JP4673788B2 - Steel excellent in toughness of weld heat-affected zone and method for producing the same - Google Patents
Steel excellent in toughness of weld heat-affected zone and method for producing the same Download PDFInfo
- Publication number
- JP4673788B2 JP4673788B2 JP2006132865A JP2006132865A JP4673788B2 JP 4673788 B2 JP4673788 B2 JP 4673788B2 JP 2006132865 A JP2006132865 A JP 2006132865A JP 2006132865 A JP2006132865 A JP 2006132865A JP 4673788 B2 JP4673788 B2 JP 4673788B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- toughness
- affected zone
- haz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は小入熱溶接から大入熱溶接に至るまでの溶接熱影響部(HAZ部)の靭性(HAZ靭性)が優れた鋼およびその製造法に関するものである。特に、この鋼は、建築構造物、橋梁、海洋構造物、圧力容器、造船、ラインパイプ等の溶接構造物に用いることができる。 The present invention relates to a steel excellent in toughness (HAZ toughness) of a weld heat affected zone (HAZ portion) from small heat input welding to large heat input welding, and a method for producing the same. In particular, this steel can be used for welded structures such as building structures, bridges, offshore structures, pressure vessels, shipbuilding, line pipes and the like.
溶接構造物では、同一部材でも大入熱溶接と小入熱溶接が同時に適用される等、広い範囲の溶接入力がアーク溶接等により適用されて溶接構造物とされている場合が多い。溶接構造物には高張力鋼板が用いられるが、高張力鋼板では母材強度を確保するために、合金成分を多量に添加しているため、小入熱溶接条件で冷却速度の速いHAZが硬化して溶接割れ(低温割れ)が生じやすいと言う問題がある。低温割れを改善するために、合金成分の添加を制限した低合金鋼が開発されている。ところが、低合金鋼では特に大入熱溶接でのHAZ靭性に問題がある。 In a welded structure, a large range of welding inputs are often applied by arc welding or the like, for example, large heat input welding and small heat input welding are simultaneously applied to the same member. High-strength steel plates are used for welded structures, but high-strength steel plates contain a large amount of alloying components to ensure the strength of the base metal, so that HAZ with a fast cooling rate is cured under small heat input welding conditions. Therefore, there is a problem that weld cracks (cold cracks) are likely to occur. In order to improve cold cracking, low alloy steels with limited addition of alloy components have been developed. However, the low alloy steel has a problem in the HAZ toughness particularly in the high heat input welding.
低合金鋼のHAZ(Heat Affected Zone)靭性は、(1)結晶粒のサイズ、(2)高炭素マルテンサイト(M”)、上部べイナイト(Bu)およびフェライトサイドプレ―ト(FSP)などの硬化相の分散状態、(3)析出硬化状態、(4)粒界脆化の有無、(5)元素のミクロ偏析など種々の要因に支配される。 The HAZ (Heat Affected Zone) toughness of low alloy steels includes (1) grain size, (2) high carbon martensite (M "), upper bainite (Bu) and ferrite side plate (FSP). It is governed by various factors such as the dispersion state of the hardened phase, (3) precipitation hardening state, (4) presence / absence of grain boundary embrittlement, and (5) elemental microsegregation.
これらの要因は靭性に大きな影響を与えることが知られており、HAZ靭性を改善するために多くの技術が実用化されている。 These factors are known to have a great influence on toughness, and many techniques have been put to practical use in order to improve HAZ toughness.
例えば、TiNによるピンニングを利用してHAZにおけるオーステナイト粒の成長を抑制することによってHAZ靭性を改善する技術がある。この技術では大入熱を受けたHAZでは、超微細なTiNは固溶してしまいその後の溶接熱でTiCとして生成するため、オーステナイト粒の成長を抑制できず、HAZ靭性の劣化が生じる。また、ある程度大きなTiNはさらに粗大化してしまうため、TiNによる靭性向上効果を十分に発揮させるのは困難であるという問題があり、TiN中にNbを積極的に含有させて、TiN粒子を安定化させ、大入熱から小入熱までの靭性を優れたものとさせる発明が提案されている(例えば、特許文献1参照)。 For example, there is a technique for improving the HAZ toughness by suppressing the growth of austenite grains in the HAZ using the pinning by TiN. In this technique, in HAZ which has received a large heat input, ultrafine TiN is dissolved and formed as TiC by the subsequent welding heat, so austenite grain growth cannot be suppressed and HAZ toughness is deteriorated. In addition, since TiN that is somewhat large is further coarsened, there is a problem that it is difficult to sufficiently exert the toughness improvement effect by TiN, and TiN particles are stabilized by actively containing Nb in TiN. And an invention that makes the toughness from large heat input to small heat input excellent (see, for example, Patent Document 1).
また、特に優れている技術として、Ti酸化物でミクロ組織を微細化し、これに加えTi、O、Nのバランスが−0.020%≦Ti−20O−3.4N≧−0.010%を満足するように適正化し、TiCの析出を抑制して析出硬化を低減し、HAZ靭性を向上させた発明が知られている(例えば、特許文献2参照)。 In addition, as a particularly excellent technique, the microstructure is refined with Ti oxide, and in addition to this, the balance of Ti, O, and N is −0.020% ≦ Ti-20O-3.4N ≧ −0.010%. There has been known an invention that is optimized so as to be satisfied, suppresses precipitation of TiC, reduces precipitation hardening, and improves HAZ toughness (see, for example, Patent Document 2).
溶接熱影響部の靭性は上述したミクロ組織の影響と高炭素マルテンサイト(M”)を含む硬化層との影響が大きく、これまでの技術ではNi等により母材の靭化により解決が図られていた。しかしながら、Ni等の高価な合金元素の添加は製造コストの増加を招き、溶接熱影響部の靭性の優れた鋼を製造するための障害となっていた。 The toughness of the heat affected zone is greatly affected by the microstructure described above and the hardened layer containing high carbon martensite (M ″), and the conventional technology can be solved by toughening the base metal with Ni or the like. However, the addition of expensive alloy elements such as Ni has caused an increase in production cost, which has been an obstacle to producing steel having excellent toughness in the weld heat affected zone.
本発明は小〜大入熱の多層溶接において溶接熱影響部の靭性が優れた高強度の安価な鋼およびその製造方法を提供することを課題とするものである。 An object of the present invention is to provide a high-strength, inexpensive steel excellent in toughness of a weld heat-affected zone in multi-layer welding with a small to large heat input, and a method for producing the same.
本発明者は小入熱から大入熱溶接の溶接熱影響部(HAZ部)の靭性は、ミクロ組織の制御が重要であるとの知見の基に、溶接熱影響部のミクロ組織の制御に有効な成分元素としてCaに着目し、鋼中のCa量が溶接熱影響部に及ぼす影響について鋭意研究を行なった。その結果、鋼中にCaを一定量以上に添加するとCaを主体とする微細な酸化物が核となり溶接熱影響部のミクロ組織を微細化し、HAZ部の靭性向上が達成できることを見出し、本発明を完成した。 Based on the knowledge that the control of the microstructure is important for the toughness of the weld heat-affected zone (HAZ) of small heat input to large heat input welding, the present inventor has been able to control the microstructure of the weld heat-affected zone. Focusing on Ca as an effective component element, intensive studies were conducted on the influence of the amount of Ca in steel on the weld heat affected zone. As a result, it has been found that when Ca is added to steel in a certain amount or more, a fine oxide mainly composed of Ca becomes a nucleus and the microstructure of the weld heat affected zone is refined, and the toughness of the HAZ portion can be improved. Was completed.
本発明の要旨は、以下の通りである。 The gist of the present invention is as follows.
(1)質量%で、
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%
を含有し、残部が鉄および不可避的不純物からなることを特徴とする溶接熱影響部の靭性が優れた鋼。
(1) In mass%,
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%
Steel with excellent toughness in the heat affected zone of welding, characterized in that the balance is made of iron and inevitable impurities.
(2)質量%で、
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、さらに、
V:0.040%以下、
を含有し、
残部が鉄および不可避的不純物からなることを特徴とする溶接熱影響部の靭性が優れた鋼。
(2) In mass%,
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
It contains, in addition,
V : 0.040% or less,
Contain,
A steel with excellent toughness in the heat affected zone of welding, characterized in that the balance is made of iron and inevitable impurities.
(3)質量%で、
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、
残部が鉄および不可避的不純物からなる実質的にA1を含有しない鋼を連続鋳造法によってスラブとし、その後900〜1150℃の温度こ再加熱後、加工熱処理することを特徴とする溶接熱影響部の靭性が優れた鋼の製造法。
(3) In mass%,
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
Containing
The welding heat-affected zone is characterized in that a steel that is essentially free of A1 and the balance of which is iron and inevitable impurities is made into a slab by a continuous casting method, and then subjected to thermomechanical treatment after reheating at 900 to 1150 ° C. A method of manufacturing steel with excellent toughness.
(4)質量%で、
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、さらに、
V:0.040%以下、
を含有し、残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後900〜1150℃の温度に再加熱後、加工熱処理することを特徴とする溶接熱影響部の靭性が優れた鋼の製造法。
(4) In mass%,
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
It contains, in addition,
V : 0.040% or less,
Containing the balance and a slab of steel continuous casting process of iron and inevitable impurities, then after reheating to a temperature of 900 to 1150 ° C., the toughness of the weld heat affected zone characterized by mechanical treatment excellent Steel manufacturing method.
本発明により製造した鋼(鋼材)は、小〜大入熱の溶接熱影響部の靭性が極めて良好で、少〜大入熱の溶接時に最も靭性が劣化する溶接熱影響部のシャルピー衝撃値が極めて良好で優れたHAZ靭性を示す。これにより、タンク、耐震性建築物、橋梁等の厳しい環境で使用される高強度の鋼の提供を可能とするという顕著な効果を奏するものである。 The steel (steel) manufactured according to the present invention has extremely good toughness in the weld heat-affected zone with small to large heat input, and the Charpy impact value of the weld heat-affected zone with the most deteriorated toughness during welding with small to large heat input. Extremely good and excellent HAZ toughness. As a result, it is possible to provide a high-strength steel that can be used in harsh environments such as tanks, earthquake-resistant buildings, and bridges.
以下本発明を詳細に説明する。 The present invention will be described in detail below.
本発明者らの研究によれば、小〜大入熱(板厚32mmで5.0〜20.0kj/mm)の溶接熱影響部(HAZ)の靭性はミクロ組織の制御と脆化元素の低減が重要であることを明らかにしている。本発明者らは、溶接熱影響部(HAZ)のミクロ組織の制御と脆化元素の低減にCaが有効であることに着目し、実験室の真空溶解でA1を添加しないで、鋼中のCa量を変化させる実験を実施し、Ca量が30ppm以上の領域でHAZの靭性が顕著に向上することを突き止めた。 According to the study by the present inventors, the toughness of the weld heat-affected zone (HAZ) with a small to large heat input (5.0 to 20.0 kj / mm when the plate thickness is 32 mm) is controlled by the microstructure and the embrittlement element. It makes clear that reduction is important. The present inventors pay attention to the fact that Ca is effective in controlling the microstructure of the weld heat affected zone (HAZ) and reducing the embrittlement elements, and without adding A1 by vacuum melting in the laboratory, An experiment was conducted to change the Ca content, and it was found that the toughness of HAZ was significantly improved in the region where the Ca content was 30 ppm or more.
また、HAZ靭性の向上はミクロ組織が旧オーステナイトの粒内から生成する微細なフェライト(IGF)の効果であると考えられた。この実験に使用した鋼の主な化学成分を表1に、再現熱サイクルのCa量(%)とシャルピー衝撃値(vTrs・℃)の関係を図1に、Ca量(%)とIGF分率(%)の関係を図2に示す。図1に示すように、Ca量が0.003%以上でシャルピー衝撃値(vTrs・℃)が改善され、また、図2に示すように、Ca量の増加によりミクロ組織が改善(IGF分率の増加)され、靭性が良好となる傾向が明瞭であった。なお、図1および図2中の○印は、再現熱サイクル試験で、ピーク温度(PT)1400℃に加熱して、冷却し、変態温度の800〜500℃までの所要時間が54秒(これは、板厚32mmの鋼板のSAW(サブマージアーク溶接)で5.0kJ/mmでの小入熱溶接に相当)の場合で、●印は、再現熱サイクル試験で、ピーク温度(PT)1400℃に加熱して、冷却し、変態温度の800〜500℃までの所要時間が192秒(これは、板厚32mmの鋼板のSAW(サブマージアーク溶接)で20.0kJ/mmでの大入熱溶接条件に相当)の場合である。 Further, the improvement of HAZ toughness was considered to be an effect of fine ferrite (IGF) whose microstructure is formed from the grains of prior austenite. The main chemical components of the steel used in this experiment are shown in Table 1, the relationship between the Ca amount (%) and Charpy impact value (vTrs · ° C) in the reproducible thermal cycle is shown in Fig. 1, and the Ca amount (%) and IGF fraction. The relationship (%) is shown in FIG. As shown in FIG. 1, when the Ca content is 0.003% or more, the Charpy impact value (vTrs · ° C.) is improved, and as shown in FIG. 2, the microstructure is improved by increasing the Ca content (IGF fraction). The tendency to improve toughness was clear. In FIG. 1 and FIG. 2, in the reproducible thermal cycle test, the peak temperature (PT) is heated to 1400 ° C., cooled, and the required time from the transformation temperature of 800 to 500 ° C. is 54 seconds (this Is the case of SAW (submerged arc welding) of a steel plate having a thickness of 32 mm, which corresponds to small heat input welding at 5.0 kJ / mm), and the ● mark indicates a peak temperature (PT) of 1400 ° C. in a reproducible thermal cycle test. 192 seconds (this is a SAW (submerged arc welding) of a steel plate having a thickness of 32 mm and a high heat input welding at 20.0 kJ / mm) This corresponds to the condition).
これまで、HAZ靭性改善において特に優れている技術としてTi酸化物でミクロ組織を微細化し靭性を向上させることが知られている。しかしながら、この技術でも大入熱溶接ではミクロ組織の微細化が十分でなく、靭性も不十分であった。これはミクロ組織の微細化の核となるTiの酸化物の数が少ないため、大入熱溶接の場合にミクロ組織が粗大化し易いためであったと考えられる。 Until now, it has been known as a technique that is particularly excellent in improving the HAZ toughness to refine the microstructure with Ti oxide and improve the toughness. However, even in this technique, the microstructure is not sufficiently refined and the toughness is insufficient in high heat input welding. This is probably because the number of Ti oxides that become the core of the microstructural refinement is small, and the microstructure tends to become coarse in the case of high heat input welding.
これに対し、本発明鋼では、鋼中にCaを一定量以上添加するとCaを主体とする微細な酸化物が生成し、これが核となり、Tiの酸化物の核と共にミクロ組織を微細化し、靭性向上が達成できることを見出し、本発明を完成したものである。 In contrast, in the steel of the present invention, when a certain amount or more of Ca is added to the steel, a fine oxide mainly composed of Ca is formed, which becomes a nucleus, which refines the microstructure together with the nucleus of the oxide of Ti, toughness The present inventors have found that improvement can be achieved and completed the present invention.
以下に鋼の成分およびその含有量(以下質量%を意味する)を限定した理由を説明する。 The reason why the steel components and the content thereof (hereinafter referred to as “mass%”) are limited will be described below.
Ca:鋼中へのCaの添加量は0.0030%以上がミクロ組織の微細化や靭性向上に効果が大きいが、0.0050%以上では、酸化物が粗大化し、ミクロ組織の微細化や靭性向上が不十分となる。このため、Caの適正な添加範囲は0.0030〜0.0050%である。Ca量を0.0030〜0.0050%に制御することによりミクロ組織を微細化してHAZ靭性が向上する傾向となるが、その他の合金元素の添加量を適正化しなければ、高強度化と優れたHAZ靭性を兼ね備えた鋼は得ることができない。 Ca: The amount of Ca added to the steel is 0.0030% or more having a great effect on the refinement of the microstructure and the improvement of toughness. However, if it is 0.0050% or more, the oxide becomes coarse and the microstructure becomes finer. Toughness improvement is insufficient. For this reason, the appropriate addition range of Ca is 0.0030 to 0.0050%. By controlling the Ca content to 0.0030 to 0.0050%, the microstructure tends to be refined and the HAZ toughness tends to be improved. Steel with both HAZ toughness cannot be obtained.
C:Cは母材および溶接部の高強度を得るため0.07%以上は必要であるが、0.10%超では溶接HAZの靭性を劣化させ、溶接部の靭性が満足できないため0.10%を上限とする。 C: C needs to be 0.07% or more in order to obtain high strength of the base metal and the welded portion. However, if it exceeds 0.10%, the toughness of the welded HAZ deteriorates and the toughness of the welded portion cannot be satisfied. The upper limit is 10%.
Si:Siは良好なHAZ靭性を得るため少ない方が好ましいが、発明鋼ではA1を添加してないため、脱酸上0.05%以上は必要である。しかしながら、0.15%超では高炭素マルテンサイト(M”)が生成しやすくなりHAZ靭性を害するため、0.15%を上限とする。 Si: Si is preferable to be low in order to obtain good HAZ toughness, but in the steel according to the invention, A1 is not added, so 0.05% or more is necessary for deoxidation. However, if it exceeds 0.15%, high carbon martensite (M ″) is likely to be formed and the HAZ toughness is impaired, so 0.15% is made the upper limit.
Mn:Mnは鋼の強度、靭性を確保する上で不可欠の元素であり、母材強度の向上に効果が大きく、安価な元素であることやHAZ靭性を害することが少ないため添加量を多くしたいが、2.5%超ではHAZ靭性に有害な上部べイナイト(Bu)を生成し易くするため2.5%を上限とした。また、1.7%未満では効果が少ないので実施例に即して下限を1.98%とした。
Mn: Mn is an indispensable element for securing the strength and toughness of steel. It is highly effective in improving the strength of the base metal. However, if it exceeds 2.5%, the upper limit is set to 2.5% in order to facilitate formation of upper bainite (Bu) harmful to the HAZ toughness. Further, since the effect is small at less than 1.7%, the lower limit is set to 1.98% in accordance with the example .
P、S:P、Sは母材靭性、HAZ靭性からともに少ない方が良いが、工業生産的な制約もあり、不可避的に含有される元素であり、それぞれ0.008%、0.005%を上限とした。 P, S: P and S are better both in terms of base material toughness and HAZ toughness, but are also unavoidably contained elements due to industrial production restrictions, 0.008% and 0.005%, respectively. Was the upper limit.
Al:A1はTi酸化物の生成を阻害するため少ない方が好ましいが、鋼の製造工程から不可避的に含有され元素であり、工業生産的に制約があり、0.004%が許容できる上限である。本発明では実質的にAlを含有しないようにすることが好ましい. Al: A1 is preferably less because it inhibits the formation of Ti oxide, but is an element that is inevitably contained from the manufacturing process of steel, has an industrial production limitation, and 0.004% is an allowable upper limit. is there. In the present invention, it is preferable not to contain Al substantially.
Ti:TiはHAZ靭性を向上させるために重要な元素であり、Alが少ないとOと結合してTi酸化物を生成させ、粒内変態フェライト生成の核となりミクロ組織を微細化させ、HAZ靭性を向上させる。また、Oと結合しないTiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化しHAZ靭性を向上させる。しかし多過ぎるとTiCを形成し、HAZ靭性を劣化させるため、0.010〜0.018%が適正範囲である。 Ti: Ti is an important element for improving the HAZ toughness. When there is little Al, it combines with O to form Ti oxide, which becomes the nucleus of intragranular transformation ferrite formation and refines the microstructure, HAZ toughness To improve. Further, Ti that does not bind to O binds to N and finely precipitates in the slab as TiN, is effective in reducing the coarsening of the γ grains during heating, and is effective for refining the rolling structure. TiN refines the weld heat-affected zone structure during welding and improves HAZ toughness. However, if it is too much, TiC is formed and the HAZ toughness is deteriorated, so 0.010 to 0.018% is in the proper range.
O:OはTiの酸化物生成およびCaの酸化物生成に必要な元素であるが、0.0030%超では粗大なTi酸化物を生成し、靭性を極端に劣化させるため上限を0.0030%とした。 O: O is an element necessary for Ti oxide generation and Ca oxide generation, but if it exceeds 0.0030%, coarse Ti oxide is generated and the toughness is extremely deteriorated, so the upper limit is set to 0.0030. %.
N:NはTi窒化物生成に必要な元素であるが、0.0030%未満では効果が少なく、0.005%超では鋼片製造時に表面疵が発生するため上限を0.0050%とした。 N: N is an element necessary for Ti nitride generation. However, if it is less than 0.0030%, the effect is small, and if it exceeds 0.005%, surface flaws occur during the production of steel slabs, so the upper limit is made 0.0050%. .
さらに、基本となる成分にNb、Vを添加する目的は母材強度の向上に有効なためであるが、HAZ靭性を大きく害しない範囲とすることが必要である。このため、夫々の添加量の上限をNb:0.030%以下、V:0.040%以下とした。 Furthermore, the purpose of adding Nb and V to the basic components is to improve the strength of the base material, but it is necessary to make the range not significantly harming the HAZ toughness. For this reason, the upper limit of each addition amount was set to Nb: 0.030% or less and V: 0.040% or less.
なお、Cu、Ni等の添加はHAZの靭性を劣化させないで、母材の強度を向上させる効果があり有効であるが、製造コストを増加させるため本請求範囲には入れなかった。本発明は、高価な合金元素を添加することなく、高強度(600N/mm2級)の性質を有するHAZ靭性に優れた安価な鋼とすることができる。 The addition of Cu, Ni, etc. is effective and effective in improving the strength of the base material without deteriorating the toughness of the HAZ, but was not included in the scope of the present invention because it increased the manufacturing cost. According to the present invention, an inexpensive steel excellent in HAZ toughness having a high strength (600 N / mm class 2 ) property can be obtained without adding an expensive alloy element.
鋼の成分を上記のように限定しても製造法が適切でなければ目的とした効果は発揮できない。このため、製造条件についても限定が必要である。以下鋼の製造条件について説明する。 Even if the components of the steel are limited as described above, the intended effect cannot be exhibited unless the production method is appropriate. For this reason, it is necessary to limit the manufacturing conditions. The steel production conditions will be described below.
本発明鋼は工業的には連続鋳造法で製造することが必須である。その理由は溶鋼の凝固冷却速度が速く、スラブ中にHAZ改善に有効な微細なTi酸化物、Ca酸化物及びTi窒化物を多量に生成することが可能なためである。 The steel of the present invention is industrially required to be produced by a continuous casting method. The reason is that the solidification cooling rate of the molten steel is fast, and a large amount of fine Ti oxide, Ca oxide and Ti nitride effective in improving the HAZ can be generated in the slab.
スラブの圧延に際し、その再加熱温度は1150℃以下とする必要がある。再加熱温度が1150℃を超えるとTi窒化物が粗大化して母材の靭性劣化やHAZ靭性の改善効果の期待が持てないからである。再加熱温度の下限は工業的に圧延を容易に実施することできる温度である900℃以上が必要である。 In rolling the slab, the reheating temperature needs to be 1150 ° C. or less. This is because when the reheating temperature exceeds 1150 ° C., the Ti nitride becomes coarse, and the expectation of the toughness deterioration of the base material and the improvement effect of the HAZ toughness cannot be expected. The lower limit of the reheating temperature needs to be 900 ° C. or higher, which is a temperature at which rolling can be easily carried out industrially.
つぎに、再加熱後の製造工程としては加工熱処理が必須である。その理由は、優れたHAZ靭性が得られても、母材の靭性が劣っていると鋼材としては不十分なためである。 Next, thermomechanical processing is essential as a manufacturing process after reheating. The reason is that even if excellent HAZ toughness is obtained, if the toughness of the base material is inferior, it is insufficient as a steel material.
加工熱処理の方法としては、1)制御圧延、2)制御圧延−加速冷却、3)圧延後直接焼入れ−焼戻しなどが挙げられるが、好ましい方法は制御圧延−加速冷却法である。なお、この鋼を製造後、脱水素などの目的でAr3変態点以下の温度に再加熱しても、本発明の特徴を損なうものではない。 Examples of the heat treatment method include 1) controlled rolling, 2) controlled rolling-accelerated cooling, and 3) direct quenching-tempering after rolling. A preferred method is controlled rolling-accelerated cooling. In addition, even if this steel is manufactured and reheated to a temperature below the Ar3 transformation point for the purpose of dehydrogenation, the characteristics of the present invention are not impaired.
以下実施例に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
転炉−連続鋳造−厚板工程で種々の鋼成分の厚鋼板を製造し、母材強度や再現HAZのシャルピー衝撃試験を実施した。鋼の製造条件としては、連続鋳造法によって製造したスラブを再加熱した後、制御圧延し、加工熱処理(ACC:加速冷却、DQ:圧延直後焼入焼戻処理)を行なって厚鋼板とした。表2に試験に供した鋼の化学成分(質量%)を示した。 Thick steel plates of various steel components were manufactured in the converter-continuous casting-thick plate process, and Charpy impact tests were performed on the base metal strength and reproducible HAZ. As steel production conditions, a slab produced by a continuous casting method was reheated, followed by controlled rolling, and heat treatment (ACC: accelerated cooling, DQ: quenching and tempering immediately after rolling) to obtain a thick steel plate. Table 2 shows the chemical composition (mass%) of the steel subjected to the test.
再現HAZ条件は、A条件(小入熱溶接)が板厚32mmの鋼板のSAW(サブマージアーク溶接)で5.0kJ/mm相当でのSAW溶接条件、B条件(大入熱溶接)が板厚32mmの鋼板のSAW(サブマージアーク溶接)で20.0kJ/mm相当でのSAW溶接条件である。シャルピー衝撃試験は板厚の1/4tから試験片を採取して実施した。表3に鋼の製造条件および試験結果等を併記して示した。 The reproduced HAZ conditions are as follows: A condition (small heat input welding) is SAW (submerged arc welding) of a steel sheet having a thickness of 32 mm, and SAW welding condition is equivalent to 5.0 kJ / mm, and B condition (large heat input welding) is the plate thickness. The SAW welding conditions are equivalent to 20.0 kJ / mm in SAW (submerged arc welding) of a 32 mm steel plate. The Charpy impact test was conducted by collecting test pieces from 1/4 t of the plate thickness. Table 3 shows steel manufacturing conditions and test results.
本発明で製造した鋼板(本発明鋼:1〜6)は降伏強度(YS)が518N/mm2以上、引張強度(TS)が610N/mm2の高強度を示し、再現HAZの0℃の試験温度でのA条件およびB条件ともにシャルピー衝撃値(vE0)が96J以上の高いHAZ靭性を示した。
The steel plates manufactured in the present invention (present invention steels: 1 to 6 ) have a high strength with a yield strength (YS) of 518 N / mm 2 or more and a tensile strength (TS) of 610 N / mm 2 . A high HAZ toughness with a Charpy impact value (vE 0 ) of 96 J or more was exhibited under both the A and B conditions at the test temperature.
これに対し、比較鋼は、母材強度や再現HAZの衝撃値が劣り、厳しい環境下で使用される鋼板として適切でない。即ち、 On the other hand, the comparative steel is inadequate as a steel plate used in a severe environment because the base material strength and the impact value of the reproduced HAZ are poor. That is,
比較鋼13はC量が少なく、Caも添加されてないため、母材強度が低く、再現HAZのB条件(大入熱溶接)の衝撃値(vE0)が11Jと低い結果であった。 Since the comparative steel 13 had a small amount of C and Ca was not added, the base metal strength was low, and the impact value (vE 0 ) of the reproduced HAZ B condition (high heat input welding) was as low as 11 J.
比較鋼14はC量が多すぎたため、母材強度は十分であるが、再現HAZのB条件(大入熱溶接)の衝撃値が30Jと悪い結果であった。 Since the comparative steel 14 has too much C content, the base metal strength is sufficient, but the impact value under the B condition (high heat input welding) of the reproduced HAZ was 30 J, which was a bad result.
比較鋼15はCaが添加されてないため、母材強度は十分であるが、再現HAZのB条件(大入熱溶接)の衝撃値(vE0)が9Jと悪い結果であった。 Since comparative steel 15 does not contain Ca, the strength of the base material is sufficient, but the impact value (vE 0 ) under the B condition (high heat input welding) of the reproduced HAZ was 9J, which was a bad result.
比較鋼16は主な鋼成分は発明鋼と同じでるが、O量が多すぎのため、母材強度は十分であるが、再現HAZのB条件(大入熱溶接)の衝撃値(vE0)が36Jと悪い結果であった。 Although the comparative steel 16 has the same main steel components as the invention steel, but the O material is sufficient, the strength of the base metal is sufficient, but the impact value (vE 0 ) of the reproduced HAZ B condition (large heat input welding) ) Was a bad result of 36J.
以上の試験結果から明らかなように、本発明鋼は小入熱から大入熱の溶接によっても優れたHAZ靭性を示すことが確認できた。 As is clear from the above test results, it has been confirmed that the steel of the present invention exhibits excellent HAZ toughness even by welding from small heat input to large heat input.
Claims (4)
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%
を含有し、残部が鉄および不可避的不純物からなることを特徴とする溶接熱影響部の靭性が優れた鋼。 % By mass
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%
Steel with excellent toughness in the heat affected zone of welding, characterized in that the balance is made of iron and inevitable impurities.
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、さらに、
V:0.040%以下、
を含有し、
残部が鉄および不可避的不純物からなることを特徴とする溶接熱影響部の靭性が優れた鋼。 % By mass
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
It contains, in addition,
V : 0.040% or less,
Contain,
A steel with excellent toughness in the heat affected zone of welding, characterized in that the balance is made of iron and inevitable impurities.
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、
残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後900〜1150℃の温度に再加熱後、加工熱処理することを特徴とする溶接熱影響部の靭性が優れた鋼の製造法。 % By mass
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
Containing
Production of steel with excellent toughness of weld heat affected zone characterized in that steel consisting of iron and inevitable impurities as the remainder is made into a slab by a continuous casting method, then reheated to a temperature of 900 to 1150 ° C. and then heat-treated. Law.
C:0.07〜0.10%、
Si:0.05〜0.15%、
Mn:1.98〜2.5%、
P:0.008%以下、
S:0.005%以下、
A1:0.004%以下、
Ti:0.010〜0.018%、
Ca:0.0030〜0.0050%
O:0.0030%以下、
N:0.0030〜0.0050%、
を含有し、さらに、
V:0.040%以下、
を含有し、残部が鉄および不可避的不純物からなる鋼を連続鋳造法によってスラブとし、その後900〜1150℃の温度に再加熱後、加工熱処理することを特徴とする溶接熱影響部の靭性が優れた鋼の製造法。 % By mass
C: 0.07 to 0.10%,
Si: 0.05 to 0.15%,
Mn: 1.98 to 2.5%,
P: 0.008% or less,
S: 0.005% or less,
A1: 0.004% or less,
Ti: 0.010 to 0.018%,
Ca: 0.0030 to 0.0050%
O: 0.0030% or less,
N: 0.0030 to 0.0050%,
It contains, in addition,
V : 0.040% or less,
Containing the balance and a slab of steel continuous casting process of iron and inevitable impurities, then after reheating to a temperature of 900 to 1150 ° C., the toughness of the weld heat affected zone characterized by mechanical treatment excellent Steel manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132865A JP4673788B2 (en) | 2006-05-11 | 2006-05-11 | Steel excellent in toughness of weld heat-affected zone and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006132865A JP4673788B2 (en) | 2006-05-11 | 2006-05-11 | Steel excellent in toughness of weld heat-affected zone and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007302949A JP2007302949A (en) | 2007-11-22 |
JP4673788B2 true JP4673788B2 (en) | 2011-04-20 |
Family
ID=38837125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006132865A Active JP4673788B2 (en) | 2006-05-11 | 2006-05-11 | Steel excellent in toughness of weld heat-affected zone and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4673788B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5820341B2 (en) * | 2012-06-19 | 2015-11-24 | 株式会社神戸製鋼所 | Steel with excellent toughness in weld heat affected zone |
CN113106333B (en) * | 2021-03-10 | 2022-11-04 | 邯郸钢铁集团有限责任公司 | Low-cost high-strength steel with yield strength of 800Mpa and production method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02190423A (en) * | 1989-01-13 | 1990-07-26 | Sumitomo Metal Ind Ltd | Manufacture of steel plate having excellent ctod properties in weld zone |
JPH05295434A (en) * | 1992-04-20 | 1993-11-09 | Nippon Steel Corp | Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature |
JP2003147484A (en) * | 2001-11-12 | 2003-05-21 | Nippon Steel Corp | Steel having excellent toughness in welding heat affected zone, and production method therefor |
-
2006
- 2006-05-11 JP JP2006132865A patent/JP4673788B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02190423A (en) * | 1989-01-13 | 1990-07-26 | Sumitomo Metal Ind Ltd | Manufacture of steel plate having excellent ctod properties in weld zone |
JPH05295434A (en) * | 1992-04-20 | 1993-11-09 | Nippon Steel Corp | Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature |
JP2003147484A (en) * | 2001-11-12 | 2003-05-21 | Nippon Steel Corp | Steel having excellent toughness in welding heat affected zone, and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2007302949A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5079419B2 (en) | Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure | |
JP5212124B2 (en) | Thick steel plate and manufacturing method thereof | |
JP2009174059A (en) | Steel plate for welded structure excellent in low temperature toughness of heat affected zone of welded part | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2009127069A (en) | High toughness steel plate for line pipe, and its manufacturing method | |
JP4751341B2 (en) | Steel excellent in CTOD of weld heat affected zone and method for producing the same | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JP4341395B2 (en) | High strength steel and weld metal for high heat input welding | |
WO2008075443A1 (en) | Steel excelling in toughness at region affected by welding heat | |
JP7104370B2 (en) | Thick steel plate and its manufacturing method | |
JP2005187853A (en) | Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part | |
JP4949210B2 (en) | Steel excellent in toughness of weld heat-affected zone and method for producing the same | |
JP5515954B2 (en) | Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness | |
JP4673788B2 (en) | Steel excellent in toughness of weld heat-affected zone and method for producing the same | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP2012188749A (en) | Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint | |
JP4038166B2 (en) | Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof | |
JP4250113B2 (en) | Steel plate manufacturing method with excellent earthquake resistance and weldability | |
JP5862592B2 (en) | High-tensile steel plate with excellent weld heat-affected zone toughness | |
JP4259374B2 (en) | High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same | |
JP2005220379A (en) | Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone | |
JP2007246933A (en) | High strength steel pipe with excellent weld zone toughness, and its manufacturing method | |
JP4505434B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JP5659949B2 (en) | Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110121 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4673788 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |