JP3196155B2 - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JP3196155B2
JP3196155B2 JP04781697A JP4781697A JP3196155B2 JP 3196155 B2 JP3196155 B2 JP 3196155B2 JP 04781697 A JP04781697 A JP 04781697A JP 4781697 A JP4781697 A JP 4781697A JP 3196155 B2 JP3196155 B2 JP 3196155B2
Authority
JP
Japan
Prior art keywords
light
electrode
photoelectric conversion
layer
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04781697A
Other languages
Japanese (ja)
Other versions
JPH10242494A (en
Inventor
正明 亀田
治寿 橋本
久雄 白玖
勝信 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04781697A priority Critical patent/JP3196155B2/en
Publication of JPH10242494A publication Critical patent/JPH10242494A/en
Application granted granted Critical
Publication of JP3196155B2 publication Critical patent/JP3196155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池装置な
どの光起電力装置に係り、特に、低抵抗率で光入射ロス
の少ない透光性電極を用いた光起電力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device such as a solar cell device, and more particularly to a photovoltaic device using a light-transmissive electrode having a low resistivity and a small light incident loss.

【0002】[0002]

【従来の技術】従来、太陽電池装置の構造としては、ガ
ラス、プラスチック等の絶縁性を有する透光性基板上
に、SnO2、ITO、ZnO等からなる透光性電極、
光電変換機能を有する光電変換層、及びAg、Al等か
らなる金属がこの順序で積層された構造のもの(以下、
この構造を順タイプ構造という。)が知られている。
2. Description of the Related Art Conventionally, a solar cell device has a structure in which a light-transmitting electrode made of SnO 2 , ITO, ZnO or the like is provided on a light-transmitting substrate such as glass or plastic having an insulating property.
A structure in which a photoelectric conversion layer having a photoelectric conversion function and a metal such as Ag and Al are stacked in this order (hereinafter, referred to as a
This structure is called a forward type structure. )It has been known.

【0003】また、ステンレス、Al等の金属基板上に
絶縁膜を介してAg、Al等の金属電極、光電変換機能
を有する光電変換層、及びSnO2、ITO、ZnO等
からなる透光性電極がこの順序で積層された構造のもの
(以下、この構造を逆タイプ構造という。)も知られて
いる。
Further, a metal electrode such as Ag or Al, a photoelectric conversion layer having a photoelectric conversion function, and a translucent electrode made of SnO 2 , ITO, ZnO, etc. on a metal substrate such as stainless steel or Al via an insulating film. Are also known in this structure (hereinafter, this structure is referred to as an inverted type structure).

【0004】これら従来の構造の光起電力装置において
は、いずれも透光性電極の側から光が入射するため、透
光性電極としては低い抵抗率を有すること及び光の透過
率が高いことが要求される。
In each of these conventional photovoltaic devices, light enters from the side of the light-transmitting electrode, so that the light-transmitting electrode has a low resistivity and a high light transmittance. Is required.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
順タイプ構造の光起電力装置の場合、透光性電極として
用いられるSnO2、ITO或いはZnOは膜厚が薄い
と抵抗率が大きく、電極として使用するためには膜厚を
厚くして抵抗値を低減する必要があり、このため透光性
電極により光の吸収が増大し、光入射ロスが増加すると
いう問題があった。
However, in the case of the photovoltaic device having the above-mentioned forward type structure, SnO 2 , ITO, or ZnO used as the light-transmitting electrode has a large resistivity when the film thickness is small, and the electrode as the electrode has a large resistivity. In order to use it, it is necessary to increase the film thickness and reduce the resistance value. Therefore, there is a problem that light absorption is increased by the translucent electrode and light incident loss is increased.

【0006】これは、通常SnO2、ITO或いはZn
Oは多結晶状態とすることで、その抵抗率を低減するこ
とはできるが、ガラスやプラスチック等の異種材料上に
SnO2、ITO或いはZnOを形成する場合、原子間
の結合長が異なるため形成界面において構造歪みが発生
してしまい、このため十分な大きさの結晶粒径が得られ
ないことが一因であると推察される。
[0006] This is usually SnO 2 , ITO or Zn.
O can reduce its resistivity by being in a polycrystalline state. However, when SnO 2 , ITO, or ZnO is formed on a different material such as glass or plastic, it is formed because the bond length between atoms is different. It is presumed that one of the reasons is that structural distortion occurs at the interface, and thus a sufficiently large crystal grain size cannot be obtained.

【0007】加えて、多結晶状態のSnO2、ITO或
いはZnOの屈折率は約1.9〜2.0であるために、
屈折率が1の空気と透光性電極界面、或いは透光性電極
と光電変換層(例えば、非晶質シリコンの場合屈折率は
約3.4)との界面において入射光が反射し、入射光の
ロスが生じるという問題もあった。
In addition, since the refractive index of polycrystalline SnO 2 , ITO or ZnO is about 1.9 to 2.0,
The incident light is reflected and reflected at the interface between air having a refractive index of 1 and the translucent electrode or at the interface between the translucent electrode and the photoelectric conversion layer (for example, the refractive index is about 3.4 in the case of amorphous silicon). There is also a problem that light loss occurs.

【0008】この発明は、上述した従来の問題点を解決
するためになされたものにして、低抵抗率で且つ光入射
ロスを低減させた透光性電極を有する光起電力装置を提
供することをその目的とする。
The present invention has been made in order to solve the above-mentioned conventional problems, and provides a photovoltaic device having a light-transmitting electrode having a low resistivity and a reduced light incident loss. For that purpose.

【0009】[0009]

【課題を解決するための手段】この発明は、光電変換層
の光入射側に透光性電極を備えた光起電力装置であっ
て、前記透光性電極は、光入射側から光電変換層側に向
かって膜厚方向に非晶質状態から多結晶状態に漸次変化
するように形成されていることを特徴とする。
According to the present invention, there is provided a photovoltaic device comprising a light- transmitting electrode on a light incident side of a photoelectric conversion layer , wherein the light- transmitting electrode is disposed on the photoelectric conversion layer from the light incident side. Turn to the side
The gradual change from the amorphous state to the polycrystalline state in the film thickness direction
It is characterized by being formed so that it does .

【0010】上記構成によれば、透光性電極の光入射側
の領域を非晶質状態としたことで、この部分の構造柔軟
性が増大し、形成界面における構造歪みを吸収すること
ができる。従って、この後に形成するSnO2、ITO
或いはZnO等の透光性電極材料は粒径の大きなものが
得られ、従来よりも薄い膜厚で抵抗率の低い透光性電極
を得ることができる。
[0010] According to the above configuration, since the light incident side region of the translucent electrode is in an amorphous state, the structural flexibility of this portion is increased, and the structural distortion at the formation interface can be absorbed. . Therefore, SnO 2 , ITO,
Alternatively, a light-transmitting electrode material such as ZnO having a large particle diameter can be obtained, and a light-transmitting electrode having a smaller film thickness and a lower resistivity than conventional ones can be obtained.

【0011】また、非晶質状態の領域は多結晶状態の領
域よりも屈折率が小さく、このため透光性基板又は空気
側から光電変換層へ向かって透光性電極の屈折率が順次
大きくなり、反射防止膜としての機能がより向上する。
Further, the refractive index of the amorphous region is smaller than that of the polycrystalline region. Therefore, the refractive index of the light-transmitting electrode is gradually increased from the light-transmitting substrate or the air side toward the photoelectric conversion layer. Do Ri, functions as an antireflection film is further improved.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面に従い説明する。図1はこの発明の前提となる光
起電力装置を示す断面図であり、順タイプ構造の光起電
力装置において、基板側から非晶質状態、多結晶状態の
透光性電極を形成したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the light which is the premise of the present invention.
FIG. 3 is a cross-sectional view illustrating a photovoltaic device, in which a transparent electrode in an amorphous state and a polycrystalline state is formed from the substrate side in a photovoltaic device having a forward type structure.

