JP3481123B2 - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JP3481123B2
JP3481123B2 JP07684998A JP7684998A JP3481123B2 JP 3481123 B2 JP3481123 B2 JP 3481123B2 JP 07684998 A JP07684998 A JP 07684998A JP 7684998 A JP7684998 A JP 7684998A JP 3481123 B2 JP3481123 B2 JP 3481123B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
photovoltaic device
conductive oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07684998A
Other languages
Japanese (ja)
Other versions
JPH11274528A (en
Inventor
敏宏 木下
善博 菱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07684998A priority Critical patent/JP3481123B2/en
Publication of JPH11274528A publication Critical patent/JPH11274528A/en
Application granted granted Critical
Publication of JP3481123B2 publication Critical patent/JP3481123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、入射光を有効利
用するために高反射金属と光電変換層との間に透明導電
酸化膜を介在させた光起電力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device in which a transparent conductive oxide film is interposed between a highly reflective metal and a photoelectric conversion layer to effectively use incident light.

【0002】[0002]

【従来の技術】従来、非晶質シリコン等を光電変換層に
用いた光起電力装置においては、入射光を有効利用する
ために、裏面側に高反射金属からなる電極を配置し、光
電変換層を透過した光を反射させ、再度光電変換層内に
入射させる構造が採られている。
2. Description of the Related Art Conventionally, in a photovoltaic device using amorphous silicon or the like as a photoelectric conversion layer, an electrode made of a highly reflective metal is arranged on the back surface side to make effective use of incident light, and photoelectric conversion is performed. A structure is adopted in which light transmitted through the layer is reflected and is made incident again in the photoelectric conversion layer.

【0003】非晶質シリコン系半導体層上に銀(A
g)、アルミニウム(Al)、銅(Cu)などの高反射
金属を形成すると、これら金属と非晶質シリコン系半導
体層とが反応して界面で合金が形成され、良好な反射特
性が得られない。そこで、例えば、特公昭60−418
78号公報に開示されているように、非晶質半導体層と
高反射金属層との間に酸化インジウム錫(ITO)等の
透明導電酸化膜からなる拡散防止層を介在させ、非晶質
シリコン系半導体層の拡散を防止している。
On the amorphous silicon semiconductor layer, silver (A
When a highly reflective metal such as g), aluminum (Al), or copper (Cu) is formed, the metal reacts with the amorphous silicon semiconductor layer to form an alloy at the interface, and good reflection characteristics can be obtained. Absent. Therefore, for example, Japanese Patent Publication No. 60-418
As disclosed in Japanese Patent No. 78, a diffusion barrier layer made of a transparent conductive oxide film such as indium tin oxide (ITO) is interposed between an amorphous semiconductor layer and a highly reflective metal layer to form amorphous silicon. The diffusion of the semiconductor layer is prevented.

【0004】上記した拡散防止層としては、通常スパッ
タ法により形成された、均一な組成のITO膜が用いら
れ、このITO膜上に銀、アルミニウム、銅などの高反
射金属がスパッタ法により形成されている。
As the diffusion prevention layer, an ITO film having a uniform composition, which is usually formed by a sputtering method, is used, and a highly reflective metal such as silver, aluminum or copper is formed on the ITO film by a sputtering method. ing.

【0005】[0005]

【発明が解決しようとする課題】ところで、スパッタ法
により、透明導電酸化膜からなる拡散防止層と高反射金
属層を連続して形成すると、高反射金属層を作成する時
に、透明導電酸化膜と高反射金属層との界面にダメージ
が発生し、反射率が低下するという問題がある。このダ
メージの発生の理由は現在のところ明らかではないが、
スパッタ時のプラズマによりITO膜などの透明導電酸
化膜の表面に酸素欠損が生じるため、或いはITO膜等
の透明導電酸化膜表面が活性となり、高反射金属層との
界面で還元反応を生じ、透明導電酸化膜表面に酸素欠損
が生じるためと考えられる。透明導電酸化膜に酸素欠損
が生じると、光の透過率が減少し、反射される光の量が
減少し、光の有効利用が十分に図れなくなる。
By the way, when a diffusion preventing layer made of a transparent conductive oxide film and a highly reflective metal layer are continuously formed by a sputtering method, when the highly reflective metal layer is formed, a transparent conductive oxide film is formed. There is a problem in that the interface with the highly reflective metal layer is damaged and the reflectance is lowered. The reason for this damage is currently unknown,
Oxygen deficiency occurs on the surface of the transparent conductive oxide film such as the ITO film due to plasma during sputtering, or the surface of the transparent conductive oxide film such as the ITO film becomes active, and a reduction reaction occurs at the interface with the highly reflective metal layer, resulting in transparency. It is considered that oxygen deficiency occurs on the surface of the conductive oxide film. If oxygen deficiency occurs in the transparent conductive oxide film, the light transmittance decreases, the amount of reflected light decreases, and effective use of light cannot be achieved.

【0006】また、特開平5−121769号には、透
明導電酸化膜と高反射金属層との間に、クロムを含有す
る鋼や白金などの酸化防止用金属を介在させ、高反射金
属層表面の酸化による変質を防止し、効率的な反射を行
った光起電力装置が提案されている。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 5-121769, an oxidation preventing metal such as steel containing chromium or platinum containing chromium is interposed between the transparent conductive oxide film and the high reflection metal layer, and the surface of the high reflection metal layer is A photovoltaic device has been proposed which prevents deterioration due to oxidation and efficiently reflects light.

【0007】しかしながら、上記した光起電力装置にお
いては、クロムを含有する鋼や白金などの酸化防止用金
属を介在させるので、この膜により光の透過が阻害され
る。即ち、これら膜を薄く形成しても透明導電酸化膜よ
りは光透過率は悪く、その分光の反射効率が落ちるのは
否めない。
However, in the above-mentioned photovoltaic device, since an anti-oxidizing metal such as steel or platinum containing chromium is interposed, light transmission is hindered by this film. That is, even if these films are formed thin, the light transmittance is lower than that of the transparent conductive oxide film, and it is undeniable that the reflection efficiency of the spectrum is lowered.

