JPS6256519A - Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding - Google Patents

Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding

Info

Publication number
JPS6256519A
JPS6256519A JP19653885A JP19653885A JPS6256519A JP S6256519 A JPS6256519 A JP S6256519A JP 19653885 A JP19653885 A JP 19653885A JP 19653885 A JP19653885 A JP 19653885A JP S6256519 A JPS6256519 A JP S6256519A
Authority
JP
Japan
Prior art keywords
less
steel
ust
defects
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19653885A
Other languages
Japanese (ja)
Inventor
Motomi Kanano
叶野 元巳
Haruo Kaji
梶 晴男
Nobutsugu Takashima
高嶋 修嗣
Kensho Akiyama
秋山 憲昭
Kiyoshi Iwai
清 岩井
Akio Kondo
近藤 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19653885A priority Critical patent/JPS6256519A/en
Publication of JPS6256519A publication Critical patent/JPS6256519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled acceleratedly cooled steel sheet without generating UST defects and having excellent toughness by controlling the conditions in the heat treatment of steel having a specified composition and controlling the total length of the MnS type inclusion. CONSTITUTION:Steel consisting of, by weight, <=0.20% C, <=0.50% Si, <=1.60% Mn, <=0.020% P, <=0.008% S, the balance iron and inevitable impurities is heated at a temp. above the Ac3 point, hot-rolled at 730-820 deg.C finishing temp. and then acceleratedly cooled. Consequantly, the total length of the MnS type inclusion is regulated to <=0.1mm/mm<2> and a steel sheet without generating UST defects at the part affected by the welding with a high heat input of <=80KJ/cm is obtained. Besides, the steel is preferably incorporated with <=0.010% Ca and <=0.010% of <=1 kind among REM of contg., independently of the elements, <=1 kind of element selected from a group of <=0.50% Cu, <=0.50% Ni, <=0.30% Cr and <=0.30% Mo.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、80 KJ/cm以上の大入熱溶接熱影響部
において、UST感度V+s−z、a : 80%でU
ST欠陥の生じない加速冷却鋼板の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a heat-affected zone with a large heat input of 80 KJ/cm or more, with UST sensitivity V + s-z, a: U at 80%.
The present invention relates to a method for producing an accelerated cooling steel sheet without ST defects.

(従来の技術) 船舶、海洋構造物、橋梁をはじめとする種々の鋼構造物
の建造においては、溶接工数を節減するために、サフ゛
マージアーク?容接(SAW)やエレクトロガス溶接(
EC)等の高能率大入熱溶接を施すことができると共に
、耐溶接割れ性にすぐれた高張力鋼板が従来より用いら
れている。かかる鋼板としては、熱間圧延後の鋼板を水
冷して、同一強度レベルの焼ならし鋼や圧延まま綱より
炭素当量を低減した加速冷却鋼板がその代表例である。
(Prior art) In the construction of various steel structures such as ships, offshore structures, and bridges, suffrage arcs are used to reduce welding man-hours. Acceptance welding (SAW) and electrogas welding (
High-strength steel plates, which can be subjected to high-efficiency, high-heat-input welding such as EC) and have excellent weld cracking resistance, have been used conventionally. A typical example of such a steel plate is an accelerated cooling steel plate in which a hot-rolled steel plate is water-cooled to have a lower carbon equivalent than normalized steel or as-rolled steel having the same strength level.

しかし、かかる加速冷却銅板は、SAWやEC等の高能
率大入熱溶接を施した場合、溶接熱影響部にUST欠陥
(UST感度V+s−z、s : 80%)を生じるこ
とがある。一般に、2〜5MHzの超音波を適宜の接触
媒質を介して、表面から鋼板中に入射したとき、割れ、
不完全接着等の欠陥が鋼板内に存在するとき、音波が鋼
板内より反射してくる。このように超音波によって明ら
かとなる欠陥を超音波試験(Ultrasonic T
estjng)欠陥、即ち、UST欠陥と称しているが
、かかるUST欠陥が生じるときは、溶接手直しや再製
作が必要となるため、従来より、溶接熱影響部にUST
欠陥の生じない加速冷却鋼板が強く要望されている。
However, when such an accelerated cooling copper plate is subjected to high efficiency large heat input welding such as SAW or EC, a UST defect (UST sensitivity V+s-z, s: 80%) may occur in the weld heat affected zone. Generally, when ultrasonic waves of 2 to 5 MHz are applied from the surface into a steel plate through an appropriate couplant, cracks,
When defects such as incomplete adhesion exist within the steel plate, sound waves are reflected from within the steel plate. In this way, defects revealed by ultrasonic waves are tested using ultrasonic
estjng) defects, i.e., UST defects, but when such UST defects occur, welding rework or remanufacturing is required.
There is a strong demand for accelerated cooling steel sheets that do not produce defects.