【0017】図1に示すように、ガラス基板1上にZn
Oを原料とする透光性電極2が設けられている。この透
光性電極2は光入射側であるガラス基板1上に非晶質透
光性電極層21が設けられ、その上に多結晶透光性電極
層22が形成される。尚、透光性電極2表面は微少な凹
凸が形成されたいわゆるテクスチャ構造に形成するとよ
い。
As shown in FIG. 1, Zn on a glass substrate 1
A translucent electrode 2 made of O is provided. Translucent <br/> optical electrode 2 This amorphous TadashiToru light electrode layer 21 is formed on the glass substrate 1 is a light incident side, polycrystalline translucent electrode layer 22 is formed thereon . Note that the surface of the translucent electrode 2 may be formed in a so-called texture structure in which minute irregularities are formed.

【0018】この透光性電極層21、22は、ZnOを
ターゲット材料として用いた公知の反応性スパッタ法を
用いて、表1に示す条件で作成した。
The light-transmitting electrode layers 21 and 22 were formed under the conditions shown in Table 1 by a known reactive sputtering method using ZnO as a target material.

【0019】[0019]

【表1】 [Table 1]

【0020】そして、多結晶透光性電極層22の上に内
部にpin接合を有する非晶質シリコンからなる光電変
換層3が形成される。この実施の形態においては、p型
非晶質シリコンカーバイト層、i型非晶質シリコン層、
n型非晶質シリコン層を公知の平行平板のプラズマCV
D装置を用いて、p、i、n層の順に表2に示す条件で
形成した。
Then, a photoelectric conversion layer 3 made of amorphous silicon having a pin junction inside is formed on the polycrystalline translucent electrode layer 22. In this embodiment, a p-type amorphous silicon carbide layer, an i-type amorphous silicon layer,
An n-type amorphous silicon layer is formed by a known parallel plate plasma CV.
Using a D apparatus, p, i, and n layers were formed in this order under the conditions shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】この光電変換層3の上に公知の反応性スパ
ッタ法を用いてZnO及びAgの2層からなる裏面金属
層4が設けられている。
On the photoelectric conversion layer 3, a back metal layer 4 composed of two layers of ZnO and Ag is provided by a known reactive sputtering method.

【0023】尚、裏面金属層4は、上記の表1に示す多
結晶透光性電極層22と同じ形成条件でZnOを100
0オングストローム、Agを5000オングストローム
形成した。
The back metal layer 4 is made of ZnO 100 under the same forming conditions as the polycrystalline translucent electrode layer 22 shown in Table 1 above.
0 angstrom and 5000 angstrom of Ag were formed.

【0024】次に、上記の表1及び表2に示す条件で多
結晶ZnOからなる多結晶透光性電極層22の膜厚を8
00オングストロームで一定とし、ガラス基板1との間
に介在させる非晶質ZnOからなる非晶質透光性電極層
21の膜厚を変化させた太陽電池装置を作成し、その光
電変換効率を測定した。その結果を図2に示す。
Next, under the conditions shown in Tables 1 and 2, the thickness of the polycrystalline translucent electrode layer 22 made of polycrystalline ZnO is set to 8
A solar cell device was prepared in which the thickness of the amorphous light-transmitting electrode layer 21 made of amorphous ZnO interposed between the glass substrate 1 and the thickness was kept constant at 00 Å, and the photoelectric conversion efficiency was measured. did. The result is shown in FIG.

【0025】また、同様に上記の表1及び表2に示す条
件で、ガラス基板1と多結晶透光性電極層22との間に
介在させる非晶質ZnOからなる非晶質透光性電極層2
1の膜厚を200オングストロームで一定とし、光電変
換層3と非晶質透光性電極層21との間に介在させる多
結晶ZnOからなる多結晶透光性電極層22の膜厚を変
化させた太陽電池装置を作成し、その光電変換効率を測
定した。その結果を図3に示す。
Similarly, under the conditions shown in Tables 1 and 2 above, the amorphous translucent electrode made of amorphous ZnO interposed between the glass substrate 1 and the polycrystalline translucent electrode layer 22 Layer 2
The thickness of the polycrystalline light-transmitting electrode layer 22 made of polycrystalline ZnO interposed between the photoelectric conversion layer 3 and the amorphous light-transmitting electrode layer 21 was changed while the film thickness of No. 1 was kept constant at 200 Å. A solar cell device was prepared, and its photoelectric conversion efficiency was measured. The result is shown in FIG.