【0008】この発明は、上記した従来の問題点を解消
するためになされたものにして、透明導電酸化膜に酸素
欠損が発生せずに、透明導電膜の光透過率の低下を防
ぎ、効率的な光反射が行える光起電力装置を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, prevents oxygen deficiency from occurring in the transparent conductive oxide film, prevents a decrease in light transmittance of the transparent conductive film, and improves efficiency. It is an object of the present invention to provide a photovoltaic device capable of effective light reflection.

【0009】[0009]

【課題を解決するための手段】この発明は、光電変換層
と高反射金属層との間に透明導電酸化膜からなる拡散防
止層を挿入した光起電力装置であって、前記拡散防止層
の高反射金属層との界面近傍における膜中酸素原子量
、該界面近傍で生じる酸素欠損分を補うべく他の領域
の膜中酸素原子量より多くしたことを特徴とする。
The present invention is a photovoltaic device in which a diffusion prevention layer made of a transparent conductive oxide film is inserted between a photoelectric conversion layer and a highly reflective metal layer, wherein the diffusion prevention layer comprises: It is characterized in that the amount of oxygen atoms in the film in the vicinity of the interface with the highly reflective metal layer is made larger than the amount of oxygen atoms in the film in other regions in order to compensate for the oxygen deficiency generated in the vicinity of the interface.

【0010】前記透明導電酸化膜は、ITO薄膜で構成
され、ITO薄膜中の酸素原子量とインジウム原子量の
比(O/In)が高反射金属層に向かって増加して行く
ように組成比を変化させるとよい。
The transparent conductive oxide film is composed of an ITO thin film, and the composition ratio is changed so that the ratio of oxygen atomic weight to indium atomic weight (O / In) in the ITO thin film increases toward the highly reflective metal layer. You should let me.

【0011】また、前記ITO薄膜の比抵抗が10-2Ω
cm以下、前記ITO薄膜中の酸素原子量とインジウム
原子量の比(O/In)が1.5〜4の間で変化させる
とよい。
The specific resistance of the ITO thin film is 10 -2 Ω.
cm or less, the ratio of the atomic weight of oxygen to the atomic weight of indium (O / In) in the ITO thin film may be changed between 1.5 and 4.

【0012】上記した構成によれば、透明導電酸化膜の
界面付近の酸素量が増え、透明導電酸化膜の酸素欠損が
防止でき、この部分での光透過率の低下が防止される。
この結果、短絡電流の低下が減少し、変換効率を向上さ
せることができる。
According to the above structure, the amount of oxygen in the vicinity of the interface of the transparent conductive oxide film increases, oxygen deficiency of the transparent conductive oxide film can be prevented, and the reduction of the light transmittance in this portion can be prevented.
As a result, the decrease in short-circuit current is reduced, and the conversion efficiency can be improved.

【0013】更に、前記透明導電酸化膜と高反射金属層
との間に透明絶縁膜を設けるとよい。
Further, a transparent insulating film may be provided between the transparent conductive oxide film and the highly reflective metal layer.

【0014】透明絶縁膜を介在させることで、高反射金
属形成時に、ITO膜などの還元により、金属反射膜が
酸化されることがなくなり、高反射率が保てる。
By interposing the transparent insulating film, it is possible to prevent the metal reflective film from being oxidized by the reduction of the ITO film or the like when forming the highly reflective metal, so that the high reflectance can be maintained.

【0015】 また、この発明は、光電変換層と高反射
金属層としての裏面電極との間に透明導電酸化膜からな
る拡散防止層を挿入した光起電力装置であって、前記透
明導電酸化膜と裏面電極との間に電気的に導通する厚さ
透明絶縁膜を設けたことを特徴とする。
Further, the present invention is a photovoltaic device in which a diffusion prevention layer made of a transparent conductive oxide film is inserted between a photoelectric conversion layer and a back electrode as a highly reflective metal layer, wherein the transparent conductive oxide film is provided. Thickness of electrical conduction between the electrode and the back electrode
The transparent insulating film is provided.

【0016】前記透明絶縁膜の平均膜厚を5nm以上5
0nm以下にするとよい。
The average thickness of the transparent insulating film is 5 nm or more and 5
It is preferable to set it to 0 nm or less.

【0017】透明絶縁膜を挿入することにより、高反射
金属層をスパッタ法で形成する際のダメージを防いで光
反射率を改善することができる。
By inserting the transparent insulating film, it is possible to prevent damage at the time of forming the highly reflective metal layer by the sputtering method and improve the light reflectance.

【0018】[0018]

【発明の実施の形態】以下、この発明の実施に形態につ
き図面を参照して説明する。図1はこの発明の光起電力
装置の第1の実施の形態を説明するための素子構造図で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an element structure diagram for explaining a first embodiment of a photovoltaic device of the present invention.

【0019】図1に示すように、ガラスなどからなる透
光性絶縁基板1上に酸化インジウム錫(ITO)、酸化
錫(Sn02)、酸化亜鉛(ZnO)等からなる透明導
電膜2が設けられる。この実施の形態では膜厚500n
mの酸化錫を熱CVD法により形成する。この透明導電
膜2上に従来周知のプラズマCVD法で非晶質シリコン
系半導体からなる光電変換層3が設けられる。
As shown in FIG. 1, a transparent conductive film 2 made of indium tin oxide (ITO), tin oxide (SnO 2 ), zinc oxide (ZnO) or the like is provided on a transparent insulating substrate 1 made of glass or the like. To be In this embodiment, the film thickness is 500n
m tin oxide is formed by the thermal CVD method. A photoelectric conversion layer 3 made of an amorphous silicon semiconductor is provided on the transparent conductive film 2 by a conventionally known plasma CVD method.

【0020】この光電変換層3は、まず、B26、Si
4、CH4、H2の混合ガスをグロー放電分解して膜厚
5nm程度のp型非晶質シリコンカーバイド(a−Si
C)層3aを堆積し、次に、SiH4、CH4、H2の混
合ガスをグロー放電分解してp/i界面でのキャリアの
再結合を防ぐためのi型a−SiCからなる膜厚5nm
程度の界面i層3bを堆積させ、次いで、SiH4ガス
をグロー放電分解して発電層である膜厚300nm程度
のi型非晶質シリコン(a−Si)層3cを堆積させ、
最後に、PH3、SiH4、H2の混合ガスをグロー放電
分解して膜厚10nm程度のn型非晶質シリコン(a−
Si)層3dを堆積して、形成される。
The photoelectric conversion layer 3 is composed of B 2 H 6 and Si.
A mixed gas of H 4 , CH 4 , and H 2 is decomposed by glow discharge and p-type amorphous silicon carbide (a-Si) having a film thickness of about 5 nm.
C) A film made of i-type a-SiC for depositing the layer 3a, and then performing glow discharge decomposition of a mixed gas of SiH 4 , CH 4 , and H 2 to prevent recombination of carriers at the p / i interface. Thickness 5nm
The i-type amorphous silicon (a-Si) layer 3c having a film thickness of about 300 nm, which is a power generation layer, is deposited by glow discharge decomposition of SiH 4 gas.
Finally, glow discharge decomposition of a mixed gas of PH 3 , SiH 4 , and H 2 was performed to perform n-type amorphous silicon (a-
It is formed by depositing a Si) layer 3d.

【0021】この光電変換層3上にこの発明の特徴とす
る拡散防止層としての膜厚100nm程度の透明導電酸
化膜4がスパッタ法により設けられる。この実施の形態
では、透明導電酸化膜4としてITO膜を用い、膜中の
酸素原子量とインジウム原子量の比(O/In)が高反
射金属層に向かって増加して行くように組成比を変化さ
せている。そして、この透明導電酸化膜4上にスパッタ
法により高反射金属層からなる裏面電極5が設けられ
る。この実施の形態では、裏面電極5として膜厚300
nmのAgをスパッタ法により形成した。このスパッタ
法の条件はRFパワー1000W、ターゲットサイズが
6インチФ、スパッタガスとしてArガスを用い、基板
温度200℃で行った。上記の他の形成条件を表1に、
また透明導電酸化膜としてのITO膜の形成条件を表2
に示す。
On the photoelectric conversion layer 3, a transparent conductive oxide film 4 having a film thickness of about 100 nm is provided as a diffusion prevention layer, which is a feature of the present invention, by a sputtering method. In this embodiment, an ITO film is used as the transparent conductive oxide film 4, and the composition ratio is changed so that the ratio of the atomic weight of oxygen and the atomic weight of indium (O / In) in the film increases toward the highly reflective metal layer. I am letting you. Then, a back electrode 5 made of a highly reflective metal layer is provided on the transparent conductive oxide film 4 by a sputtering method. In this embodiment, the back electrode 5 has a film thickness of 300.
nm Ag was formed by the sputtering method. The conditions of this sputtering method were RF power of 1000 W, target size of 6 inches Φ, Ar gas as a sputtering gas, and substrate temperature of 200 ° C. The other forming conditions described above are shown in Table 1.
Table 2 shows the conditions for forming the ITO film as the transparent conductive oxide film.
Shown in.

【0022】[0022]

【表1】 [Table 1]

【0023】上記した透明導電酸化膜4としてのITO
膜の形成条件は、RFパワーが300W、ターゲットサ
イズが6インチФ、反応圧力が3×10-3Torrであ
り、その他の条件を表2に示す。尚、表2には、ITO
膜の膜中酸素濃度を変化させない従来のITO膜の形成
条件も記す。
ITO as the transparent conductive oxide film 4 described above
The film forming conditions are RF power of 300 W, target size of 6 inches Φ, reaction pressure of 3 × 10 −3 Torr, and other conditions are shown in Table 2. In addition, in Table 2, ITO
The conditions for forming a conventional ITO film that does not change the oxygen concentration in the film are also described.

【0024】[0024]

【表2】 [Table 2]

【0025】上記条件で作成した本発明のITO膜と従
来例のITO膜の比抵抗は本発明が1×10-3Ωcmで
あり、従来例が5×10-4Ωcmであり、非常に良好な
特性が得られた。また、本発明で作成した薄膜の方が比
抵抗が高いのは、酸素量の増加に伴い透過率が向上し、
キャリア密度が減少しているためと考えられる。
The specific resistances of the ITO film of the present invention and the conventional ITO film formed under the above conditions are 1 × 10 −3 Ωcm in the present invention and 5 × 10 −4 Ωcm in the conventional example, which are very good. Various characteristics were obtained. Further, the high resistivity of the thin film prepared in the present invention, the transmittance is improved with an increase in the amount of oxygen,
This is probably because the carrier density is decreasing.

【0026】上記の条件で作成したITO膜の酸素とイ
ンジウム量をSIMSで測定し、ITO薄膜中の酸素原
子量とインジウム原子量の比(O/In)を求めた結果
を図2に示す。ITO薄膜の膜厚は共に1000オング
ストロームである。従来例では、(O/In)は1.5
で一定であるが、この発明では(O/In)が1.5〜
4近くまで増加していることが分かった。即ち、光電変
換層3側から裏面電極4側へ向かって酸素の原子量の割
合が増加している。
The amounts of oxygen and indium in the ITO film prepared under the above conditions were measured by SIMS, and the ratio (O / In) of the atomic weight of oxygen to the atomic weight of indium in the ITO thin film was determined. The results are shown in FIG. The thickness of the ITO thin film is 1000 angstroms. In the conventional example, (O / In) is 1.5
However, in the present invention, (O / In) is 1.5 to
It turned out that it increased to nearly four. That is, the ratio of the atomic weight of oxygen increases from the photoelectric conversion layer 3 side toward the back electrode 4 side.

【0027】次に、拡散防止層として、上記した本発明
によるITO薄膜と従来のITO薄膜を用い、ITO薄
膜とAgからなる裏面電極5とをスパッタ法で連続形成
したときの光起電力特性を測定した結果を表3に示す。
両サンプルはITO膜が異なる以外は全て同じ条件で作
成した。
Next, as an anti-diffusion layer, the above-mentioned ITO thin film according to the present invention and a conventional ITO thin film were used, and the photovoltaic characteristics were obtained when the ITO thin film and the back electrode 5 made of Ag were continuously formed by the sputtering method. Table 3 shows the measured results.
Both samples were prepared under the same conditions except that the ITO film was different.

【0028】[0028]

【表3】 [Table 3]

【0029】従来の光起電力装置では、スパッタでIT
O薄膜と裏面電極を連続形成する際に、ITO薄膜表面
にダメージが発生し、ITO薄膜の表面に酸素欠損が生
じ、この部分での光透過率の低下に起因して短絡電流の
低下が生じていた。これに対して、この発明のように、
界面付近の酸素量を増やすことで、酸素欠損が防止で
き、この部分での光透過率の低下が防止され、短絡電流
の低下が減少し、変換効率が向上した。
In the conventional photovoltaic device, IT is used by sputtering.
When the O thin film and the back electrode are continuously formed, the surface of the ITO thin film is damaged, oxygen deficiency occurs on the surface of the ITO thin film, and the short circuit current is reduced due to the reduction of the light transmittance in this portion. Was there. On the other hand, like the present invention,
By increasing the amount of oxygen near the interface, oxygen vacancies could be prevented, the decrease in light transmittance at this part was prevented, the decrease in short-circuit current was reduced, and the conversion efficiency was improved.

【0030】尚、上記した実施の形態においては、透明
導電酸化膜の膜中酸素原子量を高反射金属層に向かって
順次増加させるようにに変化させているが、界面近傍の
領域のみ酸素原子の膜中組成を多くし、他の領域は従来
のままの組成にした積層膜でも同様の効果が得られる。
In the above-described embodiment, the amount of oxygen atoms in the transparent conductive oxide film is changed so as to be gradually increased toward the highly reflective metal layer. The same effect can be obtained by using a laminated film in which the composition in the film is increased and the other regions are left as they are.

【0031】上記した第1の実施の形態は、光が基板側
から入射する構造の光起電力装置、いわゆる順タイプの
光起電力装置について説明したが、非透光性基板に金属
電極を形成し、順に半導体層、透光性電極を形成して、
透光性電極側から光を入射する構造の光起電力装置、い
わゆる逆タイプの光起電力素子においてもこの発明が適
用できる。図3は、この発明をいわゆる逆タイプの光起
電力装置に適用した素子構造を示す断面図である。
In the first embodiment described above, a photovoltaic device having a structure in which light enters from the substrate side, that is, a so-called forward type photovoltaic device has been described. However, a metal electrode is formed on a non-translucent substrate. Then, the semiconductor layer and the translucent electrode are sequentially formed,
The present invention can be applied to a photovoltaic device having a structure in which light is incident from the transparent electrode side, that is, a so-called reverse type photovoltaic element. FIG. 3 is a sectional view showing an element structure in which the present invention is applied to a so-called reverse type photovoltaic device.

【0032】図3に示すように、ステンレス基板などの
非透光性基板11上にAgなどの高反射金属からなる裏
面電極12が設けられている。この裏面電極12上に拡
散防止層としての透明導電酸化膜13が設けられる。こ
の実施の形態においては、透明導電酸化膜13としてZ
nOを用いた。そして、この透明導電酸化膜13は、裏
面電極12側から光電変換層14側へ酸素の原子量が少
なくなるようにZnとOの組成比を変化させている。即
ち、裏面電極側12近傍の酸素原子量を多くしている。
続いて、拡散防止層13上に従来周知のプラズマCVD
法で非晶質シリコン系半導体からなる光電変換層14が
設けられる。この光電変換層14は、n型a−Si層1
4aと、発電層であるi型a−Si層14bと、p/i
界面でのキャリアの再結合を防ぐためにi型a−SiC
からなる界面i層14cと、p型a−SiC層14d
と、を順次堆積して形成される。これら膜の形成条件
は、前述した第1の実施の形態と同じである。
As shown in FIG. 3, a back electrode 12 made of a highly reflective metal such as Ag is provided on a non-translucent substrate 11 such as a stainless substrate. A transparent conductive oxide film 13 as a diffusion preventing layer is provided on this back electrode 12. In this embodiment, Z is used as the transparent conductive oxide film 13.
nO was used. The composition ratio of Zn and O in the transparent conductive oxide film 13 is changed from the back electrode 12 side to the photoelectric conversion layer 14 side so that the atomic weight of oxygen decreases. That is, the amount of oxygen atoms near the back electrode 12 is increased.
Then, a conventionally well-known plasma CVD is performed on the diffusion prevention layer 13.
The photoelectric conversion layer 14 made of an amorphous silicon semiconductor is provided by the method. The photoelectric conversion layer 14 is an n-type a-Si layer 1
4a, an i-type a-Si layer 14b that is a power generation layer, and p / i
In order to prevent recombination of carriers at the interface, i-type a-SiC
Interface i layer 14c composed of and p-type a-SiC layer 14d
And are sequentially deposited to be formed. The conditions for forming these films are the same as those in the above-described first embodiment.

【0033】そして、p型a−SiC14d上にITO
膜からなる透明電極15が設けられ、その上にAgから
なる集電極16が設けられる。
Then, ITO is formed on the p-type a-SiC 14d.
A transparent electrode 15 made of a film is provided, and a collector electrode 16 made of Ag is provided thereon.

【0034】この実施の形態では、ZnO膜中の酸素原
子量と亜鉛原子量の比(O/Zn)が、裏面電極側12
では酸素欠損が生じないように多くして光電変換層14
に向かって減少して行くように組成比を変化させてい
る。
In this embodiment, the ratio of the atomic weight of oxygen to the atomic weight of zinc in the ZnO film (O / Zn) is 12
Then, the photoelectric conversion layer 14 is increased in number so that oxygen deficiency does not occur.
The composition ratio is changed so as to decrease toward.

【0035】裏面電極12と透明導電酸化膜13を連続
形成する際に、透明導電酸化膜13と裏面金属12との
界面における還元反応によって酸素が減少してもこの部
分にあらかじめ酸素が原子が多く含まれているため、酸
素欠損が生ぜず、この部分での光透過率の劣化が防止で
きる。このように、界面付近の酸素量を増やすことで、
酸素欠損が防止でき、この部分での光の透過率の低下が
防止され、短絡電流の低下が減少し、変換効率が向上す
る。
When the back electrode 12 and the transparent conductive oxide film 13 are continuously formed, even if oxygen is reduced by the reduction reaction at the interface between the transparent conductive oxide film 13 and the back metal 12, many oxygen atoms are already present in this portion. Since it is contained, oxygen deficiency does not occur, and deterioration of the light transmittance in this portion can be prevented. In this way, by increasing the amount of oxygen near the interface,
Oxygen deficiency can be prevented, a decrease in light transmittance at this portion is prevented, a decrease in short circuit current is reduced, and conversion efficiency is improved.

【0036】次に、この発明の第3の実施の形態につき
説明する。上記第1及び第2の実施の形態においては、
透明導電酸化膜と高反射金属層との連続形成における透
明導電酸化膜の酸素欠損をあらかじめこの領域の透明導
電酸化膜中に酸素原子を多くして酸素欠損分を補うもの
であるが、この第3及び第4の実施の形態は、透明導電
酸化膜の酸素原子の量は従来通りのものを用い、この膜
から酸素の欠損が生じないようにしたものである。
Next, a third embodiment of the present invention will be described. In the first and second embodiments described above,
The oxygen deficiency of the transparent conductive oxide film in the continuous formation of the transparent conductive oxide film and the highly reflective metal layer is compensated for in advance by increasing the number of oxygen atoms in the transparent conductive oxide film in this region. In the third and fourth embodiments, the amount of oxygen atoms in the transparent conductive oxide film is the same as the conventional one, and oxygen deficiency does not occur in this film.

【0037】まず、第3の実施の形態を図4に従い説明
する。図4は、いわゆる順タイプの光起電力装置の素子
構造断面図である。
First, the third embodiment will be described with reference to FIG. FIG. 4 is a sectional view of an element structure of a so-called forward type photovoltaic device.

【0038】厚さ4mmのガラス基板からなる透光性絶
縁基板1の上に表面に光閉じ込め用凹凸面が形成された
膜厚500nm程度の酸化錫からなる透明電極膜2が堆
積される。従来周知のプラズマCVD法で非晶質シリコ
ン系半導体からなる光電変換層3が設けられる。この光
電変換層3は、前述した第1の実施の形態と同様に、p
型a−SiC層3a、とp/i界面でのキャリアの再結
合を防ぐためにi型a−SiCからなる界面i層3b
と、i型a−Si3cと、n型a−Si層3dが、順次
形成される。
On a transparent insulating substrate 1 made of a glass substrate having a thickness of 4 mm, a transparent electrode film 2 made of tin oxide and having a thickness of about 500 nm and having a concavo-convex surface for confining light formed on the surface is deposited. A photoelectric conversion layer 3 made of an amorphous silicon semiconductor is provided by a conventionally known plasma CVD method. This photoelectric conversion layer 3 has a p-type structure similar to that of the first embodiment.
The i-type a-SiC layer 3a and the interface i-layer 3b made of i-type a-SiC to prevent recombination of carriers at the p / i interface.
Then, the i-type a-Si 3c and the n-type a-Si layer 3d are sequentially formed.

【0039】この光電変換層3上に透明導電酸化膜4が
スパッタ法により設けられる。この実施の形態では、透
明導電酸化膜としてITO膜を用い、膜中の酸素原子量
とインジウム原子量の比(O/In)は、表2に示す従
来例と同様にして形成され、膜中濃度は一定である。
A transparent conductive oxide film 4 is provided on the photoelectric conversion layer 3 by a sputtering method. In this embodiment, an ITO film is used as the transparent conductive oxide film, and the ratio of oxygen atom weight to indium atom weight (O / In) in the film is formed in the same manner as in the conventional example shown in Table 2, and the concentration in the film is It is constant.

【0040】この透明導電酸化膜4上に透明絶縁膜6を
形成する。この実施の形態では厚さ3〜100nmのS
iO2膜を形成した。そして、この透明絶縁膜6上にス
パッタ法によりAgからなる高反射金属層としての裏面
電極5が設けられている。上記したSiO2膜はスパッ
タ法により形成され、Arガスをスパッタガスとして用
い、RFパワー1000W、ターゲットサイズが6イン
チФ、基板温度200℃で形成した。表4に透明絶縁膜
4を設けていない従来の光起電力装置と、透明絶縁膜4
の膜厚を種々変化させたこの発明の光起電力装置との光
起電力特性を測定した結果を示す。
A transparent insulating film 6 is formed on the transparent conductive oxide film 4. In this embodiment, S having a thickness of 3 to 100 nm is used.
An iO 2 film was formed. Then, the back surface electrode 5 as a highly reflective metal layer made of Ag is provided on the transparent insulating film 6 by a sputtering method. The above-mentioned SiO 2 film was formed by a sputtering method, using Ar gas as a sputtering gas, RF power of 1000 W, target size of 6 inches Φ, and substrate temperature of 200 ° C. A conventional photovoltaic device having no transparent insulating film 4 in Table 4 and the transparent insulating film 4
The results of measuring the photovoltaic characteristics of the photovoltaic device of the present invention in which the film thickness of the film is variously changed are shown.

【0041】[0041]

【表4】 [Table 4]

【0042】表4より従来スパッタ法により、ITO膜
と裏面電極を連続形成する際に、ITO薄膜と金属界面
のダメージにより短絡電流の低下が生じていたのに対
し、この実施の形態では、ダメージによる高反射金属層
と透明導電酸化膜との還元反応が防止され、その結果、
短絡電流が増加し、変換効率の増加が見られた。この実
施の形態では、透明絶縁膜6の膜厚が5〜50nmの範
囲で変換効率の増加が見られた。
As shown in Table 4, when the ITO film and the back electrode are continuously formed by the conventional sputtering method, the short circuit current is reduced due to the damage of the ITO thin film and the metal interface. The reduction reaction between the highly reflective metal layer and the transparent conductive oxide film due to is prevented, and as a result,
The short-circuit current increased and the conversion efficiency increased. In this embodiment, the conversion efficiency was increased when the thickness of the transparent insulating film 6 was in the range of 5 to 50 nm.

【0043】これは透明絶縁膜6を設けることで、裏面
金属5をスパッタ法により形成する際、透明導電酸化膜
の還元による酸素欠損が抑制され、光透過率の低下が防
止されたからと考えられる。
It is considered that the provision of the transparent insulating film 6 suppresses the oxygen deficiency due to the reduction of the transparent conductive oxide film when the back surface metal 5 is formed by the sputtering method, and prevents the reduction of the light transmittance. .

【0044】上記したように、透明導電酸化膜4と裏面
電極5との間に、膜厚5nm以上の透明絶縁膜6を挿入
することにより、高反射金属層をスパッタ法で形成する
際のダメージを防いで光反射率を改善することができ
る。ダメージの詳細は現状では明らかではないが、IT
O膜/金属界面のITO膜の還元により酸素欠損が発生
してITOの光透過率が減少する結果、裏面電極の光反
射率が減少していたことが予想される。透明絶縁膜6の
膜厚を50nm以下にすれば、絶縁体のピンホール等を
通して透明導電酸化膜4と裏面電極5間が電気的に導通
するため、高抵抗な絶縁体を挿入することによる抵抗ロ
スの悪影響はない。特に、凹凸があれば薄い絶縁膜によ
りリークの発生が多くなる。
As described above, by inserting the transparent insulating film 6 having a film thickness of 5 nm or more between the transparent conductive oxide film 4 and the back surface electrode 5, damage caused when the highly reflective metal layer is formed by the sputtering method. Can be prevented and the light reflectance can be improved. The details of the damage are not clear at present, but IT
It is expected that oxygen deficiency occurs due to the reduction of the ITO film at the O film / metal interface and the light transmittance of the ITO decreases, resulting in a decrease in the light reflectance of the back electrode. If the thickness of the transparent insulating film 6 is set to 50 nm or less, the transparent conductive oxide film 4 and the back surface electrode 5 are electrically connected to each other through a pinhole or the like of the insulator. There is no adverse effect of loss. In particular, if there are irregularities, the thin insulating film causes more leakage.

【0045】この実施の形態では、透明絶縁膜6とし
て、SiO2膜を用いたが、他の絶縁材料、例えば、S
34、Al23、AlN、TiN、TiO2等の金属
・半導体酸化膜及び窒化膜を使用することもできる。ま
た、透明電極としては、酸化錫の他に、酸化亜鉛、酸化
銅、酸化銅−酸化アルミニウム化合物等も使用できる。
In this embodiment, the SiO 2 film is used as the transparent insulating film 6, but another insulating material such as S is used.
It is also possible to use a metal / semiconductor oxide film such as i 3 N 4 , Al 2 O 3 , AlN, TiN, and TiO 2 and a nitride film. In addition to tin oxide, zinc oxide, copper oxide, a copper oxide-aluminum oxide compound or the like can be used as the transparent electrode.

【0046】図5は、この発明の第4の実施の形態を示
す光起電力装置であり、厚さ0.55mmのステンレス
基板11に表面の凹凸が形成された厚さ500nmのア
ルミニウムからなる高反射金属層12が形成される。こ
の上に透明絶縁膜17として厚さ50nmのSiO2
が設けられる。この上に拡散防止層として厚さ50nm
のZnOからなる透明導電酸化膜13が設けられる。こ
の透明導電酸化膜13上に従来周知のプラズマCVD法
で非晶質シリコン系半導体からなる光電変換層14が設
けられる。この光電変換層14は、n型a−Si14a
と、i型a−Si層14bと、p/i界面でのキャリア
の再結合を防ぐためにi型a−SiCからなる界面i層
14cと、p型a−SiC層14dとが、前述した実施
の形態と同様にして順次形成される。
FIG. 5 shows a photovoltaic device according to a fourth embodiment of the present invention, in which a stainless substrate 11 having a thickness of 0.55 mm is provided with unevenness on its surface and is made of aluminum having a thickness of 500 nm. The reflective metal layer 12 is formed. On this, a SiO 2 film having a thickness of 50 nm is provided as a transparent insulating film 17. 50 nm thick as a diffusion prevention layer on top of this
A transparent conductive oxide film 13 made of ZnO is provided. A photoelectric conversion layer 14 made of an amorphous silicon semiconductor is provided on the transparent conductive oxide film 13 by a conventionally known plasma CVD method. This photoelectric conversion layer 14 is an n-type a-Si 14a.
The i-type a-Si layer 14b, the interface i-layer 14c made of i-type a-SiC in order to prevent carrier recombination at the p / i interface, and the p-type a-SiC layer 14d are the same as those described above. It is sequentially formed in the same manner as the above.

【0047】p型a−SiC上にITOからなる透明電
極15が設けられる。この実施の形態においても、透明
絶縁膜17の膜厚が5〜50nmの範囲で変換効率の増
加が見られた。
A transparent electrode 15 made of ITO is provided on the p-type a-SiC. Also in this embodiment, the conversion efficiency is increased when the film thickness of the transparent insulating film 17 is in the range of 5 to 50 nm.

【0048】ところで、上記した第1及び第2の実施の
形態においては、銀、アルミニウムなどの高反射金属膜
と光電変換層との間に拡散防止層としてITO等の透明
導電酸化膜を介在させているが、銀、アルミニウムなど
の高反射金属膜が透明導電酸化膜の酸素により酸化され
る場合がある。そこで、この高反射金属膜の酸化を防止
するために、膜厚10オングストロームから100オン
グストローム程度の膜中にクロムを含有する鋼や白金な
どを拡散防止層と高反射金属との間に介在させてもよ
い。ただ、膜中にクロムを含有する鋼や白金を介在させ
るとこの膜で光が吸収され、反射効率が若干落ちること
は否めない。そこで、この発明では、拡散防止層として
の透明導電酸化膜と高反射金属層との間に、上記第3及
び第4の実施の形態で用いた透明絶縁膜を介在させる。
介在させる透明絶縁膜としては、SiO2、Si34
Al23等の膜で、その膜厚を50nm以下にする。透
明絶縁膜を介在させることで、高反射金属形成時に、I
TO膜などの還元により、金属反射膜が酸化されること
がなくなり、高反射率が保てる。また、介在させる膜は
透明絶縁膜であるので、この部分での光の吸収も殆どな
く、しかも透明絶縁膜と金属界面の反射率は95%以上
と高く、反射率が向上する。この薄い絶縁体はリークに
より通電するので、抵抗成分は小さい。
By the way, in the above-described first and second embodiments, a transparent conductive oxide film such as ITO is interposed as a diffusion preventing layer between the highly reflective metal film such as silver and aluminum and the photoelectric conversion layer. However, a highly reflective metal film such as silver or aluminum may be oxidized by oxygen in the transparent conductive oxide film. Therefore, in order to prevent the oxidation of the highly reflective metal film, steel or platinum containing chromium in a film having a film thickness of about 10 angstroms to 100 angstroms is interposed between the diffusion prevention layer and the highly reflective metal film. Good. However, it is undeniable that the presence of chromium-containing steel or platinum in the film causes light to be absorbed by this film, resulting in a slight decrease in reflection efficiency. Therefore, in the present invention, the transparent insulating film used in the third and fourth embodiments is interposed between the transparent conductive oxide film serving as the diffusion prevention layer and the highly reflective metal layer.
As the transparent insulating film to be interposed, SiO 2 , Si 3 N 4 ,
The film is made of Al 2 O 3 or the like and has a film thickness of 50 nm or less. By interposing a transparent insulating film, when forming a highly reflective metal, I
Due to the reduction of the TO film or the like, the metal reflection film is not oxidized and high reflectance can be maintained. Further, since the intervening film is a transparent insulating film, there is almost no absorption of light in this portion, and the reflectance between the transparent insulating film and the metal interface is as high as 95% or more, and the reflectance is improved. Since this thin insulator conducts electricity due to leakage, its resistance component is small.

【0049】上記した実施の形態においては、発電層と
して、非晶質シリコンを用いたが、これ以外に、微結晶
シリコン、薄膜多結晶シリコンを用いても良い。また、
CdTe、GaAs、CuInSe2等の薄膜化合物半
導体を用いることもできる。更に、a−Si/a−Si
Ge、a−Si/a−SiGe/a−SiGe、a−S
i/微結晶Si、やa−Si/薄膜多結晶Siのような
積層構造を用いても良い。
Although amorphous silicon is used for the power generation layer in the above-described embodiments, microcrystalline silicon or thin film polycrystalline silicon may be used instead. Also,
Thin film compound semiconductors such as CdTe, GaAs, and CuInSe 2 can also be used. Furthermore, a-Si / a-Si
Ge, a-Si / a-SiGe / a-SiGe, a-S
A laminated structure such as i / microcrystalline Si or a-Si / thin film polycrystalline Si may be used.

【0050】[0050]

【発明の効果】上記した構成によれば、透明導電酸化膜
の界面付近の酸素量が増え、透明導電酸化膜の酸素欠損
が防止でき、この部分での光透過率の低下が防止され
る。この結果、短絡電流の低下が減少し、変換効率を向
させることができる。
According to the above structure, the amount of oxygen near the interface of the transparent conductive oxide film is increased, oxygen deficiency of the transparent conductive oxide film can be prevented, and the reduction of the light transmittance in this portion can be prevented. As a result, the decrease in short-circuit current is reduced, and the conversion efficiency can be improved.

【0051】また、この発明は、透明導電酸化膜と裏面
電極との間に、膜厚5nm以上の透明絶縁膜6を挿入す
ることにより、高反射金属層をスパッタ法で形成する際
のダメージを防いで光反射率を改善することができる。
Further, according to the present invention, by inserting the transparent insulating film 6 having a film thickness of 5 nm or more between the transparent conductive oxide film and the back electrode, damage caused when the highly reflective metal layer is formed by the sputtering method. It can prevent and improve the light reflectance.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の光起電力装置の第1の実施の形態を
説明するための素子構造断面図である。
FIG. 1 is a cross-sectional view of an element structure for explaining a first embodiment of a photovoltaic device of the present invention.

【図2】ITO膜の酸素とインジウム量をSIMSで測
定し、ITO薄膜中の酸素原子量とインジウム原子量の
比(O/In)を求めた結果を示す図である。
FIG. 2 is a diagram showing a result of measuring oxygen and indium contents of an ITO film by SIMS and obtaining a ratio (O / In) of the atomic weight of oxygen and the amount of indium in the ITO thin film.

【図3】この発明を光起電力装置の第2の実施の形態を
説明するための素子構造断面図である。
FIG. 3 is a sectional view of an element structure for explaining a second embodiment of a photovoltaic device according to the present invention.

【図4】この発明の光起電力装置の第3の実施の形態を
説明するための素子構造断面図である。
FIG. 4 is an element structure cross-sectional view for explaining a third embodiment of the photovoltaic device of the present invention.

【図5】この発明を光起電力装置の第4の実施の形態を
説明するための素子構造断面図である。
FIG. 5 is a sectional view of an element structure for explaining the fourth embodiment of the photovoltaic device according to the present invention.

【符号の説明】[Explanation of symbols]

1 透光性絶縁基板 2 透明導電膜 3 光電変換層 4 透明導電酸化膜(拡散防止層) 5 裏面電極 1 Translucent insulating substrate 2 Transparent conductive film 3 Photoelectric conversion layer 4 Transparent conductive oxide film (diffusion prevention layer) 5 Back electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−13790(JP,A) 特開 昭58−215083(JP,A) 特開 平9−57892(JP,A) 特開 昭58−111379(JP,A) 特開 平5−145095(JP,A) 特開 平5−110125(JP,A) 特開 平6−314804(JP,A) 特開 平6−204527(JP,A) 特開 平8−213644(JP,A) 特開 平6−338623(JP,A) 特開 平5−121769(JP,A) 特開 昭58−78474(JP,A) 実開 昭63−98667(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-5-13790 (JP, A) JP-A-58-215083 (JP, A) JP-A-9-57892 (JP, A) JP-A-58- 111379 (JP, A) JP-A-5-145095 (JP, A) JP-A-5-110125 (JP, A) JP-A-6-314804 (JP, A) JP-A-6-204527 (JP, A) JP-A-8-213644 (JP, A) JP-A-6-338623 (JP, A) JP-A-5-121769 (JP, A) JP-A-58-78474 (JP, A) Actual exploitation 63-98667 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光電変換層と高反射金属層との間に透明
導電酸化膜からなる拡散防止層を挿入した光起電力装置
であって、前記拡散防止層の高反射金属層との界面近傍
における膜中酸素原子量を、該界面近傍で生じる酸素欠
損分を補うべく他の領域の膜中酸素原子量より多くした
ことを特徴とする光起電力装置。
1. A photovoltaic device in which a diffusion prevention layer made of a transparent conductive oxide film is inserted between a photoelectric conversion layer and a highly reflective metal layer, wherein the diffusion prevention layer is near an interface with the highly reflective metal layer. oxygen deficiency of the membrane oxygen atomic weight, resulting in the interface vicinity
A photovoltaic device characterized in that the amount of oxygen atoms in the film in other regions is made larger to compensate for the loss .
【請求項2】 前記透明導電酸化膜は、ITO薄膜で構
成され、ITO薄膜中の酸素原子量とインジウム原子量
の比(O/In)が高反射金属層に向かって増加して行
くように組成比が変化していることを特徴とする請求項
1に記載の光起電力装置。
2. The transparent conductive oxide film is composed of an ITO thin film, and the composition ratio is such that the ratio of oxygen atomic weight to indium atomic weight (O / In) in the ITO thin film increases toward the highly reflective metal layer. 2. The photovoltaic device according to claim 1, characterized in that
【請求項3】 前記ITO薄膜の比抵抗が10−2Ωc
m以下であることを特徴とする請求項2に記載の光起電
力装置。
3. The specific resistance of the ITO thin film is 10 −2 Ωc.
The photovoltaic device according to claim 2, wherein the photovoltaic device is m or less.
【請求項4】 前記ITO薄膜中の酸素原子量とインジ
ウム原子量の比(O/In)が1.5〜4の間で変化す
ることを特徴とする請求の範囲2または3に記載の光起
電力装置。
4. The photovoltaic power according to claim 2 or 3, wherein the ratio of the atomic weight of oxygen to the atomic weight of indium (O / In) in the ITO thin film changes between 1.5 and 4. apparatus.
【請求項5】 前記透明導電酸化膜と高反射金属層との
間に透明絶縁膜を設けたことを特徴とする請求項1ない
し4のいずれかに記載の光起電力装置。
5. The photovoltaic device according to claim 1, further comprising a transparent insulating film provided between the transparent conductive oxide film and the highly reflective metal layer.
【請求項6】 光電変換層と高反射金属層としての裏面
電極との間に透明導電酸化膜からなる拡散防止層を挿入
した光起電力装置であって、前記透明導電酸化膜と裏面
電極との間に電気的に導通する厚さの透明絶縁膜を設け
たことを特徴とする光起電力装置。
6. A back surface as a photoelectric conversion layer and a highly reflective metal layer
A photovoltaic device in which a diffusion prevention layer made of a transparent conductive oxide film is inserted between an electrode and the transparent conductive oxide film and the back surface.
A photovoltaic device comprising a transparent insulating film having a thickness electrically connected to an electrode .
【請求項7】 前記透明絶縁膜の平均膜厚を5nm以上
50nm以下とすることを特徴とする請求の範囲6に記
載の光起電力装置。
7. The photovoltaic device according to claim 6, wherein the average film thickness of the transparent insulating film is 5 nm or more and 50 nm or less.
JP07684998A 1998-03-25 1998-03-25 Photovoltaic device Expired - Lifetime JP3481123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07684998A JP3481123B2 (en) 1998-03-25 1998-03-25 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07684998A JP3481123B2 (en) 1998-03-25 1998-03-25 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH11274528A JPH11274528A (en) 1999-10-08
JP3481123B2 true JP3481123B2 (en) 2003-12-22

Family

ID=13617115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07684998A Expired - Lifetime JP3481123B2 (en) 1998-03-25 1998-03-25 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP3481123B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003269667A1 (en) * 2002-10-25 2004-05-13 Unaxis Balzers Ltd. Method for producing semi-conducting devices and devices obtained with this method
JP2006120737A (en) * 2004-10-19 2006-05-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion element
JP2007258537A (en) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd Photoelectric conversion device and its manufacturing method
JP2007266095A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Photoelectric conversion cell, photoelectric conversion module, photoelectric conversion panel and photoelectric conversion system
JP4619388B2 (en) * 2007-10-15 2011-01-26 三菱電機株式会社 Thin film solar cell element and manufacturing method thereof
JP2009246031A (en) * 2008-03-28 2009-10-22 Mitsubishi Heavy Ind Ltd Photoelectric converter
TWI453932B (en) * 2010-07-06 2014-09-21 Solarbase Group Inc Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
JP2011228733A (en) * 2011-06-29 2011-11-10 Mitsubishi Electric Corp Photosensor and method of manufacturing the same
JP6564219B2 (en) * 2015-03-27 2019-08-21 株式会社カネカ Crystalline silicon solar cell, manufacturing method thereof, and solar cell module

Also Published As

Publication number Publication date
JPH11274528A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
KR100237661B1 (en) Back reflector layer, method for forming it, and photovoltaic element using it and manufacturing method thereof
KR950001956B1 (en) Multi-junctional semiconductor device
JP4811945B2 (en) Thin film photoelectric converter
JP3056200B1 (en) Method of manufacturing thin film photoelectric conversion device
US5078803A (en) Solar cells incorporating transparent electrodes comprising hazy zinc oxide
RU2435251C2 (en) Front electrode with layer of thin metal film and high-work function buffer layer for use in photovoltaic device and production method thereof
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US5114498A (en) Photovoltaic device
US6465727B2 (en) Photovoltaic element and method of manufacturing the same
WO1993010562A1 (en) Protective layer for the back reflector of a photovoltaic device
JPH0656883B2 (en) Semiconductor device
JP3481123B2 (en) Photovoltaic device
JPWO2005109526A1 (en) Thin film photoelectric converter
EP1069623B1 (en) Amorphous silicon-based thin film photovoltaic device
US4665278A (en) Heat-resistant photoelectric converter
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH0752778B2 (en) Photovoltaic device
JP3342257B2 (en) Photovoltaic element
JP4562220B2 (en) Thin film solar cell
JPH10294478A (en) Photoelectric conversion element
JP2846508B2 (en) Photovoltaic element
JP3196155B2 (en) Photovoltaic device
JPH065770B2 (en) Manufacturing method of heat-resistant thin film photoelectric conversion element
JPS6143872B2 (en)
JPH05145095A (en) Photovoltaic element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term