(発明の目的) 本発明者らは、80 KJ/cm以上の大入熱溶接熱影
響部において、UST感度V’s−z、s : 80%
でUST欠陥の生じない加速冷却鋼板を得るために、U
ST欠陥の発生原因を詳細に研究した結果、鋼板におけ
る偏析帯中のMnS系介在物がUST欠陥の主たる発生
原因であると共に、UST欠陥とMnS系介在物総長さ
との間に良好な相関関係があることを見出し、かかる知
見に基づいて、偏析元素であるC、Mn及びPを極力低
減し、低S化を図り、更に、Ca及び/又はREMによ
る介在物の形態制御を行なうと共に、かかる所定の化学
成分組成を有せしめた鋼を熱間圧延する際の条件を制御
して、MnS系介在物総長さを規制することによって、
UST欠陥の発生しない高靭性加速冷却鋼板を得ること
ができることを見出して、本発明に至ったものである。
(Object of the Invention) The present inventors have determined that the UST sensitivity V's-z,s: 80% in the heat-affected zone of large heat input welding of 80 KJ/cm or more
In order to obtain an accelerated cooling steel sheet without UST defects, U
As a result of detailed research into the causes of ST defects, it was found that MnS-based inclusions in the segregation zone of steel sheets are the main cause of UST defects, and that there is a good correlation between UST defects and the total length of MnS-based inclusions. Based on this knowledge, we reduced the segregated elements C, Mn, and P as much as possible to reduce S, and further controlled the morphology of inclusions with Ca and/or REM. By controlling the conditions when hot rolling steel with a chemical composition of
The present invention was achieved by discovering that it is possible to obtain a high-toughness accelerated cooling steel sheet that does not generate UST defects.

(発明の構成) 本発明による80KJ/CII+以上の大入熱溶接熱影
響部においてUST欠陥の生じない加速冷却鋼板の製造
方法は、重量%で C0.20%以下、 Si0.50%以下、 Mn  1.60%以下、 P   0.020%以下、 S   0.008%以下、 残部鉄及び不可避的不純物よりなる鋼をAc3点以上に
加熱し、仕上温度730〜820℃に熱間圧延した後、
加速冷却して、MnS系介在物の総長さを0.1龍/m
m”以下とすることを特徴とする。
(Structure of the Invention) The method for producing an accelerated cooling steel sheet in which UST defects do not occur in the heat affected zone of large heat input welding of 80 KJ/CII+ or more according to the present invention is as follows: C0.20% or less, Si 0.50% or less, Mn in weight% After heating a steel consisting of 1.60% or less, P 0.020% or less, S 0.008% or less, and the balance iron and unavoidable impurities to a temperature of Ac 3 or higher and hot rolling to a finishing temperature of 730 to 820°C,
Accelerated cooling to reduce the total length of MnS inclusions to 0.1 ryu/m
m'' or less.

先ず、本発明者らは、大入熱溶接熱影響部に発生するU
ST欠陥(UST感度V+s−z、a : 80%での
UST欠陥、欠陥の定義EH>20%、以下、同じ。)
に及ぼす鋼板の製造条件について調べた。
First, the present inventors investigated the U generated in the heat affected zone of large heat input welding.
ST defect (UST sensitivity V+s-z, a: UST defect at 80%, defect definition EH > 20%, the same applies hereinafter)
The effects of manufacturing conditions on steel sheets were investigated.

尚、UST感度VIS−2,11: 80%でのUST
欠陥とは、JIS Z 2345において規定される標
準試験片(STB−G V + 、−2,11)内の標
準疵からのエコー高さを80%となるように設定したU
ST欠陥をいい、また、欠陥の定義EH>20%とは、
規定のUST感度において20%を越えるエコー高さを
生じさせる鋼板内部の欠陥をいう。
In addition, UST sensitivity VIS-2, 11: UST at 80%
A defect is defined as U, which is set so that the echo height from the standard flaw in the standard test piece (STB-G V + , -2, 11) specified in JIS Z 2345 is 80%.
It refers to ST defects, and the defect definition EH > 20% is:
A defect inside a steel plate that causes an echo height exceeding 20% at a specified UST sensitivity.

結果を第1図に示すように、加速冷却鋼板は、圧延まま
鋼板に比べて、UST欠陥が発生しやすく、また、仕上
温度の低下はUST欠陥の増大をもたらすことを見出し
た。尚、各図において付記した記号は、第1表又は第3
表に示す鋼記号の鋼化学成分組成に対応する。また、第
2図にUST欠陥の発生に及ぼす大熱量の影響を示すよ
うに、大熱量が増大するに伴ってUST欠陥発生個数が
増大することを見出した。
As the results are shown in FIG. 1, it was found that UST defects are more likely to occur in accelerated cooled steel sheets than in as-rolled steel sheets, and that a decrease in finishing temperature leads to an increase in UST defects. In addition, the symbols added in each figure are shown in Table 1 or Table 3.
Corresponds to the steel chemical composition of the steel symbol shown in the table. Furthermore, as shown in FIG. 2 showing the influence of a large amount of heat on the occurrence of UST defects, it has been found that as the amount of large heat increases, the number of UST defects increases.

次に、jryi、厚方向のUST欠陥の発生位置は、第
3図に示すように板厚(3(In)中央部が最も多いが
、板厚の1/4から3/4厚さにわたって分布している
。本発明者らは、このUST欠陥を詳細に観察した結果
、板厚中央部においては、偏析帯中のMn、S系介在物
、また、他の位置においてもMnS系介在物と地鉄の間
に各々ボイドを生じており、このような観察結果から、
これらがUST欠陥の原因であると推察し、特に、板厚
中央部は、MnS系介在物が多(、更に、硬化している
偏析帯が存在しやすいため、UST欠陥が多いとみられ
る。
Next, as shown in Figure 3, the location of UST defects in the thickness direction is most common at the center of the plate thickness (3 (In)), but is distributed over 1/4 to 3/4 of the plate thickness. As a result of detailed observation of this UST defect, the present inventors found that Mn and S-based inclusions are present in the segregation zone at the center of the sheet thickness, and MnS-based inclusions are also present at other locations. There are voids between the sub-rails, and from these observation results,
It is assumed that these are the causes of UST defects, and in particular, there are many MnS-based inclusions (furthermore, hardened segregation bands are likely to exist) in the central part of the sheet thickness, so it seems that there are many UST defects.

従って、UST欠陥の発生しない加速冷却鋼板を得るた
めには、理想的にはMnS系介在物と偏析を皆無にすれ
ばよいが、これは技術の現状から不可能である。そこで
、本発明者らは、偏析元素であるC、Mn及びPを極力
低減すると共に、有害なMnS系介在物を低減させるた
めに、第4図に示すように、低S化を図り、更に、Ca
による介在物の形態制御を行なうことが、UST欠陥の
発生防止に極めて有効であることを見出した。
Therefore, in order to obtain an accelerated cooling steel sheet in which no UST defects occur, it is ideal to completely eliminate MnS-based inclusions and segregation, but this is impossible due to the current state of technology. Therefore, in order to reduce the segregation elements C, Mn, and P as much as possible, as well as to reduce harmful MnS-based inclusions, the present inventors aimed to reduce S as shown in Figure 4, and further , Ca
It has been found that controlling the morphology of inclusions by using the following method is extremely effective in preventing the occurrence of UST defects.

更に、UST欠陥に対するM n S系介在物の限界量
を調べた6結果を第5図に示すように、本発明者らは、
MnS系介在物の総長さとUST欠陥の発生個数とは良
好な相関関係を有して、特に、MnS系介在物の総長さ
を0.1mm/mm”以下に規制することにより、仕上
温度が730〜750°Cのように低い場合においても
、U S T欠陥が生じないことを見出した。
Furthermore, as shown in FIG. 5, the present inventors investigated the critical amount of M n S-based inclusions for UST defects.
There is a good correlation between the total length of MnS-based inclusions and the number of UST defects, and in particular, by regulating the total length of MnS-based inclusions to 0.1 mm/mm'' or less, the finishing temperature can be reduced to 730°C. We have found that even at temperatures as low as ˜750° C., no U ST defects occur.

次に、本発明の方法において、鋼の化学成分を限定する
理由を説明する。
Next, the reason for limiting the chemical composition of steel in the method of the present invention will be explained.

Cは、強度を確保するために有用な元素であるが、他方
、Cは偏析元素であるので、本発明においては、その添
加量を極力低減することが好ましい。特に、0,20%
を越えて過多に添加するときは、母材靭性のみならず、
耐溶接割れ性や大入熱溶接継手靭性を劣化させるので、
Cの添加量の上限を0.20%とする。
C is an element useful for ensuring strength, but on the other hand, since C is a segregated element, in the present invention, it is preferable to reduce its addition amount as much as possible. In particular, 0.20%
When adding in excess of
Because it deteriorates weld cracking resistance and high heat input weld joint toughness,
The upper limit of the amount of C added is 0.20%.

Siは、脱酸及び強度確保のために有効な元素であるが
、0.50%を越えて多量に添加するときはフェライト
が硬化し、母材の靭性を劣化させるので、添加量の上限
を0.50%とする。
Si is an effective element for deoxidizing and ensuring strength, but when added in large amounts exceeding 0.50%, the ferrite hardens and the toughness of the base metal deteriorates, so the upper limit of the amount added must be set. It shall be 0.50%.

Mnは、Cと同様に、強度確保のために有効であるが、
偏析しやすく、特に、添加量が1.60%を越えるとき
は、粗大ベーナイトが生成し、母材靭性と共に大人溶接
継手靭性も劣化する。従って、上限は1,60%とする
Like C, Mn is effective for ensuring strength, but
It tends to segregate, and in particular, when the amount added exceeds 1.60%, coarse bainite is generated, which deteriorates the toughness of the adult weld joint as well as the base metal toughness. Therefore, the upper limit is set at 1.60%.

Pは、偏析部に濃化し、地峡を脆化させる元素であり、
特に、含有量が0.020%を越えるときは上記有害な
効果が顕著となるので、その上限を0、020%とする
P is an element that concentrates in segregated areas and embrittles the isthmus.
In particular, when the content exceeds 0.020%, the above harmful effects become significant, so the upper limit is set at 0.020%.

Sは、前述したように、M n Sの生成原因となり、
UST欠陥を生じやすいため、本発明においては、S含
有量はo、 o o s%以下とする。
As mentioned above, S causes the generation of M n S,
Since UST defects are likely to occur, in the present invention, the S content is set to 0,00 s% or less.

本発明において用いる鋼は、上記した元素に加えて、C
a及び/又はREMを含有することができる。
In addition to the above-mentioned elements, the steel used in the present invention contains C
a and/or REM.

Ca及びRトMは、熱間圧延によって伸びやすいMnS
を球状化する効果を有する元素である。
Ca and RtoM are MnS, which is easily stretched by hot rolling.
It is an element that has the effect of spheroidizing.

この効果は、0.010%以下の少量の添加にて十分に
達せられ、他方、添加量が0.010%を越えるときは
内部品質を劣化させるので、上限を0.010%とする
This effect can be sufficiently achieved by adding a small amount of 0.010% or less. On the other hand, if the amount added exceeds 0.010%, internal quality deteriorates, so the upper limit is set to 0.010%.

本発明において用いる鋼は、上記したCa及びREMの
1種又は−2種以上と共に、又はこれらとは独立して、
Cu −、N i、Cr及びMOよりなる群から選ばれ
る少なくとも1種の元素、及び/又はNb、V、Ti及
びBよりなる群から選ばれる少なくとも1種の元素を含
有することができる。
The steel used in the present invention includes one or more of the above-mentioned Ca and REM, or independently from these,
It can contain at least one element selected from the group consisting of Cu -, Ni, Cr, and MO, and/or at least one element selected from the group consisting of Nb, V, Ti, and B.

Cu、Ni、Cr及びMoは、鋼強度の調整元素として
、また、CやMnと置換することによって、溶接性や大
入熱溶接継手の靭性を改善する元素として有効である。
Cu, Ni, Cr, and Mo are effective as elements for adjusting steel strength, and as elements for improving weldability and toughness of high heat input welded joints by replacing them with C and Mn.

しかし、多量に添加するときは、粗大ベーナイト量が増
大する結果、鋼の靭性が劣化するので、添加量の上限は
、Cu、Ni及びCrについてはそれぞれ0.50%、
MOについては0.30%とする。
However, when adding large amounts, the amount of coarse bainite increases and the toughness of the steel deteriorates.
Regarding MO, it is set at 0.30%.

Nb、■、Ti及びBは、炭窒化物を生成して、その析
出硬化作用によって、鋼の強度向上や結晶粒微細化作用
による靭性改善に有用であるが、過多に添加するときは
、粗大ベーナイトが生成して靭性を劣化させる。従って
、添加量の上限は、Nb、V及びTiについてはそれぞ
れ0.10%とし、Bについてはo、oio%以下とす
る。
Nb, ■, Ti, and B form carbonitrides and are useful for improving the strength of steel and toughness by refining grains due to their precipitation hardening effect, but when added in excess, Bainite forms and deteriorates toughness. Therefore, the upper limit of the amount added is 0.10% for each of Nb, V, and Ti, and 0.10% or less for B.

本発明の方法は、上記のような化学成分を有する鋼をA
c3点以上の温度に加熱し、熱間圧延し、この際、仕上
圧延を730〜820℃の温度で行なった後、加速冷却
するものである。上記仕上温度は、得られる鋼板の靭性
を支配する重要な因子であって、微細なオーステナイト
粒を得るためには、仕上温度は低い方が望ましいが、7
30°Cよりも低いときは、MnSが伸長し、UST欠
陥を生じやすく、他方、820℃よりも高いときは、靭
性を著しく劣化させる。従って、本発明の方法において
は、仕上温度は730〜820 ℃の範囲の温度に限定
される。
In the method of the present invention, steel having the above-mentioned chemical composition is
The material is heated to a temperature of point c3 or higher and hot rolled. At this time, finish rolling is performed at a temperature of 730 to 820° C., and then accelerated cooling is performed. The above finishing temperature is an important factor governing the toughness of the obtained steel sheet, and in order to obtain fine austenite grains, a lower finishing temperature is desirable;
When the temperature is lower than 30°C, MnS stretches and tends to cause UST defects, while when the temperature is higher than 820°C, the toughness is significantly deteriorated. Therefore, in the method of the present invention, the finishing temperature is limited to a temperature in the range of 730-820°C.

このようにして、所定の温度で仕上圧延した後、加速冷
却することによって、M n S系介在物の総長さを0
.1+u/mm2とした加速冷却鋼板を得ることができ
る。
In this way, by finishing rolling at a predetermined temperature and then performing accelerated cooling, the total length of M n S inclusions can be reduced to 0.
.. It is possible to obtain an accelerated cooling steel plate having a cooling rate of 1+u/mm2.

(発明の効果) 以上のように、本発明の方法によれば、偏析元素である
C 、M n及びPの極低減化と低S化、並びにMnS
系介在物総長さの規制、更に好ましくはCaによる介在
物の形態制御によって、80KJ/cm以上の大入熱溶
接熱影響部においても、U ST感度V15−2.8=
80%でUST欠陥が生じず、且つ、靭性にすぐれた加
速冷却鋼板を得ることができる。
(Effects of the Invention) As described above, according to the method of the present invention, the segregation elements C, Mn, and P can be extremely reduced and S can be reduced, and MnS
By regulating the total length of inclusions in the system, and more preferably by controlling the morphology of inclusions using Ca, the UST sensitivity V15-2.8 can be maintained even in the heat affected zone of high heat input welding of 80 KJ/cm or more.
At 80%, an accelerated cooling steel plate with no UST defects and excellent toughness can be obtained.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によって何ら限定されるものではない。
(Examples) The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例 第1表に示す化学成分組成及びCaqを有する鋼を第2
表に示す条件に従って加熱し、仕上圧延した後、冷却し
て、所定の板厚を有する加速冷却鋼板を製造した。これ
ら鋼板の引張特性及び衝撃特性を第2表に示す。また、
これら鋼板の継手部のUST欠陥個数(個/m)示す。
Example Steel having the chemical composition and Caq shown in Table 1 was
After heating and finish rolling according to the conditions shown in the table, the material was cooled to produce an accelerated cooling steel sheet having a predetermined thickness. The tensile properties and impact properties of these steel plates are shown in Table 2. Also,
The number of UST defects (pieces/m) at the joints of these steel plates is shown.

本発明の方法によって得られる加速冷却鋼板は、いずれ
もMnS総長さが0.1 +u/mm2以下であって、
UST欠陥が生じず、且つ、靭性もすぐれている。代表
例を第5図に示す。
All accelerated cooling steel sheets obtained by the method of the present invention have a total MnS length of 0.1 + u/mm2 or less,
No UST defects occur and the toughness is excellent. A typical example is shown in FIG.

これに対して比“較鋼JはC量、比較鋼にはMn量、比
較鋼りはP量、比較鋼MはS量がそれぞれ本発明で規定
する範囲を越えて添加されており、いずれもMnS総長
さが0.1 鶴/ mm zを越える。
On the other hand, the amount of C in comparative steel J, the amount of Mn in comparative steel, the amount of P in comparative steel, and the amount of S in comparative steel M exceed the range specified in the present invention, and all Also, the total length of MnS exceeds 0.1 mm/mmz.

代表例を第5図に示す。また、比較鋼Nは、本発明で規
定する範囲化学成分を有するが、仕上温度が低すぎるた
め、MnSが伸長し、M n 3 総長さが0.16 
w / n+n+”であるので、UST欠陥が発生する
A typical example is shown in FIG. Comparative steel N has a chemical composition within the range specified by the present invention, but because the finishing temperature is too low, MnS is elongated and the total length of M n 3 is 0.16.
w/n+n+”, a UST defect occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、仕上圧延温度と大熱量200 KJ/cmの
大入熱溶接熱影響部におけるUST欠陥の個数との関係
を示すグラフ、第2図は、大熱量とUST欠陥の個数と
の関係を示すグラフ、第3図は、板厚方向位置とUST
欠陥の個数との関係を示すグラフ、第4図は、鋼中のS
量及びCa量がUsT欠陥発生個数に及ぼす影響を示す
グラフ、第5図は、UST欠陥に対するM n S系介
在物の総長さとUST欠陥個数との関係を示すグラフで
ある。 第1図 第2図 0  100   :200  30θ入軒)(k≠へ
) 第3図 第4図 第5図 0  0.1  0.2   θ3  0.1   ψ
5編S総もさく1輪2)
Figure 1 is a graph showing the relationship between finish rolling temperature and the number of UST defects in the heat-affected zone of a large heat input weld with a large heat amount of 200 KJ/cm, and Figure 2 is a graph showing the relationship between the large heat amount and the number of UST defects. The graph shown in Figure 3 shows the position in the plate thickness direction and the UST
Figure 4 is a graph showing the relationship between the number of defects and the number of defects.
FIG. 5 is a graph showing the influence of the amount of Ca and the amount of Ca on the number of UST defects. FIG. 5 is a graph showing the relationship between the total length of M n S-based inclusions and the number of UST defects. Fig. 1 Fig. 2 0 100 :200 30θ entering) (to k≠) Fig. 3 Fig. 4 Fig. 5 0 0.1 0.2 θ3 0.1 ψ
Part 5 S total mosaku 1 wheel 2)

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で C  0.20%以下、 Si 0.50%以下、 Mn 1.60%以下、 P  0.020%以下、 S  0.008%以下、 残部鉄及び不可避的不純物よりなる鋼をAc_3点以上
に加熱し、仕上温度730〜820℃に熱間圧延した後
、加速冷却して、MnS系介在物の総長さを0.1mm
/mm^2以下とすることを特徴とする80KJ/cm
以上の大入熱溶接熱影響部においてUST欠陥の生じな
い加速冷却鋼板の製造方法。
(1) Steel consisting of C 0.20% or less, Si 0.50% or less, Mn 1.60% or less, P 0.020% or less, S 0.008% or less, the balance being iron and unavoidable impurities. was heated to Ac_3 point or higher, hot-rolled to a finishing temperature of 730 to 820°C, and then acceleratedly cooled to reduce the total length of MnS-based inclusions to 0.1 mm.
/mm^2 or less 80KJ/cm
A method for producing an accelerated cooling steel sheet in which UST defects do not occur in the heat-affected zone of high heat input welding as described above.
(2)重量%で (a)C  0.20%以下、    Si 0.50%以下、    Mn 1.60%以下、    P  0.020%以下、    S  0.008%以下と、 (b)Ca0.010%以下及び REM0.010%以下 よりなる群から選ばれる少なくとも1種の 元素とを含有し、 残部鉄及び不可避的不純物よりなる鋼をAc_3点以上
に加熱し、仕上温度730〜820℃に熱間圧延した後
、加速冷却して、MnS系介在物の総長さを0.1mm
/mm^2以下とすることを特徴とする80KJ/cm
以上の大入熱溶接熱影響部においてUST欠陥の生じな
い加速冷却綱板の製造方法。
(2) In terms of weight %, (a) C 0.20% or less, Si 0.50% or less, Mn 1.60% or less, P 0.020% or less, S 0.008% or less, and (b) Ca0. A steel containing at least one element selected from the group consisting of 0.010% or less and REM 0.010% or less, with the balance consisting of iron and unavoidable impurities is heated to a temperature of Ac_3 or higher to a finishing temperature of 730 to 820°C. After rolling, accelerated cooling was performed to reduce the total length of MnS inclusions to 0.1 mm.
/mm^2 or less 80KJ/cm
A method for manufacturing an accelerated cooling steel plate in which UST defects do not occur in the heat-affected zone of high heat input welding as described above.
(3)重量%で (a)C  0.20%以下、    Si 0.50%以下、    Mn 1.60%以下、    P  0.020%以下、    S  0.008%以下と、 (b)Ca 0.010%以下及び    REM 0.010以下% よりなる群から選ばれる少なくとも1種の 元素と、 (c)Cu 0.50%以下、    Ni 0.50%以下、    Cr 0.30%以下及び    Mo 0.30%以下 よりなる群から選ばれる少なくとも1種の 元素とを含有し、 残部鉄及び不可避的不純物よりなる鋼をAc_3点以上
に加熱し、仕上温度730〜820℃に熱間圧延した後
、加速冷却して、MnS系介在物の総長さを0.1mm
/mm^2以下とすることを特徴とする80KJ/cm
以上の大入熱溶接熱影響部においてUST欠陥の生じな
い加速冷却鋼板の製造方法。
(3) In weight%, (a) C 0.20% or less, Si 0.50% or less, Mn 1.60% or less, P 0.020% or less, S 0.008% or less, and (b) Ca 0 at least one element selected from the group consisting of 0.010% or less and REM 0.010% or less, and (c) Cu 0.50% or less, Ni 0.50% or less, Cr 0.30% or less, and Mo 0 After heating a steel containing at least one element selected from the group consisting of .30% or less and the balance consisting of iron and unavoidable impurities to a temperature of Ac_3 or higher and hot rolling to a finishing temperature of 730 to 820°C, Accelerated cooling to reduce the total length of MnS inclusions to 0.1 mm
/mm^2 or less 80KJ/cm
A method for producing an accelerated cooling steel sheet in which UST defects do not occur in the heat-affected zone of high heat input welding as described above.
(4)重量%で (a)C  0.20%以下、    Si 0.50%以下、    Mn 1.60%以下、    P  0.020%以下、    S  0.008%以下と、 (b)Ca 0.010%以下及び    REM0.010以下% よりなる群から選ばれる少なくとも1種の 元素と、 (c)Nb 0.10%以下、    V  0.10%以下、    Ti 0.10%以下及び    B  0.010%以下 よりなる群から選ばれる少なくとも1種の 元素とを含有し、 残部鉄及び不可避的不純物よりなる鋼をAc_3点以上
に加熱し、仕上温度730〜820℃に熱間圧延した後
、加速冷却して、MnS系介在物の総長さを0.1mm
/mm^2以下とすることを特徴とする80KJ/cm
以上の大入熱溶接熱影響部においてUST欠陥の生じな
い加速冷却鋼板の製造方法。
(4) In weight%, (a) C 0.20% or less, Si 0.50% or less, Mn 1.60% or less, P 0.020% or less, S 0.008% or less, and (b) Ca 0 at least one element selected from the group consisting of 0.010% or less and REM 0.010% or less, and (c) Nb 0.10% or less, V 0.10% or less, Ti 0.10% or less, and B 0. A steel containing at least one element selected from the group consisting of: Cool and reduce the total length of MnS inclusions to 0.1 mm.
/mm^2 or less 80KJ/cm
A method for producing an accelerated cooling steel sheet in which UST defects do not occur in the heat-affected zone of high heat input welding as described above.
JP19653885A 1985-09-04 1985-09-04 Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding Pending JPS6256519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19653885A JPS6256519A (en) 1985-09-04 1985-09-04 Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19653885A JPS6256519A (en) 1985-09-04 1985-09-04 Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding

Publications (1)

Publication Number Publication Date
JPS6256519A true JPS6256519A (en) 1987-03-12

Family

ID=16359405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19653885A Pending JPS6256519A (en) 1985-09-04 1985-09-04 Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding

Country Status (1)

Country Link
JP (1) JPS6256519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212720A (en) * 1988-02-22 1989-08-25 Nippon Steel Corp Manufacture of steel having excellent weldability
JPH04272133A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Production of steel plate hardly causing ut defect in high heat input welded square joint part of steel-frame box pillar
CN114137009A (en) * 2021-10-15 2022-03-04 山东钢铁股份有限公司 Method for judging whether pore defects appear in welding seams of spiral submerged arc welding steel pipes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212720A (en) * 1988-02-22 1989-08-25 Nippon Steel Corp Manufacture of steel having excellent weldability
JPH04272133A (en) * 1991-02-28 1992-09-28 Kobe Steel Ltd Production of steel plate hardly causing ut defect in high heat input welded square joint part of steel-frame box pillar
CN114137009A (en) * 2021-10-15 2022-03-04 山东钢铁股份有限公司 Method for judging whether pore defects appear in welding seams of spiral submerged arc welding steel pipes
CN114137009B (en) * 2021-10-15 2024-03-29 山东钢铁股份有限公司 Method for judging whether air hole defects appear in weld joint of spiral submerged-arc welded steel pipe

Similar Documents

Publication Publication Date Title
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP2007107072A (en) Steel material excellent in fatigue cracking propagation resistance
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP2007126725A (en) High tensile strength steel plate having excellent toughness in high heat input weld heat-affected zone
JPH10298706A (en) High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production
JP3579307B2 (en) 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
JPS6256519A (en) Production of acceleratedly cooled steel sheet without generating ust defect at part affected by high heat input welding
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP2004323917A (en) High strength high toughness steel sheet
JPS6256554A (en) Accelerated cooling steel plate causing no ust defect in heat affected zone of high heat input welding
JP2000192140A (en) Production of low yield ratio high tensile strength steel excellent in weld cracking sensitivity
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate
JP4673788B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP2006342381A (en) Method for producing high-tensile steel sheet having excellent ssc resistance
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH1068045A (en) 600n/mm2 class high tensile strength steel excellent in weld cracking sensitivity and large heat input welded joint toughness and its production
JP2005307313A (en) Method for producing steel plate excellent in earthquake-proof and weldability
JPH05112823A (en) Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint
JP4659593B2 (en) Method for producing high-tensile steel sheet with low acoustic anisotropy and excellent base material toughness
JP2006206958A (en) Method for producing non-heat treated steel with high tensile strength