【0026】図2及び図3に示す特性は、すべてAM−
1.5、100mW/cm2、25℃の条件で測定した
光電変換効率である。また、図2及び図3において、従
来レベルとあるのは、透光性電極として、表1の多結晶
透光性電極層22の形成条件で膜厚8000オングスト
ロームの膜厚の多結晶透光性電極層を用いた以外はこの
発明のものと同様に形成したものである。
The characteristics shown in FIG. 2 and FIG.
It is a photoelectric conversion efficiency measured under the conditions of 1.5, 100 mW / cm 2 and 25 ° C. 2 and FIG. 3, the conventional level is a polycrystalline light-transmitting electrode having a film thickness of 8000 angstroms under the conditions for forming the polycrystalline light-transmitting electrode layer 22 shown in Table 1. Except that an electrode layer was used, it was formed in the same manner as that of the present invention.

【0027】図2から明らかなように、非晶質透光性電
極層21の膜厚が1000オングストローム以下の場合
には、この発明の変換効率が従来レベルより向上してい
ることが分かる。尚、非晶質透光性電極層21の膜厚が
1000オングストロームを越えると従来レベルより低
下するのは、この領域の光吸収ロスによるからである。
As is apparent from FIG. 2, when the thickness of the amorphous light-transmitting electrode layer 21 is 1000 Å or less, the conversion efficiency of the present invention is higher than the conventional level. When the thickness of the amorphous light-transmitting electrode layer 21 exceeds 1000 Å, the reason for the lowering than the conventional level is due to light absorption loss in this region.

【0028】また、図3から明らかなように、多結晶透
光性電極層22の膜厚が3000オングストローム以上
20000オングストローム以下での発明の変換効率が
従来レベルより向上していることが分かる。また、多結
晶透光性電極層22の膜厚が3000オングストローム
未満で特性が従来のものより低下するのは、従来構造の
透光性電極がいわゆるテクスチャ構造となっており、光
閉じこめ効果があるのに対して、本発明では膜厚が薄す
ぎて十分なテクスチャが形成されないからである。更
に、同図において、膜厚が20000オングストローム
を越えると従来レベルより低下するのは、膜厚の増加に
伴う光吸収ロスによるからである。
FIG. 3 also shows that the conversion efficiency of the invention when the film thickness of the polycrystalline translucent electrode layer 22 is 3000 Å or more and 20,000 Å or less is higher than the conventional level. When the thickness of the polycrystalline translucent electrode layer 22 is less than 3000 angstroms and the characteristics are lower than those of the conventional one, the translucent electrode of the conventional structure has a so-called textured structure, which has a light confinement effect. On the other hand, in the present invention, the film thickness is too small to form a sufficient texture. Further, in the figure, the reason why the film thickness is lower than the conventional level when the film thickness exceeds 20,000 Å is due to the light absorption loss accompanying the increase in the film thickness.

【0029】尚、非晶質透光性電極層21の屈折率は約
1.6〜1.7、多結晶透光性電極層22の屈折率は約
1.9〜2.0であり、この透光性電極2によれば、ガ
ラス基板1から光電変換層3へ向かって透光性電極2の
屈折率が順次大きくなり、多層の反射防止膜と同様の機
能を有する。このため、入射する光の反射率を低減させ
ることができる。
The refractive index of the amorphous translucent electrode layer 21 is about 1.6 to 1.7, and the refractive index of the polycrystalline translucent electrode layer 22 is about 1.9 to 2.0. According to the light-transmitting electrode 2, the refractive index of the light-transmitting electrode 2 is gradually increased from the glass substrate 1 toward the photoelectric conversion layer 3, and has the same function as a multilayer antireflection film. Therefore, the reflectance of incident light can be reduced.

【0030】次に、透光性電極が、光入射側から光電変
換層側に向かって膜厚方向に非晶質状態から多結晶状態
に漸次変化させたこの発明の実施の形態につき図4及び
図5に従い説明する。
Next, the light-transmitting electrode, view per implementation form of this inventions which gradually changing into a polycrystalline state from the amorphous state in the film thickness direction from the light incident side to the photoelectric conversion layer side 4 and FIG.

【0031】図4に示すように、ガラス基板1上に基板
から光電変換層3まで非晶質状態から多結晶状態に漸次
変化させたITOからなるグレーディッド膜の透明電極
20が設けられる。このグレーディッド膜の透明電極1
0は、図5に示すような回転式マグネトロンRF(若し
くはDC)スパッタ装置にITOのターゲットを配置
し、RF又はDC放電のパワー、スパッタガス、基板温
度を変化させて基板1から光電変換領域3まで非晶質状
態から多結晶状態に漸次変化するグレーディッド膜を形
成する。即ち、基板加熱ヒータ35を内蔵した回転体3
6にガラス基板1が取り付けられる。マグネトロン34
の上に透光性導電膜のターゲットとしてITOターゲッ
ト32が配置される。RF電源34に所望の電圧を印加
し、回転体36を回転させて基板1上に非晶質状態から
多結晶状態に漸次変化させたITOからなるグレーディ
ッド膜の透光性電極20を形成する。
As shown in FIG. 4, a transparent electrode 20 of a graded film made of ITO which is gradually changed from an amorphous state to a polycrystalline state from the substrate to the photoelectric conversion layer 3 is provided on the glass substrate 1. This graded film transparent electrode 1
Reference numeral 0 denotes an arrangement in which an ITO target is arranged in a rotary magnetron RF (or DC) sputtering apparatus as shown in FIG. 5, and the power of the RF or DC discharge, the sputtering gas, and the substrate temperature are changed to change the substrate 1 to the photoelectric conversion region 3 A graded film that gradually changes from an amorphous state to a polycrystalline state is formed. That is, the rotating body 3 incorporating the substrate heater 35
The glass substrate 1 is attached to 6. Magnetron 34
An ITO target 32 is disposed as a target of the light-transmitting conductive film. A desired voltage is applied to the RF power source 34, and the rotator 36 is rotated to form a graded film translucent electrode 20 of ITO on the substrate 1 which is gradually changed from an amorphous state to a polycrystalline state. .

【0032】このように形成されたグレーディッド膜の
透光性電極20上に上記と同様に、内部にpin接合を
有する非晶質シリコンからなる光電変換層3が形成され
る。この実施の形態においては、p型非晶質シリコンカ
ーバイト層、i型非晶質シリコン層、n型非晶質シリコ
ン層を公知の平行平板のプラズマCVD装置を用いて、
p、i、n層の順に上記した表2に示す条件で形成し
た。この光電変換層3の上に裏面金属電極4が形成され
る。
[0032] The thus formed light-transmitting electrode 20 on to the same like the graded layer, the photoelectric conversion layer 3 made of amorphous silicon having a pin junction is formed inside. In this embodiment, a p-type amorphous silicon carbide layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer are formed by using a known parallel plate plasma CVD apparatus.
The layers were formed under the conditions shown in Table 2 in the order of p, i, and n layers. A back metal electrode 4 is formed on the photoelectric conversion layer 3.

【0033】さて、この実施の形態では、グレーディッ
ド膜の透光性電極20をRFスパッタによりITO膜を
Arガスを用いて基板温度を変化させて形成した。表3
にその形成条件を示す。もちろんグレーディッド膜の膜
質調整に応じてガスを他の希ガスを用いたりしてもよ
い。また、従来より透光性電極のスパッタ形成に用いら
れるように、これら希ガスに酸素を添加してもよい。ま
た、放電のパワー及び圧力を変化させてもよい。
In this embodiment, the graded film light-transmitting electrode 20 is formed by changing the substrate temperature using an Ar gas by RF sputtering. Table 3
The forming conditions are shown in FIG. Of course, another rare gas may be used as the gas according to the film quality adjustment of the graded film. Further, oxygen may be added to these rare gases as conventionally used for forming a light-transmitting electrode by sputtering. Further, the power and pressure of the discharge may be changed.

【0034】[0034]

【表3】 尚、ターゲットはITO(SnO25wt%)のものを
用いた。
[Table 3] The target used was ITO (SnO 2 5 wt%).

【0035】表4に上記したこの発明の太陽電池装置と
従来の太陽電池装置を作成し、太陽電池特性を測定した
結果を示す。測定条件はAM−1.5、100mW/c
2、25℃の条件である。
Table 4 shows the results obtained by fabricating the above-described solar cell device of the present invention and a conventional solar cell device and measuring the solar cell characteristics. The measurement conditions were AM-1.5, 100 mW / c.
m 2 , 25 ° C.

【0036】[0036]

【表4】 [Table 4]

【0037】表4から明らかなように、この発明による
太陽電池装置は、電流値において従来例に比べ勝ってい
ることが分かる。
As is apparent from Table 4, the solar cell device according to the present invention is superior to the conventional example in the current value.

【0038】さらに、この実施の形態においては、ガラ
ス基板1から光電変換層3まで透光性電極20が非結晶
状態から多結晶状態に漸次変化しているので、屈折率が
順次大きくなり、反射防止膜としての機能がより向上
し、入射する光の反射率を更に低減できる。
[0038] Further, in accordance with the implementation of this, since the light-transmissive electrode 20 from the glass substrate 1 to the photoelectric conversion layer 3 is gradually changed into a polycrystalline state from the amorphous state, the refractive index becomes successively larger Further, the function as an antireflection film is further improved, and the reflectance of incident light can be further reduced.

【0039】尚、上記の実施の形態として透光性電極と
してITOを用いたが、ZnOなどの他の透光性電極を
用いてもよい。
[0039] Although an ITO as the translucent electrode in the form of implementation above SL may use other light-transmitting electrode such as ZnO.

【0040】また、上記した実施の形態は、順タイプ構
造の太陽電池について説明したが、逆タイプ構造の太陽
電池の透光性電極に用いても同様の効果が得られる。
Further, the form of implementation described above has been described solar cell of the forward-type structure, the same effect can be used in translucent electrode of the solar cell opposite type structure is obtained.

【0041】また、光電変換層として、上記した実施の
形態においては、非晶質シリコン系半導体層を用いた
が、これに限らず、単結晶シリコンや多結晶シリコン等
の結晶系半導体材料や、GaASやInP等の化合物半
導体材料を光電変換層に用いることができる。
In the above-described embodiment, the amorphous silicon-based semiconductor layer is used as the photoelectric conversion layer. However, the present invention is not limited to this, and a crystalline semiconductor material such as single crystal silicon or polycrystalline silicon, or the like may be used. A compound semiconductor material such as GaAs or InP can be used for the photoelectric conversion layer.

【0042】[0042]

【発明の効果】以上説明したように、この発明によれ
ば、透光性電極の光入射側の領域を非晶質状態としたこ
とで、この部分の構造柔軟性が増大し、形成界面におけ
る構造歪みを吸収することができる。従って、この後に
形成するSnO2、ITO或いはZnO等の透光性電極
材料は粒径の大きなものが得られ、従来よりも薄い膜厚
で抵抗率の低い透光性電極を得ることができる。
As described above, according to the present invention, the light-incident side region of the light-transmitting electrode is made amorphous, so that the structural flexibility of this portion is increased, and the formation interface is improved. Structural distortion can be absorbed. Accordingly, a light-transmitting electrode material such as SnO 2 , ITO, or ZnO which is formed later has a large particle size, and a light-transmitting electrode having a smaller film thickness and lower resistivity than conventional ones can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の前提となる光起電力装置を示す断面
図である。
FIG. 1 is a sectional view showing a photovoltaic device as a premise of the present invention.

【図2】この発明の前提となる光起電力装置における太
陽電池装置の非晶質透光性電極の膜厚を変化させた場合
の変換効率を示す特性図である。
2 is a characteristic diagram showing the conversion efficiency in the case of changing the thickness of the amorphous TadashiToru light electrodes of a solar cell device definitive assumes become photovoltaic device of the present invention.

【図3】この発明の前提となる光起電力装置における太
陽電池装置の多結晶透光性電極の膜厚を変化させた場合
の変換効率を示す特性図である。
3 is a characteristic diagram showing the conversion efficiency in the case of changing the thickness of the polycrystalline translucent electrode of the solar cell device definitive assumes become photovoltaic device of the present invention.

【図4】この発明の実施の形態を示す断面図である。4 is a sectional view showing a form of implementation of the present invention.

【図5】この発明に用いられる透光性電極の形成装置を
示す構成図である。
FIG. 5 is a configuration diagram showing a light-transmitting electrode forming apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透光性電極 21 非晶質透光性電極層 22 多結晶透光性電極層 3 光電変換層 4 裏面金属電極 DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Translucent electrode 21 Amorphous translucent electrode layer 22 Polycrystalline translucent electrode layer 3 Photoelectric conversion layer 4 Back metal electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐山 勝信 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭62−213281(JP,A) 特開 昭62−55127(JP,A) 特開 昭63−9158(JP,A) 特開 昭59−161882(JP,A) 特開 平8−174764(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 H01B 5/00 - 5/16 ──────────────────────────────────────────────────続 き Continued on the front page (72) Katsunobu Sayama 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-62-213281 (JP, A) JP-A-62-55127 (JP, A) JP-A-63-9158 (JP, A) JP-A-59-161882 (JP, A) JP-A-8-177474 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01L 31/04-31/078 H01B 5/00-5/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光電変換層の光入射側に透光性電極を備
えた光起電力装置であって、前記透光性電極は、光入射
側から光電変換層側に向かって膜厚方向に非晶質状態か
ら多結晶状態に漸次変化して形成されていることを特徴
とする光起電力装置。
1. A photovoltaic device comprising a light-transmissive electrode on a light incident side of a photoelectric conversion layer, wherein the light- transmissive electrode is
Amorphous state in the film thickness direction from the side to the photoelectric conversion layer side
Characterized by a gradual change to a polycrystalline state
And photovoltaic devices.
JP04781697A 1997-03-03 1997-03-03 Photovoltaic device Expired - Lifetime JP3196155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04781697A JP3196155B2 (en) 1997-03-03 1997-03-03 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04781697A JP3196155B2 (en) 1997-03-03 1997-03-03 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH10242494A JPH10242494A (en) 1998-09-11
JP3196155B2 true JP3196155B2 (en) 2001-08-06

Family

ID=12785889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04781697A Expired - Lifetime JP3196155B2 (en) 1997-03-03 1997-03-03 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP3196155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084752A4 (en) * 2006-11-20 2015-10-14 Kaneka Corp Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111498A1 (en) * 2012-01-25 2013-08-01 京セラ株式会社 Photoelectric conversion apparatus
JP6990764B2 (en) * 2018-03-29 2022-01-12 株式会社カネカ Solar cells and their manufacturing methods
KR102048676B1 (en) * 2018-04-26 2019-11-26 세종대학교산학협력단 Method for manufacturing solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2084752A4 (en) * 2006-11-20 2015-10-14 Kaneka Corp Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate

Also Published As

Publication number Publication date
JPH10242494A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US7888594B2 (en) Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
JP4811945B2 (en) Thin film photoelectric converter
US5091764A (en) Semiconductor device having a transparent electrode and amorphous semiconductor layers
US20080223430A1 (en) Buffer layer for front electrode structure in photovoltaic device or the like
US8354586B2 (en) Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
AU2018206805A1 (en) Thin film assembly and method of preparing the same, and hetero-junction cell including thin film assembly
JPH04372177A (en) Photovoltaic device
JPH07321362A (en) Photovoltaic device
JP3196155B2 (en) Photovoltaic device
JP3481123B2 (en) Photovoltaic device
JPH0752778B2 (en) Photovoltaic device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JP3342257B2 (en) Photovoltaic element
JP3776606B2 (en) Method for producing transparent electrode substrate
JPH0583199B2 (en)
JPH10294478A (en) Photoelectric conversion element
JP2000077692A (en) Photovoltaic element and its manufacture
JPH05275725A (en) Photovoltaic device and its manufacture
JPH08107225A (en) Manufacture of thin film solar cell
JPS59125669A (en) Solar battery
JP2010103347A (en) Thin film photoelectric converter
JP2975751B2 (en) Photovoltaic device
JP2002222969A (en) Laminated solar battery
JPS6152992B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

EXPY Cancellation because of completion of term