JPS6265478A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6265478A
JPS6265478A JP60207579A JP20757985A JPS6265478A JP S6265478 A JPS6265478 A JP S6265478A JP 60207579 A JP60207579 A JP 60207579A JP 20757985 A JP20757985 A JP 20757985A JP S6265478 A JPS6265478 A JP S6265478A
Authority
JP
Japan
Prior art keywords
type
semiconductor layer
amorphous semiconductor
semiconductor layers
type amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60207579A
Other languages
Japanese (ja)
Other versions
JPH07105509B2 (en
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邉 金雄
Tsugufumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60207579A priority Critical patent/JPH07105509B2/en
Publication of JPS6265478A publication Critical patent/JPS6265478A/en
Publication of JPH07105509B2 publication Critical patent/JPH07105509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form semiconductor layers without using oxygen and suppress damages of P-type or N-type semiconductor layers caused by heat and high energy particles and oxidization of the respective semiconductor layers by employing nonoxide semiconductor layers instead of conventional oxide films in a photovoltaic device. CONSTITUTION:An incident light from a light transmitting insulating substrate 1 enters P-type, I-type and N-type amorphous semiconductor layers through a transparent electrode 2 and, while being absorbed, partially reaches an N-type amorphous semiconductor layer 6 which is a reflecting layer. As the light is scattered at the respective textured boundaries after being transmitted through the transparent electrode 2, only a little part of the incident light makes a right angle with the N-type amorphous semiconductor layer 6 which is the reflecting layer and most part of the incident light comes from the direction inclined to the reflecting layer. Therefore, together with the fact that the N-type amorphous semiconductor layer 6 has a low refractive index, total reflectance at the boundary is high and, moreover, the light transmitted through the semiconductor layer 6 is reflected by a silver backplane electrode 7 with a high reflectance and enters the N-type, I-type and P-type semiconductor layers 5, 4 and 3 again and is absorbed. With this constitution, confinement effect of the incident light can be increased and high photovoltaic characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光閉じ込めによって光起電力特性の向上を図っ
た光起電力装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photovoltaic device whose photovoltaic characteristics are improved by optical confinement.

〔従来技術〕[Prior art]

従来のこの種光起電力装置は第4vlJに示す如く構成
されている〔応物学会予稿集(58年版25−P−L−
2) ) 、第4図は従来の光起電力装置の断面構造図
であり、透光性絶縁基板l上に透明電極2、p型非晶質
半導体層3、i型非晶質半導体層4、n型非晶質半導体
層5、ITO(In203 +5n02 )製の膜6′
、銀製の裏面電極7をこの順序に積層形成して構成して
あり、透光製絶縁基板1、透明電極2を透過してきた光
をp型、i型、n型の各非晶質半導体層3,4.5に導
入し、またこれらp型、i型、n型の各非晶質半導体a
3.4.5を透過した光は膜6′にて一部を反射させ、
更にこの膜6′を透過した光は裏面電極7にて反射させ
て光を閉じ込め、再びn型、i型、p型の各非品質半導
体層3,4.5に導入して光起電力特性を高め、生起せ
しめた光起電力を透明電極2、裏面電極7を経て外部に
取り出すようになっている。
A conventional photovoltaic device of this type is constructed as shown in Vol.
2) ), FIG. 4 is a cross-sectional structural diagram of a conventional photovoltaic device, in which a transparent electrode 2, a p-type amorphous semiconductor layer 3, an i-type amorphous semiconductor layer 4 are formed on a transparent insulating substrate l. , n-type amorphous semiconductor layer 5, ITO (In203 +5n02) film 6'
, silver back electrode 7 are laminated in this order, and the light transmitted through the light-transmitting insulating substrate 1 and the transparent electrode 2 is transferred to p-type, i-type, and n-type amorphous semiconductor layers. 3, 4.5, and each of these p-type, i-type, and n-type amorphous semiconductors a
A part of the light transmitted through 3.4.5 is reflected by the film 6',
Further, the light transmitted through this film 6' is reflected by the back electrode 7 to confine the light, and is again introduced into each of the n-type, i-type, and p-type non-quality semiconductor layers 3, 4.5 to improve the photovoltaic properties. The generated photovoltaic force is taken out to the outside via the transparent electrode 2 and the back electrode 7.

(発明が解決しようとする問題点) ところで上述した如き従来装置にあってはp型。(Problem to be solved by the invention) By the way, in the conventional device as mentioned above, it is p-type.

i型、n型の各半導体層3. 4. 5を透過した光を
閉じ込める手段としてITO等を用いて形成した膜6′
をn型非晶質半導体層5と裏面電極7との間に介在させ
る構成としであるが、1丁0等の膜6′を用いる構成に
あっては、このII!6’をn型半導体N5上に形成す
る場合、熱、高エネルギ粒子によるn型半導体層の損傷
を生じる外、[116’は酸化物であるため形成時に酸
素が必要となるが、雰囲気中の酸素によってn型半導体
層5等の酸化等が避けられないという問題があつた。
I-type and n-type semiconductor layers 3. 4. A film 6' formed using ITO or the like as a means of confining the light transmitted through 5.
is interposed between the n-type amorphous semiconductor layer 5 and the back electrode 7, but in a structure using a film 6' such as 1-0, this II! When 6' is formed on the n-type semiconductor N5, the n-type semiconductor layer is damaged by heat and high-energy particles, and since [116' is an oxide, oxygen is required during formation; There was a problem that oxidation of the n-type semiconductor layer 5 etc. due to oxygen was unavoidable.

C問題点を解決するための手段〕 本発明はかかる事情に鑑みなされたものであって、その
目的とするところは、従来の酸化膜に代えて非酸化物半
導体層を用いることによって半導体層形成時において酸
素が不要となり、p塑成いはn型の半導体層の熱、高エ
ネルギ粒子による損傷或いはこれら各半導体層の酸化等
の不都合を効果的に抑制し得るようにした光起電力装置
を提供するにある。
Means for Solving Problem C] The present invention was made in view of the above circumstances, and its purpose is to form a semiconductor layer by using a non-oxide semiconductor layer in place of the conventional oxide film. In some cases, a photovoltaic device that eliminates the need for oxygen and effectively suppresses disadvantages such as p-plastic formation, damage to the n-type semiconductor layer due to heat and high-energy particles, and oxidation of each of these semiconductor layers. It is on offer.

本発明に係る光起電力装置は、p型又はn型半導体層と
これに積層形成される裏面電極との間に、屈折率が前記
p型又はn型半導体層のそれよりも小さく、且つ導電性
が前記p型又はn型半導体層のそれと略同じ、又はそれ
よりも高い非酸化物半導体層を介在せしめたことを特徴
とする。
The photovoltaic device according to the present invention has a refractive index smaller than that of the p-type or n-type semiconductor layer and a conductive layer between the p-type or n-type semiconductor layer and the back electrode laminated thereon. The present invention is characterized in that a non-oxide semiconductor layer whose properties are substantially the same as or higher than that of the p-type or n-type semiconductor layer is interposed.

【実施例〕【Example〕

以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図は本発明に係る光起電力装置(以下本発
明装置という)の断面構造図であり、図中1はガラス等
にて形成された透光性絶縁基板、2は透明電極、3は非
晶質シリコンカーバイドにて構成されたp型非晶質半導
体層、4はシリコン製のn型非晶質半導体層、5はシリ
コン製のn型非晶質半導体層、6は酸化物半導体以外の
半導体(以下非酸化物半導体という)たるn型非晶質半
導体層、7は銀製の裏面電極を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof. FIG. 1 is a cross-sectional structural diagram of a photovoltaic device according to the present invention (hereinafter referred to as the device of the present invention), in which 1 is a transparent insulating substrate made of glass or the like, 2 is a transparent electrode, and 3 is a transparent insulating substrate. A p-type amorphous semiconductor layer made of amorphous silicon carbide, 4 an n-type amorphous semiconductor layer made of silicon, 5 an n-type amorphous semiconductor layer made of silicon, and 6 a layer other than an oxide semiconductor. An n-type amorphous semiconductor layer is a semiconductor (hereinafter referred to as a non-oxide semiconductor), and 7 indicates a back electrode made of silver.

本発明装置は前記透光性絶縁基板1上に透明電極2、p
型非晶質半導体層3、n型非晶質半導体層4、n型非晶
質半導体層5をこの順序に積層形成すると共に、n型非
晶質半導体層5上に更に屈折率が前記n型非晶質半導体
層5の屈折率よりも小さく、且つ導電性がn型非晶質半
導体層5と同じ、又はこれよりも高いn型非晶質半導体
層6が積層され、この上に裏面電極7を積層して構成し
である。
The device of the present invention has transparent electrodes 2, p on the transparent insulating substrate 1.
The n-type amorphous semiconductor layer 3, the n-type amorphous semiconductor layer 4, and the n-type amorphous semiconductor layer 5 are laminated in this order. An n-type amorphous semiconductor layer 6 whose refractive index is smaller than that of the n-type amorphous semiconductor layer 5 and whose conductivity is the same as or higher than that of the n-type amorphous semiconductor layer 5 is laminated thereon. It is constructed by laminating electrodes 7.

透光性絶縁基板l上に形成した透明電極2の表面は最初
エツチング等の手段にて所要の高さの凹凸を形成してテ
クスチュア化してあり、従ってこの上に順次積層形成さ
れるp型、i型、n型の各非晶質半導体ii3,4,5
、非酸化物半導体であるn型非晶質半導体層6、裏面電
極7相互の各界面には漸次上層にゆくに従づて凹凸が浅
くなるが、いずれもテクスチュア構造が現れ、入射光を
散乱させてp型、i型、n型の各非晶質半導体層3゜4
.5内での光路長を長くし、入射光に対する変換効率を
高めるようになっている。
The surface of the transparent electrode 2 formed on the transparent insulating substrate l is first textured by forming irregularities of a required height by means such as etching. I-type and n-type amorphous semiconductors ii3, 4, 5
At each interface between the n-type amorphous semiconductor layer 6, which is a non-oxide semiconductor, and the back electrode 7, the unevenness gradually becomes shallower toward the upper layer, but a textured structure appears in each interface, scattering incident light. p-type, i-type, and n-type amorphous semiconductor layers 3°4
.. The length of the optical path within 5 is increased to increase the conversion efficiency for incident light.

n型非晶質半導体層6はp型、i型、n型非晶質半導体
層3,4.5を透過した光に対する反射層でとして設け
られ、その屈折率はn型非晶質半導体層5の屈折率3.
5よりも小さい略2.5程度(3,5未満であればよい
)に設定され、また導電性はn型非晶質半導体層5のそ
れと略等しい10−3Ω−’cm−’程度に、更にその
膜厚はn型非晶質半導体IW5が400人であるに対し
これよりも厚い1400人に設定されている。これによ
ってp型、1型。
The n-type amorphous semiconductor layer 6 is provided as a reflective layer for light transmitted through the p-type, i-type, and n-type amorphous semiconductor layers 3 and 4.5, and its refractive index is equal to that of the n-type amorphous semiconductor layer. 5 refractive index 3.
The conductivity is set to approximately 2.5 (less than 3.5 is sufficient), which is smaller than 5. Further, the film thickness is set to be 1400 thicker than that of the n-type amorphous semiconductor IW5, which is 400 thick. This makes them p-type and type 1.

n型非晶質半導体層3. 4. 5を通過してきた光に
対する反射率が高められ、しかも光起電力の取り出しに
は何らの影響も与えることはない。n型非晶質半導体層
6の導電性はn型非晶質半導体層5の導電性に応じて設
定するが、n聖典晶質半導体Ff5の導電性は10づΩ
−10−1程度迄低く設定される場合もあることからn
全非晶質半導体Ff6の導電性も10−5Ω=aa’以
上であればよい。
n-type amorphous semiconductor layer 3. 4. The reflectance of light passing through the filter 5 is increased, and the extraction of photovoltaic force is not affected in any way. The conductivity of the n-type amorphous semiconductor layer 6 is set according to the conductivity of the n-type amorphous semiconductor layer 5, but the conductivity of the n-type crystalline semiconductor Ff5 is 10Ω.
Since it is sometimes set as low as -10-1, n
The conductivity of the entire amorphous semiconductor Ff6 may also be 10-5Ω=aa' or more.

なお、この反射層として設けられるn型非晶質半導体層
6の材質としては非晶質シリコン力−バイドの外、非晶
質シリコンナイトライド等を用いてもよい。p型、i型
、n型の各非晶質半導体層、反射層としての非酸化物半
導体たるn型非晶質半導体層6の厚さ及び屈折率の一例
を示すと表1の如くである。
Note that as the material of the n-type amorphous semiconductor layer 6 provided as this reflective layer, in addition to amorphous silicon nitride, amorphous silicon nitride or the like may be used. Table 1 shows an example of the thickness and refractive index of each of the p-type, i-type, and n-type amorphous semiconductor layers, and the n-type amorphous semiconductor layer 6 which is a non-oxide semiconductor serving as a reflective layer. .

表   1 上述した如き本発明装置にあっては、透光性絶縁基板l
から入射した光は透明電極2を経てp型。
Table 1 In the device of the present invention as described above, the light-transmitting insulating substrate l
The incident light passes through the transparent electrode 2 and becomes p-type.

i型、n型の非晶質半導体層に入り、吸収されつつ一部
は反射層たるn型非晶質半導体層6に達する。光は透明
電極2を透過した後はテクスチュア化された各界面で散
乱されるため、反射層たるn型非晶質半導体層6には直
角に入射する光は少く大部分は斜方から入射することと
なり、n聖典晶質半導体rrI6が低屈折率であること
と相俟って界面での全反射率が高く、更にこの反射率た
るn型非晶質半導体層6を透過した光は反射率の高い銀
製の裏面電極7によって反射され、反射された光はいず
れも再びn型、i型、p型の各非晶質半導体層5,4.
3に入射し吸収されることとなって入射光の閉じ込め効
果が大きく、高い光起電力特性が得られることとなる。
The light enters the i-type and n-type amorphous semiconductor layers, is absorbed, and a portion reaches the n-type amorphous semiconductor layer 6, which is a reflective layer. After light passes through the transparent electrode 2, it is scattered at each textured interface, so very little light enters the n-type amorphous semiconductor layer 6, which is a reflective layer, at right angles, and most of the light enters obliquely. Therefore, together with the low refractive index of the n-type crystalline semiconductor rrI6, the total reflectance at the interface is high, and furthermore, the light transmitted through the n-type amorphous semiconductor layer 6, which is this reflectance, has a low reflectance. The reflected light is reflected by the high silver back electrode 7, and the reflected light is reflected again into each of the n-type, i-type, and p-type amorphous semiconductor layers 5, 4, .
3 and is absorbed, the effect of confining the incident light is large, and high photovoltaic properties are obtained.

第2図は本発明装置と従来装置とに地球に対し垂直に入
射した光のスペクトル八M1の光全10011W/a1
2照射したときの■・■特性を調べた結果を示すグラー
フであって、横軸に開放電圧(V)を、また縦軸に短絡
電流密度(mA/cs2)をとって示しである。グラフ
中実線は本発明装置の、また破線は従来装置の各結果を
示している。このグラフから明らかなように開放電圧、
短絡電流密度とも本発明装置が優れていることが解る0
表2は両者の具体的な数値の一例を示しである。
Figure 2 shows the spectrum of light incident perpendicularly to the earth on the device of the present invention and the conventional device.
2 is a graph showing the results of investigating the characteristics 1 and 2 when irradiated with 2 irradiations, with the horizontal axis representing the open circuit voltage (V) and the vertical axis representing the short circuit current density (mA/cs2). The solid line in the graph shows the results of the device of the present invention, and the broken line shows the results of the conventional device. As is clear from this graph, the open circuit voltage,
It can be seen that the device of the present invention is superior in terms of short circuit current density.
Table 2 shows an example of specific numerical values for both.

(以下余白) 表   2 第3図は本発明の他の実施例を示す断面構造図であり、
この実施例にあってはp型、i型、n型の非晶質半導体
層のうち、裏面電極7と相隣して位置するn型非晶質半
導体8自体を非酸化物半導体たるn聖典晶質シリコンカ
ーバイド製であって、その屈折率は、本来のn型非晶質
半導体層の屈折率3.5よりも小さい略2.5程度に設
定され、且つその導電性も本来のn型非晶質半導体層の
導電性10−3Ω−’cm−1と同じ又はこれよりも高
い値に設定され、更にその膜厚は本来のn型非晶質半導
体層の膜厚400人よりも厚い1400人に設定されて
いる。
(Margin below) Table 2 FIG. 3 is a cross-sectional structural diagram showing another embodiment of the present invention,
In this embodiment, among the p-type, i-type, and n-type amorphous semiconductor layers, the n-type amorphous semiconductor 8 itself located adjacent to the back electrode 7 is a non-oxide semiconductor. It is made of crystalline silicon carbide, and its refractive index is set to approximately 2.5, which is smaller than the refractive index of the original n-type amorphous semiconductor layer, which is 3.5, and its conductivity is also the same as that of the original n-type semiconductor layer. The conductivity of the amorphous semiconductor layer is set to a value equal to or higher than 10-3 Ωcm-1, and the film thickness is thicker than the original thickness of the n-type amorphous semiconductor layer. The number is set at 1,400 people.

他の構成は前記第1図に示した実施例と略同じであり、
対応する部分には同じ番号を付して説明を省略する。
The other configurations are substantially the same as the embodiment shown in FIG. 1,
Corresponding parts are given the same numbers and explanations are omitted.

このような本発明装置にあってはn型非晶質半導体層8
がそのまま反射層としての機能を兼ね備えることとなり
、特別な反射層を形成する必要がなく、それだけ吸収損
失も少なく、そのうえ製造工程も簡略化されることとな
る。
In such a device of the present invention, the n-type amorphous semiconductor layer 8
Since it functions as a reflective layer as it is, there is no need to form a special reflective layer, the absorption loss is correspondingly small, and the manufacturing process is also simplified.

上述の各実施例はいずれも透明電極2上にp型。In each of the above embodiments, a p-type electrode is formed on the transparent electrode 2.

i型、n型の非晶質半導体層3.4.5をこの順序で積
層形成し、p型非晶質半導体層3側から光を導入する構
成につき説明したが透明電極2上にn型、i型、p型の
非晶質半導体層をこの順序で積層形成する構成の場合に
も通用出来ることは勿論であり、この場合はp型部晶質
半導体層と裏面電極との間に、屈折率がp型部晶質半導
体層のそれよりも小さく、且つ導電性は同じ又はこれよ
りも高い非酸化物半導体層たるp型部晶質半導体層を介
在させればよい。
Although we have described a structure in which i-type and n-type amorphous semiconductor layers 3.4.5 are laminated in this order and light is introduced from the p-type amorphous semiconductor layer 3 side, the n-type , i-type, and p-type amorphous semiconductor layers are stacked in this order. In this case, between the p-type crystalline semiconductor layer and the back electrode, A p-type crystalline semiconductor layer, which is a non-oxide semiconductor layer whose refractive index is smaller than that of the p-type crystalline semiconductor layer and whose conductivity is the same or higher, may be interposed.

また裏面電極と相隣するp型非晶質半導体層自体を屈折
率が本来のp型部晶質半導体層のそれよりも小さく、且
つ導電性は同じ又はこれよりも高い非酸化物半導体たる
p型非晶質半導体層に構成して、反射機能を備えるよう
構成してもよい。
In addition, the p-type amorphous semiconductor layer itself adjacent to the back electrode is made of a non-oxide semiconductor, which has a refractive index smaller than that of the original p-type crystalline semiconductor layer and has the same or higher conductivity. It may be configured as an amorphous semiconductor layer and provided with a reflective function.

更に上記実施例はいずれもp−1−n接合型の光起電力
装置につき説明したがp−n接合型のものにも通用し得
ることは勿論である。
Furthermore, although the above embodiments have all been described with respect to a p-1-n junction type photovoltaic device, it goes without saying that they can also be applied to a p-n junction type.

なおまた上記の各説明はいずれも非晶質半導体にて各半
導体層を構成した場合につき説明したが、何らこれに限
るものではなく、単結晶、微結晶の半導体又はこれらを
適宜組合せた構成であってもよい。
Furthermore, although each of the above explanations is based on the case where each semiconductor layer is made of an amorphous semiconductor, the present invention is not limited to this in any way, and may be made of a single crystal semiconductor, a microcrystalline semiconductor, or an appropriate combination of these. There may be.

〔効果〕〔effect〕

以上の如く本発明装置にあっては裏面電極とこれと相隣
するp型又はn型半導体層との間、或いは裏面電極と相
隣するp型又はn型半導体層自体を屈折率がp型、n型
半導体よりも小さく、且つ導電性は時間じ又はこれより
も高い非酸化物半導体にて形成したからp型、n型半導
体層を透過してきた光に対する反射率が格段に向上し、
入射光の有効利用が図れて変換効率が大幅に向上し得、
しかもこのような非酸化物半導体の材質をp型。
As described above, in the device of the present invention, between the back electrode and the adjacent p-type or n-type semiconductor layer, or between the back electrode and the adjacent p-type or n-type semiconductor layer itself, the refractive index is p-type. Since it is made of a non-oxide semiconductor that is smaller than an n-type semiconductor and has a conductivity that is equal to or higher than this, the reflectance for light that has passed through the p-type and n-type semiconductor layers is significantly improved.
Effective use of incident light can be achieved and conversion efficiency can be greatly improved,
Moreover, the material of this non-oxide semiconductor is p-type.

n型半導体層のそれと同じにすれば設備自体はp型、n
型半導体層形成用のものをそのまま通用し得ることとな
って設備コストも安価に済むなど本発明は優れた効果を
奏するものである。
If it is the same as that of the n-type semiconductor layer, the equipment itself will be p-type and n-type.
The present invention has excellent effects, such as the fact that the equipment used for forming semiconductor layers can be used as is, and the equipment cost can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の断面構造図、第2図は本発明装置
と従来装置との比較試験結果を示すグラフ、第3図は本
発明の他の実施例を示す断面構造図、第4図は従来装置
の断面構造図である。 1・・・透光性絶縁基板 2・・・透明電極 3・・・
p型非晶質半導体層 4・・・i型非晶質半導体層5・
・・n型−非晶質半導体層 6・・・非酸化物半導体層
7・・・裏面電極 8・・・n聖典酸化物半導体層特 
許 出願人  三洋電機株式会社 代理人 弁理士  河 野  登 夫 闇力2を五 第 2 図 第 3 図
FIG. 1 is a cross-sectional structural diagram of the device of the present invention, FIG. 2 is a graph showing comparative test results between the device of the present invention and a conventional device, FIG. 3 is a cross-sectional structural diagram showing another embodiment of the present invention, and FIG. The figure is a cross-sectional structural diagram of a conventional device. 1... Transparent insulating substrate 2... Transparent electrode 3...
P-type amorphous semiconductor layer 4...I-type amorphous semiconductor layer 5...
... n-type amorphous semiconductor layer 6 ... non-oxide semiconductor layer 7 ... back electrode 8 ... n-type oxide semiconductor layer
Applicant Sanyo Electric Co., Ltd. Agent Patent Attorney Norio Kono

Claims (1)

【特許請求の範囲】 1、p型又はn型半導体層とこれに積層形成される裏面
電極との間に、屈折率が前記p型又はn型半導体層のそ
れよりも小さく、且つ導電性が前記p型又はn型半導体
層のそれと略同じ、又はそれよりも高い非酸化物半導体
層を介在せしめたことを特徴とする光起電力装置。 2、前記p型又はn型半導体層を含む少なくとも1の半
導体層は非晶質半導体層である特許請求の範囲第1項記
載の項起電力装置。 3、裏面電極と積層されるp型又はn型半導体層を、屈
折率が3.5未満であって、且つ導電性が10^−^5
Ω^−^1cm^−^1と同じ、又はこれよりも高い非
酸化物半導体にて構成したことを特徴とする光起電力装
置。 4、前記p型又はn型の半導体層を含む少なくとも1の
半導体層は非晶質半導体である特許請求の範囲第3項記
載の光起電力装置。
[Claims] 1. A material having a refractive index lower than that of the p-type or n-type semiconductor layer and having a conductivity between the p-type or n-type semiconductor layer and the back electrode laminated thereon. A photovoltaic device characterized in that a non-oxide semiconductor layer having a thickness substantially the same as or higher than that of the p-type or n-type semiconductor layer is interposed. 2. The electromotive force device according to claim 1, wherein at least one semiconductor layer including the p-type or n-type semiconductor layer is an amorphous semiconductor layer. 3. The p-type or n-type semiconductor layer laminated with the back electrode has a refractive index of less than 3.5 and a conductivity of 10^-^5.
1. A photovoltaic device comprising a non-oxide semiconductor having a resistance equal to or higher than Ω^-^1 cm^-^1. 4. The photovoltaic device according to claim 3, wherein at least one semiconductor layer including the p-type or n-type semiconductor layer is an amorphous semiconductor.
JP60207579A 1985-09-18 1985-09-18 Photovoltaic device Expired - Lifetime JPH07105509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207579A JPH07105509B2 (en) 1985-09-18 1985-09-18 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207579A JPH07105509B2 (en) 1985-09-18 1985-09-18 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6265478A true JPS6265478A (en) 1987-03-24
JPH07105509B2 JPH07105509B2 (en) 1995-11-13

Family

ID=16542091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207579A Expired - Lifetime JPH07105509B2 (en) 1985-09-18 1985-09-18 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH07105509B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206490A (en) * 1992-01-27 1993-08-13 Sharp Corp Photoelectric conversion device
EP0559141A2 (en) * 1992-03-03 1993-09-08 Canon Kabushiki Kaisha Photovoltaic device
JP2010123944A (en) * 2008-11-21 2010-06-03 Ind Technol Res Inst Solar cell having reflective structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell
JPS59125669A (en) * 1983-01-07 1984-07-20 Agency Of Ind Science & Technol Solar battery
JPS6037788A (en) * 1983-08-10 1985-02-27 Agency Of Ind Science & Technol Solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell
JPS59125669A (en) * 1983-01-07 1984-07-20 Agency Of Ind Science & Technol Solar battery
JPS6037788A (en) * 1983-08-10 1985-02-27 Agency Of Ind Science & Technol Solar battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206490A (en) * 1992-01-27 1993-08-13 Sharp Corp Photoelectric conversion device
EP0559141A2 (en) * 1992-03-03 1993-09-08 Canon Kabushiki Kaisha Photovoltaic device
US5421909A (en) * 1992-03-03 1995-06-06 Canon Kabushiki Kaisha Photovoltaic conversion device
JP2010123944A (en) * 2008-11-21 2010-06-03 Ind Technol Res Inst Solar cell having reflective structure

Also Published As

Publication number Publication date
JPH07105509B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP2706113B2 (en) Photoelectric conversion element
JP2006216841A (en) Photoelectric conversion device
WO2017154384A1 (en) Solar cell module
CN114068729A (en) Double-sided back contact solar cell and back structure thereof
JPH0793447B2 (en) Photoelectric conversion element
JPS6265478A (en) Photovoltaic device
JPH0237116B2 (en)
JP3203106B2 (en) Photovoltaic device
JPH0463550B2 (en)
JP2008159799A (en) Photoelectromotive force device
JP2000196113A (en) Solar battery
JP4358493B2 (en) Solar cell
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
JP3196155B2 (en) Photovoltaic device
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JPH0574951B2 (en)
JPS6321880A (en) Photovoltaic device
JP3477434B2 (en) Method of manufacturing base substrate for silicon solar cell and method of manufacturing silicon solar cell
JP2002299654A (en) Photovoltaic element
CN217426758U (en) Double-sided back contact solar cell and back structure thereof
JPH05145095A (en) Photovoltaic element
JPH07131040A (en) Photovoltaic device
JP4243050B2 (en) Stacked solar cell device
JPH04133362A (en) Photovoltaic device
JP2869178B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term