面全体を覆うように導電性の第1の薄膜を形成し、前記第1薄膜を複数の領域に分離するように実質的に直線状で互いに平行な複数の分離溝を形成し、そして前記第1薄膜を覆うようにプラズマCVDによって第2の薄膜を堆積させる方法において、前記分離溝の各々が所定長さの溝中断領域の少なくとも1つを含んでいることを特徴とするプラズマCVDによる薄膜堆積方法。A conductive first thin film is formed so as to cover one entire main surface of the insulating substrate, and a plurality of substantially linear and parallel separation grooves are formed so as to separate the first thin film into a plurality of regions. A method of forming and depositing a second thin film by plasma CVD over the first thin film, wherein each of the isolation grooves includes at least one groove interruption region of a predetermined length. Thin film deposition method by plasma CVD. 前記第1薄膜は透光性の導電性酸化物を含むことを特徴とする請求項1に記載のプラズマCVDによる薄膜堆積方法。2. The method according to claim 1, wherein the first thin film includes a light-transmitting conductive oxide. 前記第2薄膜は水素化非晶質シリコンまたはその合金を含むことを特徴とする請求項1または2に記載のプラズマCVDによる薄膜堆積方法。3. The method according to claim 1, wherein the second thin film includes hydrogenated amorphous silicon or an alloy thereof. 前記第2薄膜は多結晶シリコンを含むことを特徴とする請求項1または2に記載のプラズマCVDによる薄膜堆積方法。3. The method according to claim 1, wherein the second thin film includes polycrystalline silicon.
JP09128598A 1998-04-03 1998-04-03 Thin film deposition method by plasma CVD Expired - Fee Related JP3540149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09128598A JP3540149B2 (en) 1998-04-03 1998-04-03 Thin film deposition method by plasma CVD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09128598A JP3540149B2 (en) 1998-04-03 1998-04-03 Thin film deposition method by plasma CVD

Publications (2)

Publication Number Publication Date
JPH11288889A JPH11288889A (en) 1999-10-19
JP3540149B2 true JP3540149B2 (en) 2004-07-07

Family

ID=14022202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09128598A Expired - Fee Related JP3540149B2 (en) 1998-04-03 1998-04-03 Thin film deposition method by plasma CVD

Country Status (1)

Country Link
JP (1) JP3540149B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976755B2 (en) * 2006-06-16 2012-07-18 セイコーインスツル株式会社 Manufacturing method of MOS image sensor
JP2011035270A (en) * 2009-08-04 2011-02-17 Sharp Corp Photoelectric converter

Also Published As

Publication number Publication date
JPH11288889A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US20230238471A1 (en) Hybrid polysilicon heterojunction back contact cell
US10461208B2 (en) Solar cell and method for producing same
US7498508B2 (en) High voltage solar cell and solar cell module
US4746618A (en) Method of continuously forming an array of photovoltaic cells electrically connected in series
US6566159B2 (en) Method of manufacturing tandem thin-film solar cell
AU2015210421B9 (en) Hybrid polysilicon heterojunction back contact cell
US4617421A (en) Photovoltaic cell having increased active area and method for producing same
US20070023082A1 (en) Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
WO2003083955A1 (en) Photovoltaic element and method of manufacturing the same
KR20140027047A (en) Photovoltaic device and module with improved passivation and a method of manufacturing
JP2000049369A (en) Thin-film solar battery module
US20020153037A1 (en) Electric power generating film and method of fabrication
JPH11312816A (en) Integrated thin-film solar cell module
CN115188837B (en) Back contact solar cell, preparation method and cell assembly
JP3540149B2 (en) Thin film deposition method by plasma CVD
JP2015159198A (en) Photovoltaic element, manufacturing method therefor and manufacturing apparatus therefor
JP6133465B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4220014B2 (en) Method for forming thin film solar cell
JP2000252489A (en) Integrated silicon thin-film photoelectric conversion device and its manufacture
JP2000208787A (en) Solar battery
JP2000049371A (en) Photovoltaic device and its manufacture
JPH11195795A (en) Integrated silicon-based thin-film photoelectric converter and its manufacture
JPH11284207A (en) Integrated silicon thin film photoelectric conversion device and its manufacture
JP2005050976A (en) Photoelectric conversion device
JPH10200137A (en) Integrated thin-film photoelectric converter and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees