JPS6253886A - Information-recording medium - Google Patents

Information-recording medium

Info

Publication number
JPS6253886A
JPS6253886A JP60290692A JP29069285A JPS6253886A JP S6253886 A JPS6253886 A JP S6253886A JP 60290692 A JP60290692 A JP 60290692A JP 29069285 A JP29069285 A JP 29069285A JP S6253886 A JPS6253886 A JP S6253886A
Authority
JP
Japan
Prior art keywords
thickness
film
ratio
recording
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60290692A
Other languages
Japanese (ja)
Other versions
JPH0380635B2 (en
Inventor
Isao Morimoto
勲 森本
Kazumi Itagaki
一美 板垣
Koichi Mori
晃一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to US06/831,577 priority Critical patent/US4670345A/en
Priority to CA000502376A priority patent/CA1236693A/en
Priority to DE8686301275T priority patent/DE3671122D1/en
Priority to EP19860301275 priority patent/EP0195532B1/en
Publication of JPS6253886A publication Critical patent/JPS6253886A/en
Priority to JP2329491A priority patent/JPH0694230B2/en
Priority to JP2329490A priority patent/JPH0725208B2/en
Publication of JPH0380635B2 publication Critical patent/JPH0380635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To greatly enhance thermal stability while substantially maintaining the change of optical characteristics peculiar to an Sb-Te binary system, by providing a recording layer comprising at least Sb, Te and Ge in a specified composition range on a base. CONSTITUTION:The recording layer 2 of the information-recording medium comprises at least Sb, Te and Ge, and has a composition of general formula (SbxTe1-x)yGe1-y, wherein x is 0.05-0.7, preferably, 0.1-0.6, and y is 0.4-0.8, preferably, 0.5-0.7. The recording layer 2 is provided by vapor deposition such as vacuum deposition and sputtering. The composition is preferably controlled by ternary co-deposition in the case of vacuum deposition or by flash vapor deposition of a material to be vapor-deposited having a specified composition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な情報記録材料、さらに詳しくいえば、所
定の基板上に設けた記録層にレーザー光のようなエネル
ギービームを照射し、照射部分の反射率変化を利用して
、情報の記録及び読み出しを行うための媒体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel information recording material, more specifically, a recording layer provided on a predetermined substrate is irradiated with an energy beam such as a laser beam, and the irradiated portion is The present invention relates to a medium for recording and reading information using changes in reflectance.

従来の技術 従来提案されている記録可能な情報記録媒体としては、
例えば、基板上に所定の記録層を設け、レーザー光を照
射し、情報に応じた孔を形成させ、この孔の有無による
反射率の差を利用して情報を読み出す記録媒体が知られ
ている。
Conventional technology Recordable information recording media that have been proposed so far include:
For example, a recording medium is known in which a predetermined recording layer is provided on a substrate, irradiated with laser light to form holes corresponding to information, and information is read out using the difference in reflectance depending on the presence or absence of the holes. .

この場合、使用される記録層としては、融点の低いTe
やB1及びそれらを含む合金あるいは化合物などがよく
知られている。
In this case, the recording layer used is Te, which has a low melting point.
and B1 and alloys or compounds containing them are well known.

また、レーザー光照射により光学特性を変化させ、この
光学特性の変化によって生じる反射率の変化を利用する
記録層も提案されており、このようなものとしては、例
えばTeO2中にTo の微粒子を分散させた系や、5
b2Se、\Bi2Te3などの2層構造のものが知ら
れている。
In addition, a recording layer has been proposed in which the optical properties are changed by laser beam irradiation and the change in reflectance caused by this change in optical properties is utilized.As such, for example, fine particles of To are dispersed in TeO2. The system that made it, 5
Two-layer structures such as b2Se and \Bi2Te3 are known.

しかしながら、上記の孔開は方式では、孔を形成させる
に際して、加熱の他に、溶融、分散、或いは蒸発という
過程を伴うために、溶融時の粘度や分散時の表面張力な
どが微妙な影響を与え、孔の形状を制御しにくく、また
、孔の内部に残留物が発生して、ノイズの増加やエラー
の増加をもたらす欠点がある。
However, in the above-mentioned pore-forming method, in addition to heating, the process of forming pores involves melting, dispersion, or evaporation, so the viscosity during melting and the surface tension during dispersion have subtle effects. However, it is difficult to control the shape of the hole, and residues are generated inside the hole, resulting in increased noise and errors.

他方、レーザー光照射による加熱によって生じる光学特
性の変化を利用する方式では、記録層の溶融、分散ある
いは蒸発という過程を必要としないために、ピットの形
状を制御することが容易であり、かつ、孔内の残留物発
生という問題もなくなる。しかし、この方式を利用する
従来の記録材では、熱的安定性が乏しく、これが実用上
の障害となっていた。□ ところで、Sb2Te、という化合物は、加熱によって
透過率が大きく変化するために、これまでも情報記録材
として利用することが検討されていたが、変化温度が低
く熱的安定性に欠くため、実用上の使用が不可能とされ
ていた〔[ジャーナル・オブ°アプライド′フィジック
ス(J、Appl、Phya)J。
On the other hand, the method that utilizes the change in optical properties caused by heating by laser beam irradiation does not require the process of melting, dispersing, or evaporating the recording layer, so it is easy to control the shape of the pits, and The problem of residue generation in the holes is also eliminated. However, conventional recording materials using this method have poor thermal stability, which has been a practical obstacle. □ By the way, the transmittance of the compound Sb2Te changes greatly when heated, so its use as an information recording material has been considered in the past, but due to the low temperature change and lack of thermal stability, it has not been put to practical use. [Journal of Applied Physics (J, Appl, Phya) J.

第54巻(隘3)、第1256〜1260ページ〕。Volume 54 (Vol. 3), pages 1256-1260].

発明が解決しようとする問題点 本発明の目的はこのような事情に鑑み、レーザー照射に
よる光学特性の変化を利用する情報記録媒体において、
熱的に安定であり、かつ感度4ハ比及びピットエラー率
の点で従来のものよりも優れた記録材を提供することに
ある。
Problems to be Solved by the Invention In view of the above circumstances, the purpose of the present invention is to provide an information recording medium that utilizes changes in optical characteristics caused by laser irradiation.
The object of the present invention is to provide a recording material that is thermally stable and superior to conventional recording materials in terms of sensitivity 4C ratio and pit error rate.

問題点を解決するための手段 本発明者らは前記目的を達成すべく鋭意研究を重ねた結
果、基板上に、少なくともSb、Te及びaeの・3元
素から成り、かつこれらの3元素の割合が特定の範囲に
ある記録層を設けることにより、5t)−Teの2元系
の特徴である光学特性の変化自体をほとんど変えること
なく、熱的安定性を大幅に向上しうろことを見出し、こ
の知見に基づいて本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive research to achieve the above object, and have found that the substrate is made of at least three elements, Sb, Te, and ae, and the ratio of these three elements is We have discovered that by providing a recording layer in which 5t)-Te has a specific range of temperature, the thermal stability can be significantly improved without changing the optical properties that are characteristic of the binary system of 5t)-Te. Based on this knowledge, we have completed the present invention.

すなわち、本発明は、基板上に、加熱により光の吸収係
数が変化する材料から成る記録層を設け、該吸収係数の
変化によって生じる光の反射率の変化により情報を記録
する情報記録媒体において、該記録層が少なくともSb
、 Te及びGeの3元素から成り、かつこれらの3元
素が、一般式%式% (ただし、Xは0.05〜0,7.yは0.4〜0.8
の範囲の数である) で示される組成を有することを特徴とする情報記録媒体
を提供するものである。
That is, the present invention provides an information recording medium in which a recording layer made of a material whose light absorption coefficient changes upon heating is provided on a substrate, and information is recorded by a change in light reflectance caused by the change in the absorption coefficient. The recording layer is made of at least Sb.
, consisting of three elements Te and Ge, and these three elements have the general formula % (where X is 0.05-0,7.y is 0.4-0.8
The present invention provides an information recording medium characterized by having a composition represented by:

この際の加熱の手段としては、レーザー光や電子ビーム
などのエネルギービームの照射が好適である。
As a heating means at this time, irradiation with an energy beam such as a laser beam or an electron beam is suitable.

本発明の情報記録媒体における記録層は、少なくともS
b、 Te及びGeの3元素がら成っており、これらの
組成比は、一般式(BbXTe、 −x)、Ge、 −
yで表わした場合、Xが0.05〜0.7、好ましくは
0.1〜0,6.7が0.4〜0.8.好ましくはO,
S〜0.7の範囲である。Xの値が0.05未満では加
熱による吸収係数の変化が小さく、十分なコントラスト
が得られない上に、温度や湿度に対する安定性が低く、
また0、7を超えるとコントラストが極端に低くなり、
したがって、S/N比も低くなる。
The recording layer in the information recording medium of the present invention comprises at least S
It consists of three elements: b, Te, and Ge, and their composition ratios are expressed by the general formula (BbXTe, -x), Ge, -
When expressed as y, X is 0.05 to 0.7, preferably 0.1 to 0, and 6.7 is 0.4 to 0.8. Preferably O,
It is in the range of S to 0.7. If the value of
Also, if the value exceeds 0.7, the contrast becomes extremely low.
Therefore, the S/N ratio also becomes low.

一方、yの値が0.8を超えると加熱による吸収係数の
変化が低温で生じるようになり、熱安定性が低下するし
、また0、4未満ではコントラストが極端に低下し、S
、/N比も低くなる。特に感度を重要視する場合は、X
の値は0.1〜0.35の範囲にあることが好ましい。
On the other hand, if the value of y exceeds 0.8, changes in the absorption coefficient due to heating will occur at low temperatures, resulting in a decrease in thermal stability, and if the value of y is less than 0.4, the contrast will be extremely reduced, and the S
, /N ratio also becomes low. If sensitivity is particularly important,
The value of is preferably in the range of 0.1 to 0.35.

さらに、実用的な観点から、長時間にわたって同一個所
に情報読み出しビームを照射し続けることも生じるが、
このような長時間再生時には、読み出しビームによる熱
が蓄積され、その熱によって未記録部分も徐々に記録部
分と同一状態に近づき、その結果再生信号の振幅が減少
して、SA比やエラレートが徐々に低下する傾向がある
。したがって、このような長時間再生に対する安定性を
考慮し、さらに感度及びシ1此のバランスをとるために
は、前記Xの値が0.15〜0.4で、yの値が0.5
〜0.7の範囲にあることが実用上量も好ましい。
Furthermore, from a practical point of view, it may be necessary to continue irradiating the information readout beam to the same location for a long time.
During such long-time playback, heat from the readout beam accumulates, which causes the unrecorded area to gradually approach the same state as the recorded area, resulting in a decrease in the amplitude of the reproduced signal and a gradual increase in the SA ratio and error rate. tends to decline. Therefore, in order to take into consideration the stability for such long playback and balance the sensitivity and sensitivity, the value of X should be 0.15 to 0.4 and the value of y should be 0.5.
Practically speaking, the amount is preferably in the range of 0.7 to 0.7.

本発明の情報記録媒体においては、記録層としテSb%
Te及びGeの3元素のみから成るものを用いるだけで
実用的には十分であるが、必要に応じ他の元素を含有さ
せることもできる。
In the information recording medium of the present invention, the recording layer is Sb%
Although it is practically sufficient to use a material consisting of only the three elements Te and Ge, other elements may be included if necessary.

(s bXT el −x )yG el −7の記録
層は、真空前1着、スパッタリングなどの蒸着法で形成
される。組成のコントロールには、真空蒸着の場合は、
3元共蒸着法や、あるいは特定組成の蒸着物をフラッシ
ュ蒸着法によって行うのが好ましく、また、所望の組成
によっては、2元共蒸着法で行うこともできる。
The recording layer of (s bXT el -x )yG el -7 is formed by a vapor deposition method such as vacuum deposition or sputtering. For composition control, in the case of vacuum evaporation,
It is preferable to use a three-component co-evaporation method or a flash vapor deposition method using a deposited material having a specific composition, and depending on the desired composition, a two-component co-deposition method can also be used.

他方、スパッタリングの場合は、特定組成のターゲット
材料を用いたり、1つの元素あるいは合金のターゲツト
材の上に、他の元素あるいは合金の破片を置いて行うの
が有利である。
In the case of sputtering, on the other hand, it is advantageous to use a target material of a specific composition or to place fragments of one element or alloy on top of a target material of one element or alloy.

真空蒸着法によって膜形成を行う場合には、真空度は1
0” 〜10− Torrの範囲、蒸着速度は0.5〜
20A/秒の範囲が好ましく、また基板温度としては特
に制限はないので、室温が望ましい。
When forming a film by vacuum evaporation, the degree of vacuum is 1.
Range from 0” to 10-Torr, deposition rate from 0.5 to
A range of 20 A/sec is preferable, and since there is no particular restriction on the substrate temperature, room temperature is preferable.

一方、スパッタリング法による場合は、特に基板温度が
上昇しやすいので、冷却する必要がある。
On the other hand, when using the sputtering method, the substrate temperature is particularly likely to rise, so cooling is required.

一般に、基板上に薄膜が積層されている場合の反射率は
、基板及び薄膜の屈折率、吸収係数及び厚みによって一
義的に決まるので、加熱前後の屈折率及び吸収係数を用
いて、各膜厚での反射率を求めることによって、加熱前
後の反射率変化を大きくするための膜厚の範囲は自ずと
決まる。一方、実際にレーザー光などの照射によって記
録を行う場合には、記録層や反射層の膜厚によってレー
ザー光の吸収率や熱の逸散状態が異なり、したがって記
録感度が異なってくる。記録層や反射層の好薫しい膜厚
範囲は、主に前記した2つの要因から決まる。
In general, when thin films are stacked on a substrate, the reflectance is uniquely determined by the refractive index, absorption coefficient, and thickness of the substrate and thin film. By determining the reflectance at , the range of film thickness for increasing the change in reflectance before and after heating is automatically determined. On the other hand, when recording is actually performed by irradiation with laser light or the like, the absorption rate of the laser light and the state of heat dissipation vary depending on the thickness of the recording layer and the reflective layer, and therefore the recording sensitivity varies. The preferable film thickness range of the recording layer and the reflective layer is mainly determined by the above two factors.

(S b xT e□−X)アGe□−7を記録層とし
て情報記録媒体に用いる場合、この記録層単独でもよい
が、その場合には十分なコントラストを得るために、記
録層の膜厚は700A以上、好ましくは800〜200
0Aの範囲にするのがよい。しかし、膜厚をあまり厚く
すると、光の吸収係数を変化させるための、物理化学的
な状態変化な膜厚方向に一様に生じさせにくくなり、本
来の高いコントラストに相当するい比を得ることができ
なくなる。これに対し、記録層の上若しくは下に反射層
を設ける場合、記録層の膜厚が薄い領域においても十分
なコントラストを得ることができ、その結果高いS/N
比を得ることができるので有利である。このような反射
層を設ける場合には、記録層の膜厚は反射層の材料及び
膜厚によって左右されるが、一般に20〜1000 A
の範囲が好ましい。
(S b x T e - is 700A or more, preferably 800-200A
It is better to set it in the range of 0A. However, if the film thickness is made too thick, it becomes difficult to uniformly generate physicochemical state changes in the film thickness direction to change the light absorption coefficient, making it difficult to obtain a ratio corresponding to the original high contrast. become unable to do so. On the other hand, when a reflective layer is provided above or below the recording layer, sufficient contrast can be obtained even in areas where the recording layer is thin, resulting in a high S/N ratio.
This is advantageous because the ratio can be obtained. When providing such a reflective layer, the thickness of the recording layer depends on the material and thickness of the reflective layer, but is generally 20 to 1000 A.
A range of is preferred.

反射層に用いることのできる材料としては、情報読み出
しビームに対して高い吸収係数を有する物質が好ましく
、このようなものとしては、例えばAI!、 Ti、 
Or、 Co、 Ni、 Se、 Ge、 Zr、 A
g。
The material that can be used for the reflective layer is preferably a substance that has a high absorption coefficient for the information readout beam, such as AI! , Ti,
Or, Co, Ni, Se, Ge, Zr, A
g.

In、 Sn、 Sb、 Te、 Pt、 Au、 P
b、 Bi  などの金属、あるいはそれらの合金を挙
げることができる。
In, Sn, Sb, Te, Pt, Au, P
Examples include metals such as B, Bi, and alloys thereof.

これらの中で、特に8b 、 Te及びBi、6るいは
それらの合金が、感度の点で優れている。該反射層は、
これらの元素や合金の単独でもよいが、2種以上の元素
あるいは合金を積層してもよい。この反射層の膜厚は1
00x以上が好ましく、特に感度の点から100〜10
00 Aの範囲にあることが好ましい。なお、以下にお
いて、反射層を設けた構成について述べる場合、記録層
と反射層の両者を合わせて情報担体層と称する。
Among these, 8b, Te, Bi, 6, or alloys thereof are particularly excellent in sensitivity. The reflective layer is
These elements or alloys may be used alone, or two or more elements or alloys may be stacked. The thickness of this reflective layer is 1
00x or more is preferable, especially from the viewpoint of sensitivity 100 to 10
It is preferably in the range of 00 A. In the following, when describing a configuration in which a reflective layer is provided, both the recording layer and the reflective layer are collectively referred to as an information carrier layer.

本発明において、記録層を情報記録媒体として用いる場
合、記録層単独あるいは情報担体層単独で用いてもよい
が、それぞれの場合において、記録層あるいは情報担体
層の少なくとも上又は下に金属化合物から成る層を設け
るのが、特性の経時的な劣化を防ぐ意味で好ましい。
In the present invention, when the recording layer is used as an information recording medium, the recording layer or the information carrier layer may be used alone, but in each case, at least above or below the recording layer or the information carrier layer is made of a metal compound. It is preferable to provide a layer in order to prevent deterioration of characteristics over time.

特に、コンピューターメモリなどのコード化されたデジ
タル情報の記録用媒体として用いる場合には、局部的な
膜質の変化であっても、エラーが大幅に増加するので、
劣化防止として金属化合物の層を設けることは、極めて
有効である。
In particular, when used as a recording medium for coded digital information such as computer memory, even local changes in film quality can significantly increase errors.
Providing a metal compound layer is extremely effective for preventing deterioration.

本発明に用いる金属化合物としては、AI!、 Or。As the metal compound used in the present invention, AI! , Or.

Si、 Zr、 Ti、 Ge、 Se、 Te、 V
、 Hf、 La、 Sm。
Si, Zr, Ti, Ge, Se, Te, V
, Hf, La, Sm.

Y、 Ta、 Moの中から選ばれた元素の酸化物若し
くは窒化物が好ましく、この中でも特にSi の酸化物
若しくは窒化物が好ましい。これらの金属化合物層を、
記録層あるいは情報担体層の少なくとも上又は下に設け
ると、空気中や基板中から記録層あるいは反射層に浸透
してくる水や酸素などの侵入が防止され、記録材の劣化
が大幅に抑制される。特にSlの酸化物あるいは窒化物
がこの効果に優れている。
Oxides or nitrides of elements selected from Y, Ta, and Mo are preferred, and among these, oxides or nitrides of Si are particularly preferred. These metal compound layers,
When provided at least above or below the recording layer or information carrier layer, it prevents water, oxygen, etc. from penetrating into the recording layer or reflective layer from the air or the substrate, and greatly suppresses deterioration of the recording material. Ru. In particular, oxides or nitrides of Sl are excellent in this effect.

本発明に用いる金属化合物層は、同一金属化合物の単一
層又は2種以上の金属化合物の積層のどちらでもよい。
The metal compound layer used in the present invention may be either a single layer of the same metal compound or a stack of two or more metal compounds.

記録層若しくは情報担体層の上下両方に設ける場合、上
下の金属化合物の種類は、同じであっても異なってもよ
い。金属化合物層の膜厚は100〜5000 Aの範囲
が感度の点で、好ましい。
When provided on both the upper and lower sides of the recording layer or information carrier layer, the types of metal compounds on the upper and lower sides may be the same or different. The thickness of the metal compound layer is preferably in the range of 100 to 5000 A from the viewpoint of sensitivity.

本発明における反射層及び金属化合物層は、記録層と同
様、真空蒸着、スパッタリングなどの蒸着法を用いて形
成することができる。
The reflective layer and the metal compound layer in the present invention can be formed using a vapor deposition method such as vacuum vapor deposition or sputtering, like the recording layer.

本発明における基板としては、ガラスやガラス上に光硬
化性樹脂を設けたもの、ポリカーボネート、アクリル樹
脂、エポキン樹脂、ポリスチレンなどのプラスチック基
板、アルミニウム合金などの金属板などが用いられる。
As the substrate in the present invention, glass, a photocurable resin on glass, a plastic substrate such as polycarbonate, acrylic resin, Epoquine resin, polystyrene, etc., a metal plate such as aluminum alloy, etc. are used.

第10図ないし第13図は、本発明の記録媒体の構造例
を示す断面図であり、lは基板、2は記録層、3は反射
層、4は金属化合物層である。
10 to 13 are cross-sectional views showing examples of the structure of the recording medium of the present invention, where l is a substrate, 2 is a recording layer, 3 is a reflective layer, and 4 is a metal compound layer.

本発明の記録媒体を実際に情報記録媒体として用いる場
合は、基板上に記録材を設けた2枚の同一の円板を、記
録材を設けた面を互いに対向させた状態で、スペーサー
を介して接着一体化した、いわゆるエアーサンドインチ
構造や、2枚の同一の円板を、記録材を設けた面を互い
に対向させた状態で、スペーサーを介さずに、全面で接
着し一体化させた、いわゆる全面接着構造、あるいはこ
れらとは全く異なり、フィルム状のシートの上に記録材
を設け、このシートラロール状に巻いた構造などいずれ
の構造にしてもよい。
When the recording medium of the present invention is actually used as an information recording medium, two identical disks each having a recording material provided on a substrate are placed with the surfaces provided with the recording material facing each other with a spacer interposed therebetween. A so-called air sand inch structure is used, in which two identical discs are bonded together over their entire surface without a spacer, with the recording material facing each other. The recording material may have any structure, such as a so-called full-surface adhesive structure, or a structure in which a recording material is provided on a film-like sheet and the sheet is rolled up.

実施例 次に実施例によって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.

参考例 厚さ1.2 rIrmのスライドガラス上に、抵抗加熱
法により、Sb及びTeを入れた2つの蒸着ポートから
、2元共蒸着により第1表に示すような組成の膜e、3
00Aの厚みでそれぞれ形成した。
Reference Example: On a slide glass with a thickness of 1.2 rIrm, a film e, 3 having a composition as shown in Table 1 was formed by binary co-evaporation from two evaporation ports containing Sb and Te using a resistance heating method.
Each was formed with a thickness of 00A.

第   1   表 これらのサンプルを、未処理の状態と、200℃に加温
したオーブン中で約10分間加熱処理を施した状態とで
、波長850 nmの光透過率を測定した。この加熱処
理前後での透過率の変化率を第1図に示す。
Table 1 The light transmittance at a wavelength of 850 nm was measured for these samples in an untreated state and in a state after being heat-treated for about 10 minutes in an oven heated to 200°C. FIG. 1 shows the rate of change in transmittance before and after this heat treatment.

第1図より、Sbの原子数係が20%以上70俤以下の
範囲で、透過率の変化が大きいことが分る。sbが20
%以下では加熱によって透過率が増えているが、これは
X線回折解析によってTeの酸化によるものであること
が確かめられた。
From FIG. 1, it can be seen that the change in transmittance is large in the range where the Sb atomic number coefficient is 20% or more and 70% or less. sb is 20
% or less, the transmittance increases due to heating, but it was confirmed by X-ray diffraction analysis that this is due to oxidation of Te.

実施例1 厚さ1.2ffのスライドガラス上に、抵抗加熱法によ
り、Sb、 Te、及びGθを入れた3つの蒸着ポート
から、6元共蒸着により、第2表に示すような組成の膜
を、300λの厚みに、それぞれ形成した。比較例とし
て、 Sb、To8合金を1つの蒸着ポートから蒸着し
、300Aの厚みの膜を形成した。
Example 1 A film having the composition shown in Table 2 was formed on a slide glass with a thickness of 1.2 ff by six-component co-evaporation from three vapor deposition ports containing Sb, Te, and Gθ using a resistance heating method. were each formed to a thickness of 300λ. As a comparative example, Sb, To8 alloy was deposited from one deposition port to form a film with a thickness of 300A.

第   2   表 これらのサンプルを、50℃から250℃までの温度範
囲で、約10分間の加熱処理を施し、それぞれの温度に
おける光透過率を、波長1350 nmのところで測定
した。この透過率の変化率を第2図のすべての領域にお
いて、透過率の変化が大きい。
Table 2 These samples were subjected to heat treatment for about 10 minutes at a temperature range of 50° C. to 250° C., and the light transmittance at each temperature was measured at a wavelength of 1350 nm. The rate of change in transmittance is large in all regions in FIG. 2.

これらのサンプルで加熱処理を施さなかったものを50
℃、9Q%RHの恒温恒湿槽中に10日間放置したのち
、透過率を測定したところ、A及びGのサンプルの透過
率は、初期に比べて、それぞれ約2倍及び約1.5倍に
増加していた。この透過率の増加は’reの酸化による
ものと推測される。
50 of these samples that were not subjected to heat treatment.
When the transmittance of samples A and G was measured after being left in a constant temperature and humidity chamber at 9Q%RH for 10 days, the transmittance of samples A and G was about twice and about 1.5 times, respectively, compared to the initial value. It was increasing. It is presumed that this increase in transmittance is due to the oxidation of 're.

他方、A及びG以外のサンプルについては透過率の変化
はほとんど認められながった。
On the other hand, for samples other than A and G, almost no change in transmittance was observed.

以上より、Xの値が0.05〜0.7の範囲が、加熱に
よる透過率の変化が大きく、かつ高温多湿環境下でも安
定性であることが分る。
From the above, it can be seen that when the value of X is in the range of 0.05 to 0.7, the change in transmittance due to heating is large and the film is stable even in a high temperature and high humidity environment.

実施例3 直径305 Mn、厚さ1.5flの射出成形法によっ
て得られた円板状のアクリル基板の上に、抵抗加熱によ
り、Sb、Te及びGeを入れた3つの蒸着ボートから
3元共蒸着によって、Sb O02Te 004Go 
0.4の組成比の膜を、それぞれ+SOD @ 、 a
ooX 。
Example 3 On a disc-shaped acrylic substrate obtained by injection molding with a diameter of 305 Mn and a thickness of 1.5 fl, ternary components were deposited from three vapor deposition boats containing Sb, Te, and Ge by resistance heating. By vapor deposition, SbO02Te004Go
Films with a composition ratio of 0.4 were +SOD @ and a, respectively.
ooX.

1000A、  1500Aの厚みで形成した。これら
のサンプルを、900rpmで基板回転させ、透明な基
板越しに半導体レーザー(波長850nm)の光を集光
させて照射し、1.5MHzの信号を書き込んだ。この
際、円板上の直径140Hの所に信号を記録するに要し
たレーザーパワーは、記録膜面上でそれぞれ、4mW、
5mW、3.5mW、4mWであり、実用上、充分な感
度を有していた。
It was formed with a thickness of 1000A and 1500A. These samples were rotated at 900 rpm and irradiated with condensed light from a semiconductor laser (wavelength: 850 nm) through the transparent substrate to write a 1.5 MHz signal. At this time, the laser power required to record a signal at a diameter of 140H on the disk was 4 mW and 4 mW, respectively, on the recording film surface.
They were 5 mW, 3.5 mW, and 4 mW, and had sufficient sensitivity for practical use.

信号の再生には、同一波長の半導体レーザー光を用い、
1.2mWで再生した。信号のq/M比はバンド巾30
KHzにおいて、それぞれ30 dB 、 50dB 
、 53 dB 、 50 dB テあり、80C)A
以上のものに関してはすべて50 dB以上を得た。
To reproduce the signal, semiconductor laser light of the same wavelength is used,
Regeneration was performed at 1.2 mW. The signal q/M ratio has a band width of 30
30 dB and 50 dB at KHz, respectively
, 53 dB, 50 dB with te, 80C)A
For all of the above, we obtained more than 50 dB.

上記の記録媒体を80℃の乾燥群中に7日間放置したと
ころ、反射率の変化は全く認められず、また、C/l此
の変化も認められなかった。
When the above recording medium was left in a drying room at 80° C. for 7 days, no change in reflectance was observed, and no change in C/l was observed either.

これらのサンプルの250°Cでの加熱処理前後の反射
率を第5図に示す。計算曲線は、実施例1で求めた、屈
折率と消衰係数(ユ基づいて計算したものである。図中
の実線は加熱前、破線は加熱後のものである(以下同じ
)。
FIG. 5 shows the reflectance of these samples before and after heat treatment at 250°C. The calculated curve was calculated based on the refractive index and extinction coefficient (Y) determined in Example 1. The solid line in the figure is before heating, and the broken line is after heating (the same applies hereinafter).

実施例4 厚さ1.2Hのスライドグラス上に、抵抗加熱により、
 19b 、 To及びGeを入れた3つの蒸着ボート
から3元共蒸着によって、Bbo、、1□ Te。、4
8#600久の厚みで形成し、さらにその上に抵抗加熱
法によりSb膜を100OAの厚みで設けた。
Example 4 On a slide glass with a thickness of 1.2H, by resistance heating,
19b, Bbo, 1□Te by ternary codeposition from three deposition boats containing To and Ge. , 4
It was formed to have a thickness of 8#600mm, and an Sb film was further provided thereon to a thickness of 100OA by resistance heating.

これらのサンプルを、未処理の状態と、200°Cに加
温したオープン中で約10分間加熱処理を施した状態と
で、波長830nmの、スライドガラス側からの反射率
を測定した。この加熱処理前後の反射率を第6図に示す
。この第6図より、 sbを反射層に用いた場合は、記
録層の膜厚が、350^前後でコントラストが最も高い
ことが分る。
The reflectance from the slide glass side at a wavelength of 830 nm was measured for these samples in an untreated state and in a state in which they were heat-treated for about 10 minutes in an open air heated to 200°C. FIG. 6 shows the reflectance before and after this heat treatment. From FIG. 6, it can be seen that when sb is used for the reflective layer, the contrast is highest when the thickness of the recording layer is around 350^.

次に、実施例3と同様のアクリル基板及び、1.2Uの
スライドガラス上に、3元共蒸着法によって、SbO,
,120;48 Ge01.4の組成比の膜を、350
Aの厚さに形成したのち、さらに、この上に、抵抗加熱
法によってsbをそれぞれ200 A 、 500 A
形成した。スライドガラス上に形成したサンプルについ
て、同様に、スライドガラス側から測定した加熱処理前
後の反射率を第7図に示す。第6図及び第7図の計算曲
線は、実施例1で求めた、屈折率と消衰係数をもとにし
て計算したものである。
Next, SbO,
, 120; 48 Ge01.4 film with a composition ratio of 350
After forming sb to a thickness of 200 A and 500 A, respectively, on top of this by resistance heating method.
Formed. FIG. 7 shows the reflectance of the sample formed on the slide glass before and after the heat treatment, which was similarly measured from the slide glass side. The calculation curves shown in FIGS. 6 and 7 were calculated based on the refractive index and extinction coefficient determined in Example 1.

アクリル基板上に膜を形成したサンプルについて、実施
例3と同様の評価を行ったところ、 sb反射層が20
OA及び500Aのものについて、それぞれ、感度は4
 mW及び5.5mWで、CA比は60 dB及び58
dBであり、実用上、充分な感度及びい比を有していた
。しかし、Sbがsoo 又のものは、熱の逃散が大き
いために、20OAのものに比べて感度が低′<、イ比
も若干低かった。これらのサンプルを60℃の乾燥器中
に10日放置しても、感度、い比、反射率に変化は認め
られなかった。
When a sample with a film formed on an acrylic substrate was evaluated in the same manner as in Example 3, it was found that the sb reflective layer was 20
For OA and 500A, the sensitivity is 4
mW and 5.5 mW, the CA ratio is 60 dB and 58
dB, and had sufficient sensitivity and contrast ratio for practical use. However, the sensitivity was lower and the ratio was slightly lower in the case of the case with soo Sb compared to the case of 20OA due to large heat dissipation. Even when these samples were left in a dryer at 60° C. for 10 days, no change was observed in sensitivity, contrast ratio, or reflectance.

実施例5 射出成形により、あらかじめ溝(深さ700′A、中0
.5μm、ピッチ1.6μm)を設けた厚さ1.5鰭、
直径305flのアクリル基板上に抵抗加熱法により、
Sb 、 Te及びGeを入れた3つの蒸着ボートから
3元共蒸着によって、SbO,,25Te0z45  
GeO:3の組成比の膜を、3.ooiの厚みに形成さ
せたのち、その上にAI!の膜200kを同じく抵抗加
熱法で設けた。
Example 5 A groove (depth 700'A, medium 0
.. 1.5 fins with a thickness of 1.5 μm and a pitch of 1.6 μm,
By resistance heating method on an acrylic substrate with a diameter of 305 fl,
SbO,,25Te0z45 was obtained by ternary codeposition from three deposition boats containing Sb, Te, and Ge.
A film with a composition ratio of GeO: 3. After forming it to a thickness of ooi, apply AI! A film 200k was also provided by the resistance heating method.

この記録媒体を実施例3と同様の方法で評価したルの加
熱処理前後の反射率を第9図に示す。第8図及び第9図
は、それぞれAI!反射層Soo大及び記録層膜厚30
0^の場合の計算曲線であり、計算は実施例1で求めた
、屈折率と消衰係数をもとにして行ったものである。
This recording medium was evaluated in the same manner as in Example 3, and the reflectance before and after heat treatment is shown in FIG. Figures 8 and 9 are respectively AI! Reflective layer Soo large and recording layer thickness 30
This is a calculated curve in the case of 0^, and the calculation was performed based on the refractive index and extinction coefficient determined in Example 1.

これらのサンプルを、60℃の乾燥器中に、10日間放
置しても、感度、φ比、反射率に変化は認められなかっ
た。
Even when these samples were left in a dryer at 60° C. for 10 days, no change was observed in sensitivity, φ ratio, and reflectance.

実施例6 実施例5と同様のアクリル基板上に、抵抗加熱法により
、 Sb2Te、とGeを入れた2つの蒸着ボートから
2元共蒸着によってSb、Te3を200久、Geを1
00λ相当設けた。さらに、この上に電子ビーム蒸着法
によって、厚さ200λのSb膜を形成させたものと、
厚さ200^のBi2Te、膜を形成させたものをそれ
ぞれ調製した。
Example 6 On the same acrylic substrate as in Example 5, 200% of Sb and Te3 and 1% of Ge were deposited by binary co-evaporation from two deposition boats containing Sb2Te and Ge using a resistance heating method.
00λ equivalent was provided. Furthermore, an Sb film with a thickness of 200λ was formed on this by electron beam evaporation method,
A Bi2Te film having a thickness of 200^ was prepared.

また、比較例として、同様に基板上に厚さ300AのS
b、Te3 膜を形成したのち、その上に厚さ200A
のSb膜を形成させたものを調製した。いずれのサンプ
ルも形成された膜の組成比として、Geの含有量はほぼ
40%であった。 これら6つの記録媒体を、記録する
信号が3MHz であること以外は実施例3と同様の方
法で評価したところ、反射層がsbのものは、感度5 
mW%い比60佃を、反射層がB1□Tθ3のものは感
度3.5mW%CA比57 dBを得た。また、比較例
は、感度4.5mW、C,A比60dBを得た。
In addition, as a comparative example, a 300A thick S
b. After forming a Te3 film, a 200A thick film was formed on it.
An Sb film formed thereon was prepared. In terms of composition ratio of the film formed in each sample, the Ge content was approximately 40%. These six recording media were evaluated in the same manner as in Example 3, except that the signal to be recorded was 3 MHz, and the one with the sb reflective layer had a sensitivity of 5.
The mW% low ratio was 60 Tsukuda, and the reflection layer of B1□Tθ3 obtained a sensitivity of 3.5 mW% CA ratio of 57 dB. Moreover, the comparative example obtained a sensitivity of 4.5 mW and a C, A ratio of 60 dB.

これらの記録媒体を60℃の乾燥器中に7日間放置した
ところ、実施例の2つは感度、O/N比、反射率とも変
化がなかったが、比較例の記録媒体は、初期反射率25
%から40%に変化しており、す比は20dBと大幅に
低下していた。
When these recording media were left in a dryer at 60°C for 7 days, there was no change in the sensitivity, O/N ratio, or reflectance of the two examples, but the recording media of the comparative example showed no change in the initial reflectance. 25
% to 40%, and the ratio significantly decreased to 20 dB.

実施例7 厚さ1.5m、直径305flの強化ガラスの円板上に
、光硬化性樹脂を用いて、あらかじめ溝(深さ700ス
、幅0.6岬、ピッチ1.6μrrL)を形成した基板
上に、抵抗加熱法(二より、 Sb 、 Te及びGe
を入れた3つの蒸着ポートから3元共蒸着(:よって・
8bI:115  0−.55°80;5の組成比の膜
を・厚さ400^で形成させ、さらにこの上に、同様の
抵抗加熱法で30OAのB1膜を設けた。
Example 7 Grooves (depth 700 mm, width 0.6 cape, pitch 1.6 μrrL) were formed in advance on a tempered glass disc with a thickness of 1.5 m and a diameter of 305 fl using a photocurable resin. On the substrate, resistive heating method (secondary, Sb, Te and Ge
Ternary co-evaporation (: therefore,
8bI:115 0-. A film having a composition ratio of 55°80:5 was formed to a thickness of 400^, and a 30OA B1 film was further provided thereon by the same resistance heating method.

この記録媒体を実施例6と同様の方法で評価したところ
、感度6mW、q/N比5 f3 dBを得た。
When this recording medium was evaluated in the same manner as in Example 6, a sensitivity of 6 mW and a q/N ratio of 5 f3 dB were obtained.

これを80℃の乾燥群中に10日間放置しても、感度、
C,A比、反射率に変化は認められなかった。
Even if this was left in a dry room at 80°C for 10 days, the sensitivity
No change was observed in the C/A ratio or reflectance.

実施例8 実施例5と同様のアクリル基板上に、抵抗加熱法により
、St) 、 Te及びGeの3元素を共蒸着させ、組
成比(5bxTe□−X)アGθ□−7の膜を厚さ30
0Xで形成させた。ここで、y=0.6とし、Xの値を
0.1 、0,2 、0.3とした3種のサンプルを作
成した。これら3種のサンプルのすべてについて、(s
 bXT ex −x )yG el−7の膜上に、さ
らに厚さ200Aのsb膜を形成させた。
Example 8 On the same acrylic substrate as in Example 5, the three elements St), Te, and Ge were co-evaporated by resistance heating to form a film with a composition ratio of (5bxTe□-X)AGθ□-7. Sa30
Formed at 0X. Here, three types of samples were created in which y=0.6 and the value of X was 0.1, 0.2, and 0.3. For all these three samples, (s
An sb film with a thickness of 200 A was further formed on the bXT ex -x )yG el-7 film.

それぞれの媒体を実施例6と同様の方法で評価したとこ
ろ、それぞれ、感度、cyN比として(6,5mw、6
odB)、(4mW、60dB)、(4,smw。
When each medium was evaluated in the same manner as in Example 6, the sensitivity and cyN ratio (6.5 mw, 6
odB), (4mW, 60dB), (4,smw.

(5Q dB )を得た。これらのディスクを60°C
182%RHの条件下で7日間の加速テストを行ったの
ち信号を再生したところ、いずれのサンプルについても
い比の変化は認められなかった。
(5Q dB) was obtained. These discs at 60°C
When the signals were reproduced after performing an accelerated test for 7 days under the condition of 182% RH, no change in the ratio was observed for any of the samples.

実施例9 実施例5と同様のアクリル基板上に、電子ビーム蒸着法
により、5102膜を20OAの厚みに形成させたのち
、抵抗加熱法により、Sb 、 Te及びGeを入れた
3つの蒸着ポートから3元共蒸着によつそ、SbO,1
5Te0.45  Ge□、4の組成比の膜を100O
Aの厚みに形成させ、最後に電子ビーム蒸着法によって
SiQ□を20OAの厚みに形成した。
Example 9 A 5102 film was formed to a thickness of 20 OA by electron beam evaporation on the same acrylic substrate as in Example 5, and then deposited from three evaporation ports containing Sb, Te, and Ge by resistance heating. By ternary codeposition, SbO,1
5Te0.45Ge□, a film with a composition ratio of 4 at 100O
Finally, SiQ□ was formed to a thickness of 20 OA by electron beam evaporation.

これらのサンプルを、  900rl)m  で基板回
転させ、透明な基板越しに半導体レーザー(波長830
 nm )の光を集光させて照射し円板上の直径約14
0ffの個所に情報信号を書き込んだ。情報信号として
は、M”FM変調方式に従った単一周波数(5,1MH
z )のパルス列を用いた。信号の再生には、同一波長
の半導体レーザー光を用い、1.2mWで再生を行い、
記録した情報信号と比較してビットエラー率を求めた。
These samples were rotated at a speed of 900 rl) m and exposed to a semiconductor laser (wavelength: 830 rl) through the transparent substrate.
nm) is focused and irradiated to create a diameter of about 14 nm on the disk.
An information signal was written to the 0ff location. The information signal is a single frequency (5.1MHz) according to the M”FM modulation method.
A pulse train of z) was used. To reproduce the signal, a semiconductor laser beam of the same wavelength is used, and the reproduction is performed at 1.2 mW.
The bit error rate was determined by comparing with the recorded information signal.

ビットエラー率を求める際に、レーザーの記録パワーを
変化させて、位相マ、−ジンを測定し、最も位相マージ
ンの広いときの記録パワーを最適書き込みパワーとした
When determining the bit error rate, the recording power of the laser was varied and the phase margin was measured, and the recording power at which the phase margin was the widest was determined as the optimum writing power.

このようにして上記のサンプルを評価したところ、最適
書き込みパワー及びビットエラー率(以下BERと略す
こととする)は、それぞれ4.OmW及び3×10弓で
あった。
When the above sample was evaluated in this way, the optimal write power and bit error rate (hereinafter abbreviated as BER) were 4.4. OmW and 3x10 bows.

実施例10 実施例5と同様のアクリル基板上に、スパッタ法によっ
て813N4を400A%Sbo、15Teo、5@9
らにSi3N4を40OAの厚さで順次形成させた。
Example 10 813N4 was deposited at 400A% Sbo, 15Teo, 5@9 on the same acrylic substrate as in Example 5 by sputtering.
Furthermore, Si3N4 was sequentially formed to a thickness of 40 OA.

このサンプルを実施例9と同様の方法で評価を行ったと
ころ、  BERは2×10″であった。
When this sample was evaluated in the same manner as in Example 9, the BER was 2×10''.

上記のサンプルを60℃、90%皿の環境下に20日間
放置したのちに、以前に書き込んだ信号のB113Rを
調べたところ、2X10−6でまったく変化が認められ
なかった。
After the above sample was left in a 90% dish environment at 60°C for 20 days, the previously written signal B113R was examined, and no change was observed at 2X10-6.

実施例11 実施例5と同様のアクリル基板上(−1電子ビ一ム蒸着
法によって81Qを40OA形成したのち、抵抗加熱法
により、 Sb 、 Te及びGeを入れた3つのポー
トから3元共蒸着によってSbO;15 Te0s45
Ge o、4の組成比の膜を3501の厚さに形成させ
、さらに、電子ビーム蒸着法によってsbを20OA。
Example 11 On the same acrylic substrate as in Example 5 (40OA of 81Q was formed by electron beam evaporation method, and then ternary co-evaporation was performed from three ports containing Sb, Te, and Ge by resistance heating method). by SbO;15 Te0s45
A film with a composition ratio of Ge o.

SiQを60OAの厚さで順次形成させた。SiQ was sequentially formed to a thickness of 60 OA.

このサンプルを、実施例9と同様の方法で評価したとこ
ろ、BERはI X 10”であった。次に、いったん
記録したトラック(基板上の溝)上に再生レーザー光1
.2mWを照射し続け、10日間にわたって連続再生を
行ったところ、 BKR及び位相マージン共にまったく
変化が認められなかった。さらに、このサンプルを60
°C,90SRHの環境下に20日間放置したのちに、
以前に記録した信号のBKRを調べたところ、lX10
′でありまったく変化が認められなかった。
When this sample was evaluated in the same manner as in Example 9, the BER was I x 10''.Next, one beam of reproduction laser light was applied to the previously recorded track (groove on the substrate).
.. When irradiation was continued at 2 mW and continuous reproduction was performed for 10 days, no change was observed in either BKR or phase margin. Furthermore, this sample is 60
After being left in an environment of °C and 90 SRH for 20 days,
When I checked the BKR of the previously recorded signal, I found that lX10
', and no change was observed.

実施例12 実施例5と同様のアクリル基板上に、電子ピーム蒸着法
によってEliO□膜を500Xの厚さで形成させたの
ち、Sb 、 Teを電子ビーム法、 Geを抵抗加熱
法により3元共蒸着させて、s b o 、2 Te。
Example 12 After forming an EliO□ film with a thickness of 500× on the same acrylic substrate as in Example 5 by electron beam evaporation, Sb and Te were formed by electron beam method, and Ge by resistance heating method. Deposit s b o , 2 Te.

:45Ge0135の組成比の膜を4001形成させ、
さら1:この上に、電子ビーム蒸着法により、Sbを3
00λ、5102を50OAの厚さでそれぞれ形成させ
た。
:4001 film with a composition ratio of 45Ge0135 is formed,
Further 1: On top of this, 3 Sb is added by electron beam evaporation method.
00λ and 5102 were each formed to a thickness of 50OA.

このサンプルを、実施例9と同様の方法で評価したとこ
ろ、BBRは1×10″であった。次に、このサンプル
を60℃、90%RHの環境下に20日間放置したのち
に、以前に記録した信号のBKRを調べたところ、lX
10”でありまったく変化が認められなかった。
When this sample was evaluated in the same manner as in Example 9, the BBR was 1 x 10''. Next, after leaving this sample in an environment of 60°C and 90% RH for 20 days, When I checked the BKR of the signal recorded on
10'' and no change was observed.

実施例13 射出成形により、あらかじめ溝を設けた(深さ700A
1幅0,65ttmsピッチ1.6μ7+り厚さ1.5
Uのアクリル基板上に、5b2Tθ3及びGeのターゲ
ットを用いて、高周波スパッタ法により、同時にスパッ
タリングさせて、組成が、81) 20 T ess 
G e 4sの膜厚500Aの記録層を設け、さらにそ
の上に10OAのSb膜を抵抗加熱法により設けた。こ
の媒体の基板を通して半導体レーザー光(波長830m
)を集光し、照射し、1.5MHzの信号を、60Or
pmの基板回転速度で記録した。記録に要したレーザー
パワーは、記録面で5 mWであった。
Example 13 Grooves were prepared in advance by injection molding (depth 700A).
1 width 0.65ttms pitch 1.6μ7+thickness 1.5
Sputtering was performed simultaneously on a U acrylic substrate by high frequency sputtering using 5b2Tθ3 and Ge targets, and the composition was 81) 20 T ess
A recording layer of Ge 4s with a thickness of 500 Å was provided, and an Sb film of 10 OA was further provided thereon by a resistance heating method. Semiconductor laser light (wavelength 830m) passes through the substrate of this medium.
), irradiate it, and transmit a 1.5MHz signal to 60Or
The substrate rotation speed was recorded in pm. The laser power required for recording was 5 mW on the recording surface.

信号の再生には、1.2mWの半導体レーザー光を用い
、い比58佃を得た。この媒体を60°C180% R
Hの条件下で7日間加速テストを行ったが、感度、 O
,J比とも変化が認められなかった。
A 1.2 mW semiconductor laser beam was used to reproduce the signal, and a ratio of 58 was obtained. Heat this medium at 60°C180% R
An accelerated test was conducted for 7 days under conditions of H, but the sensitivity and O
No change was observed in either , or J ratio.

実施例14 厚さ1.5ff、直径305ffの強化ガラス上に光硬
化性樹脂を用いて、あらかじめ溝(深さ700^、幅0
.6μ扉、ピッチ1.6PL)を形成した基板上に、抵
抗加熱法により真空度2×10″″’ T□rrで、S
b、Te3とGeとを2元共蒸着させ、膜厚600Aの
記録層を設けた。さらにこの膜の上に、同様な抵抗加熱
法により、厚さ100AのM層を設けた。
Example 14 A groove (depth 700^, width 0
.. 6 μ door, pitch 1.6 PL) was formed on the substrate, and S
b. A recording layer with a thickness of 600 Å was formed by co-evaporating Te3 and Ge. Furthermore, an M layer having a thickness of 100 A was provided on this film by a similar resistance heating method.

実施例13と同様の方法で評価したところ、感度6.5
mW%(,4J比60 dBを得た。この媒体な   
80℃の乾燥器中に10日間、放置しても、感度、c、
Ax比、反射率に変化は認められなかった。ちなみに、
このときの反射率は31%であった。
When evaluated using the same method as in Example 13, the sensitivity was 6.5.
mW% (,4J ratio 60 dB was obtained.This medium
Even if left in a dryer at 80°C for 10 days, the sensitivity, c,
No change was observed in Ax ratio or reflectance. By the way,
The reflectance at this time was 31%.

実施例15 実施例13と同様のアクリル基板上に、抵抗加熱法によ
り、 8b、Te、とGeを入れた2つの蒸着ボートか
ら2元共蒸着させて、8b、Te、を20OA、Geを
100A相当設けた。さら(:、この上に同様な抵抗加
熱法によって、Sb膜を200 Kの厚さで形成させた
ものと、Bi、Te、膜を200又の厚さで形成させた
ものをそれぞれ調製した。比較例として、同様の基板上
に、sb、’re3膜を300久の厚さで形成したのち
、その上にSb膜を200 Hの厚さで形成させたもの
を調製した。いずれのサンプルも、膜の組成比は、Sb
:Teはほぼ2:3であり、Geを加えた2種について
、 Go の含有量はほぼ40%であった。
Example 15 On the same acrylic substrate as in Example 13, 8b, Te, and Ge were co-evaporated from two evaporation boats containing 8b, Te, and Ge at 20OA and Ge at 100A by resistance heating method. I set it up quite a bit. Furthermore, by using a similar resistance heating method, an Sb film was formed on this film to a thickness of 200 K, and a film on which a Bi, Te film was formed to a thickness of 200 K was prepared. As a comparative example, an sb,'re3 film was formed on a similar substrate to a thickness of 300 H, and then an Sb film was formed on it to a thickness of 200 H. Both samples , the composition ratio of the film is Sb
:Te was approximately 2:3, and the Go content was approximately 40% for the two types with Ge added.

これら3つの記録媒体を、記録する信号が5MHzであ
ること以外は実施例3と同様の方法で評価したところ、
反射層がsbのものは、感度5 mW%す比60 dB
を、反射層がBi、 Te3のものは感度3.5mw、
OA比57 dBを得た。また、比較例は、感度4.5
mw%c、r比60 dBを得た。
These three recording media were evaluated in the same manner as in Example 3, except that the recorded signal was 5 MHz.
When the reflective layer is sb, the sensitivity is 5 mW% and the ratio is 60 dB.
The reflective layer is Bi and Te3 has a sensitivity of 3.5 mw.
An OA ratio of 57 dB was obtained. In addition, the comparative example has a sensitivity of 4.5
mw%c, r ratio of 60 dB was obtained.

これらの記録媒体を60℃の乾燥器中に7日間放置した
ところ、実施例の2つは感度、曽比、反射率とも変化が
なかったが、比較例の記録媒体は、反射率が初期25%
だったものが40%にも変化しており、 CA比は20
 (LB  と大巾に低下していた。
When these recording media were left in a dryer at 60°C for 7 days, there was no change in the sensitivity, so-ratio, or reflectance of the two examples, but the recording media of the comparative example had an initial reflectance of 25. %
This has changed from 40% to 40%, and the CA ratio is 20.
(It had dropped to LB.

実施例16 実施例13と同様のアクリル基板上に、抵抗加熱法によ
り、Sb 、 Te及びGeの3元素を共蒸着させ、組
成比(SbxTθt −z)yGet−yの膜を300
 又の厚さで形成した。ここで、X=0.4とし、yの
値を0.5 、0,7 、0.9とした3種のサンプル
を作成した。これら3種のサンプルのすべてについて(
S bxT el −x )yGel−yの上に、さら
にsbを200^の厚さで形成させた。
Example 16 On the same acrylic substrate as in Example 13, the three elements Sb, Te, and Ge were co-evaporated by a resistance heating method to form a film with a composition ratio (SbxTθt-z)yGet-y of 300%.
It was formed with the same thickness. Here, three types of samples were created with X=0.4 and y values of 0.5, 0.7, and 0.9. For all three of these samples (
On top of SbxTel-x)yGel-y, sb was further formed to a thickness of 200^.

それぞれの媒体を実施例15と同様の方法で評価したと
ころ、それぞれ感度、い比として(5,5mW 、 5
8 dB )、(5mW 、 60 dB )、(4,
5mW 、 60 dB )を得た。これらのディスク
を6゜’C,824RHの条件下で7日間の加速テスト
を行なったのちに信号を再生したところ、yの値が0.
9の媒体においてはコントラストが減少し、OA比が4
 Q cLBに低下していたが、yが0.5及び0.7
のものはφ比の変化は認められなかった。
When each medium was evaluated in the same manner as in Example 15, the sensitivity and ratio (5.5 mW, 5
8 dB), (5mW, 60 dB), (4,
5 mW, 60 dB). When these discs were subjected to an acceleration test for 7 days at 6°C and 824RH, and the signal was played back, the y value was 0.
9 medium, the contrast decreases and the OA ratio is 4.
Q had decreased to cLB, but y was 0.5 and 0.7
No change in the φ ratio was observed in the case of .

発明の効果 本発明によれば、高感度かつ高り比で情報が記録され、
かつ温度及び湿度に対して極めて安定であり、信頼度の
高い情報記録媒体を提供することができる。
Effects of the Invention According to the present invention, information is recorded with high sensitivity and height ratio,
Moreover, it is extremely stable with respect to temperature and humidity, and a highly reliable information recording medium can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は参考例の透過率変化を示すグラフ、第2図は実
施例1の加熱による透過率変化を示すグラフ、第3図は
実施例1の熱的安定性を示すグラフ、第4図は実施例2
の透過率変化を示すグラフ、第5図、第6図、第7図、
第8図及び第9図は、それぞれ実施例3、実施例4及び
実施例5のサンプルの反射率を示すグラフ、第10図、
第11図、第12図及び第13図は1本発明による情報
記録媒体のそれぞれ異なった例を示す断面図であり、図
中1は基板、2は記録層、3は反射層、4は金属化合物
層を、それぞれ表わす。 特許出願人  旭化成工業株式会社
Fig. 1 is a graph showing the transmittance change of the reference example, Fig. 2 is a graph showing the transmittance change due to heating of Example 1, Fig. 3 is a graph showing the thermal stability of Example 1, and Fig. 4 is a graph showing the transmittance change of Example 1. is Example 2
Graphs showing changes in transmittance, Figures 5, 6, 7,
8 and 9 are graphs showing the reflectance of samples of Example 3, Example 4, and Example 5, respectively; FIG. 10;
11, 12, and 13 are cross-sectional views showing different examples of information recording media according to the present invention, in which 1 is a substrate, 2 is a recording layer, 3 is a reflective layer, and 4 is a metal Each represents a compound layer. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 1 基板上に、加熱により光の吸収係数が変化する材料
から成る記録層を設け、該吸収係数の変化によつて生じ
る光の反射率の変化により情報を記録する情報記録媒体
において、該記録層が少なくともSb、Te及びGeの
3元素から成り、かつこれらの3元素が、一般式 (Sb_xTe_1_−_x)_yGe_1_−_y(
ただし、xは0.05〜0.7、yは0.4〜0.8の
範囲の数である) で示される組成を有することを特徴とする情報記録媒体
[Claims] 1. Information recording in which a recording layer made of a material whose light absorption coefficient changes when heated is provided on a substrate, and information is recorded by a change in light reflectance caused by the change in the absorption coefficient. In the medium, the recording layer is made of at least three elements, Sb, Te, and Ge, and these three elements have the general formula (Sb_xTe_1_-_x)_yGe_1_-_y(
However, x is a number in the range of 0.05 to 0.7, and y is a number in the range of 0.4 to 0.8.
JP60290692A 1984-12-26 1985-12-25 Information-recording medium Granted JPS6253886A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US06/831,577 US4670345A (en) 1985-02-22 1986-02-21 Information recording medium
CA000502376A CA1236693A (en) 1985-02-22 1986-02-21 Information recording medium
DE8686301275T DE3671122D1 (en) 1985-02-22 1986-02-21 INFORMATION RECORDING MEDIUM.
EP19860301275 EP0195532B1 (en) 1985-02-22 1986-02-21 An information recording medium
JP2329491A JPH0694230B2 (en) 1985-12-25 1990-11-30 Information recording material
JP2329490A JPH0725208B2 (en) 1985-12-25 1990-11-30 Information recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP59-280586 1984-12-26
JP28058684 1984-12-26
JP60-33779 1985-02-22
JP60-100876 1985-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2329490A Division JPH0725208B2 (en) 1985-12-25 1990-11-30 Information recording medium
JP2329491A Division JPH0694230B2 (en) 1985-12-25 1990-11-30 Information recording material

Publications (2)

Publication Number Publication Date
JPS6253886A true JPS6253886A (en) 1987-03-09
JPH0380635B2 JPH0380635B2 (en) 1991-12-25

Family

ID=17627095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290692A Granted JPS6253886A (en) 1984-12-26 1985-12-25 Information-recording medium

Country Status (1)

Country Link
JP (1) JPS6253886A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62209742A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Optical information recording member
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
JPS6462466A (en) * 1987-09-03 1989-03-08 Matsushita Electric Ind Co Ltd Sputtering target for forming information recording thin film and production thereof
WO1991005342A1 (en) * 1989-09-28 1991-04-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium and method of producing the same
JPH0845074A (en) * 1986-09-22 1996-02-16 Matsushita Electric Ind Co Ltd Optical reversible recording method
US5580632A (en) * 1993-09-22 1996-12-03 Kabushiki Kaisha Toshiba Information recording medium
US6149999A (en) * 1996-02-28 2000-11-21 Asahi Kasei Kogyo Kabushiki Kaisha Method of designing a phase-change optical recording medium, and a phase-change optical recording medium
US6335069B1 (en) 1997-02-28 2002-01-01 Asahi Kasei Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
US6699637B2 (en) 1997-04-16 2004-03-02 Asahi Kasei Kabushiki Kaisha Process for producing optical information recording medium and optical information recording medium produced by the process
WO2004038502A1 (en) * 2002-10-23 2004-05-06 Samsung Electronics Co., Ltd. Pattern forming materials and pattern formation method using the materials
EP1426940A1 (en) * 2001-09-12 2004-06-09 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and recording method using it
EP2178086A2 (en) 1998-09-09 2010-04-21 Mitsubishi Kagaku Media Co., Ltd. Optical recording method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042841A (en) * 1973-08-20 1975-04-18
JPS52115202A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Recording member for information
JPS52130304A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Information recording material
JPS5372506U (en) * 1976-11-19 1978-06-17
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS5912612U (en) * 1982-07-15 1984-01-26 小柳工業株式会社 Gate rubber for ready-mixed concrete manufacturing storage tank hopper
JPS6189889A (en) * 1984-10-11 1986-05-08 Nippon Columbia Co Ltd Optical information-recording medium
JPS61152487A (en) * 1984-12-25 1986-07-11 Nippon Columbia Co Ltd Photo-information recording medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042841A (en) * 1973-08-20 1975-04-18
JPS52115202A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Recording member for information
JPS52130304A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Information recording material
JPS5372506U (en) * 1976-11-19 1978-06-17
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS5912612U (en) * 1982-07-15 1984-01-26 小柳工業株式会社 Gate rubber for ready-mixed concrete manufacturing storage tank hopper
JPS6189889A (en) * 1984-10-11 1986-05-08 Nippon Columbia Co Ltd Optical information-recording medium
JPS61152487A (en) * 1984-12-25 1986-07-11 Nippon Columbia Co Ltd Photo-information recording medium

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152786A (en) * 1985-12-27 1987-07-07 Hitachi Ltd Information-recording thin film
JPS62209742A (en) * 1986-03-11 1987-09-14 Matsushita Electric Ind Co Ltd Optical information recording member
JPH0845074A (en) * 1986-09-22 1996-02-16 Matsushita Electric Ind Co Ltd Optical reversible recording method
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
JPS6462466A (en) * 1987-09-03 1989-03-08 Matsushita Electric Ind Co Ltd Sputtering target for forming information recording thin film and production thereof
WO1991005342A1 (en) * 1989-09-28 1991-04-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium and method of producing the same
US5395735A (en) * 1989-09-28 1995-03-07 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method of manufacture
US5652037A (en) * 1993-09-22 1997-07-29 Kabushiki Kaisha Toshiba Information recording medium
US5580632A (en) * 1993-09-22 1996-12-03 Kabushiki Kaisha Toshiba Information recording medium
US6149999A (en) * 1996-02-28 2000-11-21 Asahi Kasei Kogyo Kabushiki Kaisha Method of designing a phase-change optical recording medium, and a phase-change optical recording medium
US6335069B1 (en) 1997-02-28 2002-01-01 Asahi Kasei Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
US6699637B2 (en) 1997-04-16 2004-03-02 Asahi Kasei Kabushiki Kaisha Process for producing optical information recording medium and optical information recording medium produced by the process
EP2178086A2 (en) 1998-09-09 2010-04-21 Mitsubishi Kagaku Media Co., Ltd. Optical recording method
EP1426940A1 (en) * 2001-09-12 2004-06-09 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and recording method using it
EP1426940A4 (en) * 2001-09-12 2006-10-25 Matsushita Electric Ind Co Ltd Optical information recording medium and recording method using it
US7304930B2 (en) 2001-09-12 2007-12-04 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and recording method using the same
WO2004038502A1 (en) * 2002-10-23 2004-05-06 Samsung Electronics Co., Ltd. Pattern forming materials and pattern formation method using the materials

Also Published As

Publication number Publication date
JPH0380635B2 (en) 1991-12-25

Similar Documents

Publication Publication Date Title
US4670345A (en) Information recording medium
US4650742A (en) Recording media with recording layer of two metal layers sandwiching sublimable organic substance layer
JPS6253886A (en) Information-recording medium
JPH0896411A (en) Information recording medium and its production
JPS61258787A (en) Information-recording medium
JP2002133712A (en) Optical information recording medium, its manufacturing method, recording/reproducing method and recording/ reproducing device
JPWO2006043357A1 (en) Optical information recording medium and manufacturing method thereof
JP3752177B2 (en) Write-once optical information recording medium and manufacturing method thereof
JPS61156545A (en) Information recording medium and recording method
JP4667721B2 (en) Optical recording medium and manufacturing method thereof
JPH04298389A (en) Optical recording medium and manufacture thereof
JPH0582838B2 (en)
JPS6216193A (en) Optical information-recording member
JPH04228126A (en) Optical information recording medium
JPH03178480A (en) Material for information recording
JPH03178479A (en) Information recording medium
JPH0363178A (en) Data recording membrane and data recording and reproducing method
JPS60226037A (en) Information recording medium
JPH02249687A (en) Optical recording medium and preparation thereof
JPS60124039A (en) Optical information recording medium
JPS62154341A (en) Optical recording emdium
JPH02139280A (en) Optical recording medium and manufacture thereof
JPH02217289A (en) Optical recording medium
JPH042437B2 (en)
JPS60109039A (en) Optical information recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term