JPH0380635B2 - - Google Patents

Info

Publication number
JPH0380635B2
JPH0380635B2 JP60290692A JP29069285A JPH0380635B2 JP H0380635 B2 JPH0380635 B2 JP H0380635B2 JP 60290692 A JP60290692 A JP 60290692A JP 29069285 A JP29069285 A JP 29069285A JP H0380635 B2 JPH0380635 B2 JP H0380635B2
Authority
JP
Japan
Prior art keywords
point
change
recording
ratio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60290692A
Other languages
Japanese (ja)
Other versions
JPS6253886A (en
Inventor
Isao Morimoto
Kazumi Itagaki
Koichi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to EP19860301275 priority Critical patent/EP0195532B1/en
Priority to US06/831,577 priority patent/US4670345A/en
Priority to DE8686301275T priority patent/DE3671122D1/en
Priority to CA000502376A priority patent/CA1236693A/en
Publication of JPS6253886A publication Critical patent/JPS6253886A/en
Priority to JP2329490A priority patent/JPH0725208B2/en
Priority to JP2329491A priority patent/JPH0694230B2/en
Publication of JPH0380635B2 publication Critical patent/JPH0380635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、新規な情報記録材料、さらに詳しく
いえば、所定の基板上に設けた記録層にレーザー
光のようなエネルギービームを照射し、照射部分
の、反射率変化を利用して、情報の記録及び読み
出しを行うための媒体に関するものである。 従来の技術 従来提案されている記録可能な情報記録媒体と
しては、例えば基板上に所定の記録層を設け、レ
ーザー光を照射し、情報に応じた孔を形成させ、
この孔を有無による反射率の差を利用して情報を
読み出す記録媒体が知られている。 この場合、使用される記憶層としては、融点の
低いTeやBi及びそれらを含む合金あるいは化合
物などがよく知られている。 また、レーザー光照射により光学特性を変化さ
せ、この光学特性の変化によつて生じる反射率の
変化を利用する記録層も提案されている、このよ
うなものとしては、例えばTeO2中にTeの微粒子
を分散させた系(特開昭59−185048号公報)や、
Sb2Se3Bi2Te3などの2層構造のもの(特開昭59
−35988号公報)や、Teを主成分とするカルコゲ
ナイド・ガラス(特公昭47−26897号公報)など
が知られている。 しかしながら、上記の孔開け方式では、孔を形
成させるに際して、加熱の他に溶融、分散、ある
いは蒸発という過程を伴うために、溶融時の粘度
や分散時の表面張力などが微妙な影響を与え、孔
の形状を制御しにくく、また、孔の内部に残留物
が発生して、ノイズの増加やエラーの増加をもた
らす欠点がある。 他方、レーザー光照射による加熱によつて生じ
る光学特性の変化を利用する方式では、記録層の
溶融、分散あるいは蒸発という過程を必要としな
いために、ピツトの形状を制御することが容易で
あり、かつ、孔内の残留物発生という問題もなく
なる。しかし、この方式を利用する従来お記録材
では、熱的安定性が乏しく、これが実用上の損害
となつていた。 ところで、Sb2Te3という化合物は、加熱によ
つて透過率が大きく変化するために、これまでも
情報記録材として利用することが検討されていた
が、変化温度が低く熱的安定性に欠くため、実用
上の使用が不可能とされていた〔ジヤーナル・オ
ブ・アプライド・フイジツスクス(J.Appl.
Phys.)」第54巻(No.3)、第1256〜1260ページ〕。 発明が解決しようとする問題点 本発明の目的はこのような事情に鑑み、レーザ
ー照射による光学特性の変化を利用する情報記録
媒体において、熱的に安定であり、かつ感度S/
N比及びビツトエラー率の点て従来のものよりも
優れた記録材を提供することにある。 問題点を解決するための手段 本発明者らは、前記目的を達成する鋭意研究を
重ねた結果、基板上に少なくともSb、Te及びGe
の3元素から成り、かつこれらの3元素の割合が
特定の範囲にある記録層を設けることにより、
Sb−Teの二元系の特徴である光学性の変化自体
をほとんど変えることがなく、熱的安定性を大幅
に向上しうることを見い出し、この知見に基づい
て本発明を完成するに至つた。 すなわち、本発明は、基板上に、加熱により光
の吸収係数が変化する材料から成る記録層を設
け、該吸収係数の変化によつて生じる光の反射率
の変化により情報を記録する情報記録媒体におい
て、該記録層が少なくともSb、Te及びGeの3元
素から成り、かつこれからの3元素の原子数比
が、これらの各元素を頂点とする三角座標グラフ
において、点(Sb0.8Te0Ge0.2)と点(Sb0Te0.8
Ge0.2)とを結ぶ直線イ、点(Sb0.7Te0.3Ge0)と
点(Sb0Te0Ge1.0)とを結ぶ直線ロ、点(Sb0.2
Te0Ge0.8)と点(Sb0.2Te0.8Ge0)とを結ぶ直線
ハ、点(Sb0.4Te0Ge0.6)と点(Sb0Te0.4Ge0.6
とを結ぶ直線ニ及び点(Sb0.4Te0.6Ge0)と点
(Sb0Te0.5Ge0.5)とを結ぶ直線ホによつて囲まれ
る領域内〔ただし直線ハ及びホの線上の点を含ま
ない〕の組成を有することを特徴とする情報記憶
媒体を提供するものである。 この際の加熱の手段としては、レーザー光や電
子ビームなどのエネルギービームの照射が好適で
ある。 レーザー光や電子ビームなどのエネルギービー
ムの照射により情報を記録する場合、エネルギー
ビームの照射による加熱温度及び照射後の冷却速
度により、2通りの記録を行うことができる。す
なわち、吸収係数の小さい状態から大きい状態へ
変化させることによつて記録を行つたり、吸収係
数の大きい状態から小さい状態へ変化させること
によつても記録を行うことができる。 本発明の情報記録媒体における記録層は、第1
図に示すSb、Te及びGeを3つの頂点とする三角
座標グラフにおいて、斜線で示された範囲内の組
織を有するものから成つていることが必要であ
る。これよりもSbの割合が少ないと加熱による
吸収係数の変化が小さく、十分なコントラストが
得られない上に、温度や湿度に対する安定性が低
下するし、また、これよりも多くなるとコントラ
ストが極端に低くなり、したがつてS/N比も低
くなる。他方、Geの割合が少ないと加熱による
吸収係数の変化が低温で起るようになり熱安定性
が低下するし、また、これが多くなりすぎるとコ
ントラストが極端に低下し、S/N比も低くな
る。 本発明の情報記録媒体においては、記録層とし
てSb、Te及びGeの3元素のみから成るものを用
いるだけで実用的には十分であるが、必要に応じ
他の元素を含有させることもできる。 本発明における記録層は、真空蒸着、スパツタ
リングなどの蒸着法で形成される。組成のコント
ロールには、真空蒸着の場合は、三元共蒸着法
や、あるいは特定組成の蒸着物をフラツシユ蒸着
法によつて行うのが好ましく、また、所望の組成
によつては、二元共蒸着法で行うこともできる。 他方、スパツタリングの場合は、特定組成のタ
ーゲツト材料を用いたり、1つの元素あるいは合
金のターゲツト材の上に、他の元素あるいは合金
の破片を置いて行うのが有利である。 真空蒸着法によつて膜形成を行う場合には、真
空空度は10-5〜10-6Torrの範囲、蒸着速度は0.5
〜20Å/秒の範囲が好ましく、また、基板温度と
しては特に制限はないので、室温が望ましい。一
方、スパツタリング法による場合は、特に基板温
度が上昇しやすいので、冷却する必要がある。 一般に、基板上に薄膜が積層されている場合の
反射率は、基板及び薄膜の屈折率、吸収係数及び
厚みによつて一義的に決まるので、加熱前後の屈
折率及び吸収係数を用いて、各膜厚での反射率を
求めることによつて、加熱前後の反射率変化を大
きくするための膜厚の範囲は自ずと決まる。一
方、実際にレーザー光などの照射によつて記録を
行う場合には、記録層や反射層の膜厚によつてレ
ーザー光の吸収率や熱の逸散状態が異なり、した
がつて記録感度が異なつてくる。記録層や反射層
の好ましい膜厚範囲は、主に前記した2つの要因
から決まる。 前記のSb−Te−Ge系材料を記録層として情報
記録媒体に用いる場合、十分なコントラストを得
るために、記録層の膜厚は700Å以上、好ましく
は800〜2000Åの範囲にするのがよい。しかし、
膜厚をあまり厚くすると、光の吸収係数を変化さ
せるための、物理化学的な状態変化を膜厚方向に
一様に生じさせにくくなり、本来の高いコントラ
ストに相当するS/N比を得ることができなくな
る。これに対し、記録層の上若しくは下に反射層
を設ける場合、記録層の膜厚が薄い領域において
も十分なコントラストを得ることができ、その結
果高いS/N比を得ることができるので有利であ
る。このような反射層を設ける場合には、記録層
の膜厚は反射層の材料及び膜厚によつて左右され
るが、一般に20〜1000Åの範囲が好ましい。 反射層に用いることのできる材料としては、情
報読み出しビームに対して高い吸収係数を有する
物質が好ましく、このようなものとしては、例え
ばAl、Ti、Cr、Co、Ni、Se、Ge、Zr、Ag、
In、Sn、Sb、Te、Pt、Au、Pb、Biなどの金属、
あるいはそれらの合金を挙げることができる。こ
れらの中で特にSb、Te及びBi、あるいはそれら
の合金が、感度の点で優れている。該反射層は、
これらの元素や合金の単独でもよいが、2種以上
の元素あるいは合金を積層してもよい。この反射
層の膜厚は100Å以上が好ましく、特に感度の点
から100〜1000Åの範囲にあることが好ましい。
なお、以下において、反射層を設けた構成につい
て述べる場合、記録層と反射層の両者を合わせて
情報担体層と称する。 本発明における反射層は、記録層と同様、真空
蒸着、スパツタリングなどの蒸着法を用いて形成
することができる。 本発明における基板としては、ガラスやガラス
上に光硬化性樹脂を設けたもの、ポリカーボネー
ト、アクリル樹脂、エポキシ樹脂、ポリスチレン
などのプラスチツク基板、アルミニウム合金など
の金属板などが用いられる。 第2図及び第3図は、本発明の記録媒体の構造
例を示す断面図であり、1は基板、2は記録層、
3は反射層である。 本発明の記録媒体を実際に情報記録媒体として
用いる場合は、基板上に記録材を設けた2枚の同
一の円板を、記録材を設けた面を互いに対向させ
た状態で、スペーサーを介して接着一体化した、
いわゆるエアーサンドイツチ構造や、2枚の同一
の円板を、記録材を設けた面を互いに対向させた
状態で、スペーサーを介さずに、全面で接着し一
体化させた、いわゆる全面接着構造、あるいはこ
れらとは全く異なり、フイルム状のシートの上に
記録材を設け、このシートをロール状に巻いた構
造などいずれの構造にしてよい。 実施例 次に参考例及び実施例によつて本発明をさらに
詳細に説明する。なお、この実施例では、吸収係
数の小さい状態から大きい状態へ変化させること
によつて記録を行う場合について説明するが、逆
の場合も同様に行うことができる。 参考例 1 厚さ1.2mmのスライドガラス上に、抵抗加熱法
により、Sb及びTeを入れた2つの蒸着ボートか
ら、2元共蒸着により第1表に示すような組成の
膜を、300Åの厚みでそれぞれ形成した。
Industrial Application Field The present invention is a novel information recording material, more specifically, an energy beam such as a laser beam is irradiated onto a recording layer provided on a predetermined substrate, and changes in the reflectance of the irradiated portion are utilized. The present invention relates to a medium for recording and reading information. BACKGROUND ART Conventionally proposed recordable information recording media include, for example, providing a predetermined recording layer on a substrate, irradiating it with laser light, and forming holes according to information.
A recording medium is known in which information is read out using the difference in reflectance depending on the presence or absence of holes. In this case, materials such as Te and Bi, which have low melting points, and alloys or compounds containing them are well known as the memory layer used. In addition, a recording layer has been proposed in which the optical properties are changed by laser light irradiation and the change in reflectance caused by this change in optical properties is utilized. A system in which fine particles are dispersed (Japanese Unexamined Patent Publication No. 185048/1983),
Those with a two-layer structure such as Sb 2 Se 3 Bi 2 Te 3 (JP-A-59
-35988) and chalcogenide glass containing Te as a main component (Japanese Patent Publication No. 47-26897). However, in the above hole-forming method, in addition to heating, the formation of holes involves the process of melting, dispersion, or evaporation, so the viscosity at the time of melting and the surface tension at the time of dispersion have subtle effects. It is difficult to control the shape of the hole, and residues are generated inside the hole, resulting in increased noise and errors. On the other hand, the method that utilizes the change in optical properties caused by heating by laser beam irradiation does not require the process of melting, dispersing, or evaporating the recording layer, so it is easy to control the shape of the pits. Moreover, the problem of residue generation in the holes is also eliminated. However, conventional recording materials using this method have poor thermal stability, which is a practical disadvantage. By the way, the transmittance of the compound Sb 2 Te 3 changes greatly when heated, so its use as an information recording material has been considered, but it has a low temperature change and lacks thermal stability. Therefore, it was considered impossible to use it for practical purposes [J.Appl.
Phys.), Volume 54 (No. 3), Pages 1256-1260]. Problems to be Solved by the Invention In view of the above circumstances, an object of the present invention is to provide an information recording medium that is thermally stable and has a sensitivity S/
The object of the present invention is to provide a recording material that is superior to conventional recording materials in terms of N ratio and bit error rate. Means for Solving the Problems As a result of intensive research to achieve the above object, the present inventors have found that at least Sb, Te and Ge are present on the substrate.
By providing a recording layer consisting of three elements and having a ratio of these three elements within a specific range,
We have discovered that thermal stability can be significantly improved without changing the optical property change itself, which is a characteristic of the Sb-Te binary system, and based on this knowledge, we have completed the present invention. . That is, the present invention provides an information recording medium in which a recording layer made of a material whose light absorption coefficient changes when heated is provided on a substrate, and information is recorded by a change in light reflectance caused by the change in the absorption coefficient. , the recording layer is composed of at least three elements, Sb, Te, and Ge, and the atomic ratio of the three elements is expressed as a point (Sb 0.8 Te 0 Ge 0.2 ) and point (Sb 0 Te 0.8
Straight line A connecting point (Sb 0.7 Te 0.3 Ge 0 ) and point (Sb 0 Te 0 Ge 1.0 ) Straight line B connecting point (Sb 0.7 Te 0.3 Ge 0 ) and point (Sb 0.2 )
Straight line c connecting point (Te 0 Ge 0.8 ) and point (Sb 0.2 Te 0.8 Ge 0 ), point (Sb 0.4 Te 0 Ge 0.6 ) and point (Sb 0 Te 0.4 Ge 0.6 )
Within the area surrounded by the straight line D connecting the and the straight line E connecting the point (Sb 0.4 Te 0.6 Ge 0 ) and the point (Sb 0 Te 0.5 Ge 0.5 ) [However, points on the lines C and E are not included. The present invention provides an information storage medium characterized by having the following composition. As a heating means at this time, irradiation with an energy beam such as a laser beam or an electron beam is suitable. When recording information by irradiation with an energy beam such as a laser beam or an electron beam, two types of recording can be performed depending on the heating temperature caused by the energy beam irradiation and the cooling rate after irradiation. That is, recording can be performed by changing the absorption coefficient from a small state to a large state, or by changing the absorption coefficient from a large state to a small state. The recording layer in the information recording medium of the present invention comprises a first
In the triangular coordinate graph shown in the figure with Sb, Te, and Ge as three vertices, it is necessary that the structure be within the shaded range. If the proportion of Sb is lower than this, the change in the absorption coefficient due to heating will be small, and not only will sufficient contrast not be obtained, but stability against temperature and humidity will decrease, and if the proportion is higher than this, the contrast will be extremely Therefore, the S/N ratio also becomes low. On the other hand, if the proportion of Ge is small, changes in the absorption coefficient due to heating will occur at low temperatures, resulting in a decrease in thermal stability.If the proportion of Ge is too large, the contrast will be extremely reduced and the S/N ratio will be low. Become. In the information recording medium of the present invention, it is practically sufficient to use a recording layer consisting of only the three elements of Sb, Te, and Ge, but other elements may be included if necessary. The recording layer in the present invention is formed by a vapor deposition method such as vacuum vapor deposition or sputtering. In the case of vacuum evaporation, it is preferable to control the composition by a ternary co-evaporation method, or by a flash evaporation method for deposits of a specific composition; It can also be performed by a vapor deposition method. In the case of sputtering, on the other hand, it is advantageous to use a target material of a specific composition or to place fragments of one element or alloy on top of a target material of another element or alloy. When forming a film by vacuum evaporation, the degree of vacuum is in the range of 10 -5 to 10 -6 Torr, and the deposition rate is 0.5
A range of ~20 Å/sec is preferable, and there is no particular restriction on the substrate temperature, so room temperature is preferable. On the other hand, when using the sputtering method, the substrate temperature is particularly likely to rise, so cooling is required. In general, when thin films are stacked on a substrate, the reflectance is uniquely determined by the refractive index, absorption coefficient, and thickness of the substrate and thin film. By determining the reflectance at each film thickness, the range of film thickness for increasing the change in reflectance before and after heating is automatically determined. On the other hand, when recording is actually performed by irradiation with laser light, etc., the absorption rate of the laser light and the state of heat dissipation vary depending on the thickness of the recording layer and reflective layer, so the recording sensitivity is affected. It comes differently. The preferred thickness range of the recording layer and reflective layer is mainly determined by the two factors mentioned above. When the above-described Sb-Te-Ge material is used as a recording layer in an information recording medium, the thickness of the recording layer is preferably 700 Å or more, preferably in the range of 800 to 2000 Å in order to obtain sufficient contrast. but,
If the film thickness is made too thick, it becomes difficult to uniformly cause physicochemical state changes in the film thickness direction to change the light absorption coefficient, making it difficult to obtain an S/N ratio that corresponds to the original high contrast. become unable to do so. On the other hand, when a reflective layer is provided above or below the recording layer, sufficient contrast can be obtained even in areas where the recording layer is thin, and as a result, a high S/N ratio can be obtained, which is advantageous. It is. When such a reflective layer is provided, the thickness of the recording layer depends on the material and thickness of the reflective layer, but is generally preferably in the range of 20 to 1000 Å. The material that can be used for the reflective layer is preferably a substance that has a high absorption coefficient for the information readout beam, such as Al, Ti, Cr, Co, Ni, Se, Ge, Zr, Ag,
Metals such as In, Sn, Sb, Te, Pt, Au, Pb, Bi,
Alternatively, alloys thereof can be mentioned. Among these, Sb, Te, Bi, or alloys thereof are particularly excellent in sensitivity. The reflective layer is
These elements or alloys may be used alone, or two or more elements or alloys may be stacked. The thickness of this reflective layer is preferably 100 Å or more, and particularly preferably in the range of 100 to 1000 Å from the viewpoint of sensitivity.
In the following, when describing a configuration in which a reflective layer is provided, both the recording layer and the reflective layer are collectively referred to as an information carrier layer. The reflective layer in the present invention, like the recording layer, can be formed using a vapor deposition method such as vacuum vapor deposition or sputtering. As the substrate in the present invention, glass, a photocurable resin on glass, a plastic substrate made of polycarbonate, acrylic resin, epoxy resin, polystyrene, etc., a metal plate made of aluminum alloy, etc. are used. 2 and 3 are cross-sectional views showing structural examples of the recording medium of the present invention, in which 1 is a substrate, 2 is a recording layer,
3 is a reflective layer. When the recording medium of the present invention is actually used as an information recording medium, two identical disks each having a recording material provided on a substrate are placed with the surfaces provided with the recording material facing each other with a spacer interposed therebetween. integrated with adhesive,
The so-called air sandwich structure, or the so-called full-surface adhesive structure, in which two identical discs are bonded together over the entire surface without a spacer, with the recording material facing each other. Alternatively, completely different from these, any structure may be used, such as a structure in which a recording material is provided on a film-like sheet and this sheet is wound into a roll. EXAMPLES Next, the present invention will be explained in further detail by reference examples and examples. In this embodiment, a case will be described in which recording is performed by changing the absorption coefficient from a small state to a large state, but the reverse case can be performed in the same manner. Reference Example 1 A film having the composition shown in Table 1 was deposited on a slide glass with a thickness of 300 Å by binary co-evaporation from two evaporation boats containing Sb and Te using a resistance heating method on a slide glass with a thickness of 1.2 mm. were formed respectively.

【表】 これらのサンプルを、未処理の状態と、200℃
に加温したオーブン中で約10分間加熱処理を施し
た状態とで、波長830nmの光透過率を測定した。
この加熱処理前後での透過率の変化率を第4図に
示す。 第4図より、Sbの原子数%が20%以上70%以
下の範囲で、熱による透過率の変化が大きいこと
が分る。Sbが20%以下では加熱によつて透過率
が増えているが、これはX線回折解析によつて
Teの酸化によるものであることが確かめられた。 参考例 2 厚さ1.2mmのスライドガラス上に、抵抗加熱法
により、Sb、Te及びGeを入れた3つの蒸着ボー
トから、3元共蒸着により、第2表に示すような
組成の膜を、300Åの厚みに、それぞれ形成した。
比較例として、Sb2Te3合金を1つの蒸着ボート
から蒸着し、300Åの厚みの膜を形成した。
[Table] These samples were tested in the untreated state and at 200℃.
The light transmittance at a wavelength of 830 nm was measured after heat treatment was performed for about 10 minutes in an oven heated to .
FIG. 4 shows the rate of change in transmittance before and after this heat treatment. From FIG. 4, it can be seen that the change in transmittance due to heat is large in the range where the atomic percentage of Sb is 20% or more and 70% or less. When the Sb content is less than 20%, the transmittance increases with heating, but this was confirmed by X-ray diffraction analysis.
It was confirmed that this was due to the oxidation of Te. Reference Example 2 A film having the composition shown in Table 2 was formed on a slide glass with a thickness of 1.2 mm by ternary co-evaporation from three evaporation boats containing Sb, Te, and Ge using the resistance heating method. Each was formed to a thickness of 300 Å.
As a comparative example, an Sb 2 Te 3 alloy was deposited from one deposition boat to form a film with a thickness of 300 Å.

【表】 これらのサンプルを、50℃から250℃までの温
度範囲で、約10分間の加熱処理を施し、それぞれ
の温度における光透過率を、波長830nmのとこ
ろで測定した。この透過率の変化率を第5図に示
す。 第5図より、Geの原子数%が60%以下の範囲
では、Geの量が増えるに従つて、透過率の変化
が始まる温度が高温にずれてゆくが、250℃での
透過率の変化率は、Geの量にほとんど依存せず、
大きな透過率変化が生じている。 サンプルDの光学特性の変化を解析したとこ
ろ、処理前の屈折率と消衰係数はそれぞれ4.4と
1.6であり、250℃の加熱処理後の屈折率と消衰係
数はそれぞれ4.2と4.0であつた。したがつて、屈
折率変化はほとんどなく、消衰係数の変化、すな
わち吸収係数の変化が大きい。これらのサンプル
の加熱処理を施さなかつたものを80℃の乾燥器中
に7日間放置したのち、透過率を測定した。この
7日後の透過率変化を第6図に示す。 第6図より、Geを20%以上含むものは、透過
率変化がほとんど生じていず、したがつて、熱的
に非常に安定であることが分る。 参考例 3 参考例1と同様の方法で、厚さ1.2mmのスライ
ドガラス上に、三元共蒸着法によりSb、Te及び
Geの膜を、第3表に示す組成で、300Åの厚みに
形成させた。第3表中のx及びyは、成作した膜
の組成を式(SbxTe1-xyGe1-y(x及びyは原子
数比を示す)で表わした場合の相当する値であ
る。
[Table] These samples were subjected to heat treatment for about 10 minutes at a temperature range of 50°C to 250°C, and the light transmittance at each temperature was measured at a wavelength of 830nm. The rate of change in transmittance is shown in FIG. From Figure 5, in the range where the number of Ge atoms is 60% or less, as the amount of Ge increases, the temperature at which the transmittance begins to change shifts to higher temperatures, but the change in transmittance at 250℃ The rate is largely independent of the amount of Ge;
A large change in transmittance has occurred. When we analyzed the changes in the optical properties of Sample D, we found that the refractive index and extinction coefficient before treatment were each 4.4.
The refractive index and extinction coefficient after heat treatment at 250°C were 4.2 and 4.0, respectively. Therefore, there is almost no change in the refractive index, but a large change in the extinction coefficient, that is, a large change in the absorption coefficient. These samples without heat treatment were left in a dryer at 80° C. for 7 days, and then the transmittance was measured. The change in transmittance after 7 days is shown in FIG. From FIG. 6, it can be seen that those containing 20% or more of Ge have almost no change in transmittance and are therefore very thermally stable. Reference Example 3 In the same manner as in Reference Example 1, Sb, Te, and
A Ge film was formed to a thickness of 300 Å with the composition shown in Table 3. x and y in Table 3 are equivalent values when the composition of the formed film is expressed by the formula (Sb x Te 1-x ) y Ge 1-y (x and y indicate the atomic ratio) It is.

【表】 これらのサンプルを、未処理の状態と、200℃
に加温したオーブン中で約10分間加熱処理を施し
た状態とで、波長830nmでの光透過率を測定し
た。この加熱処理前後での透過率の変化率を第7
図に示す。 第7図より明らかなように、Geを含む系では、
Sb、Teのみの二元系と異なり、xが0.7以下のす
べての領域において、透過率の変化が大きい。 これらのサンプルで加熱処理を施さなかつたも
のを50℃、90%RHの恒温恒湿槽中に10日間放置
したのち、透過率を測定したところ、A及びGの
サンプルの透過率は、初期に比べて、それぞれ約
2倍及び約1.5倍に増加していた。この透過率の
増加はTeの酸化によるものと推測される。他方、
A及びG以外のサンプルについては透過率の変化
はほとんど認められなかつた。 以上より、xの値が0.05〜0.7の範囲が、加熱
による透過率の変化が大きく、かつ高温多湿環境
下でも安定性であることが分る。 実施例 1 射出成形により、あらかじめ溝(深さ700Å、
巾0.5μm、ピツチ1.6μm)を設けた厚さ1.5mm、直
径305mmのアクリル基板上に抵抗加熱法により、
Sb、Te及びGeを入れた3つの蒸着ボートから三
元共蒸着によつて、Sb0.25Te0.45Ge0.3の組成比の
膜を、300Åの厚みに形成させたのち、その上に
Alの膜200Åを同じく抵抗加熱法で設けた。 この記録媒体を、900rpmで基板回転させ、透
明な基板越しに半導体レーザー(波長830nm)
の光を集光させて照射し、1.5MHzの信号を書き
込んだ。この際、円板上の直径140mmの個所に信
号を記録するに要したレーザーパワーは記録膜面
上で7.0mWであつた。次に同一波長の半導体レ
ーザー光を用い、1.2mWで信号を再生したとこ
ろ、信号のC/N比はバンド幅30KHzにおいて
60dBであつた。 このサンプルの加熱処理前後の反射率を第8図
に示す。 スライドガラス上に、同様に模形成したサンプ
ルの加熱処理前後の反射率を第9図に示す。第8
図及び第9図は、それぞれAl反射層500Å及び記
録層膜厚300Åの場合の計算曲線であり、計算は
参考例2で求めた、屈折率と消衰係数をもとにし
て行つたものである。 これらのサンプルを、60℃の乾燥器中に、10日
間放置しても、感度、C/N比、反射率に変化は
認められなかつた。 実施例 2 実施例1と同様のアクリル基板上に抵抗加熱法
により、Sb2Te3とGeを入れた2つの蒸着ボート
から二元共蒸着によつてSb2Te3を200Å、Geを
100Å相当設けた。さらに、この上に電子ビーム
蒸着法によつて、厚さ200ÅのSb膜を形成させた
ものと、厚さ200ÅのBi2Te3膜を形成させたもの
をそれぞれ調整した。 また比較例として、同様に基板上に厚さ300Å
のSb2Te3膜を形成したのち、その上に厚さ200Å
のSb膜を形成させたものを調整した。いずれの
サンプルも形成された膜の組成比として、Geの
含有量はほぼ40%であつた。これら3つの記録媒
体を、記録する信号が3MHzであること以外は実
施例1と同様の方法で評価したところ、反射率が
Sbのものは、感度5mW、C/N比60dBを、反
射層がBi2Te3のものは感度3.5mW、C/N比
57dBを得た。また、比較例は、感度4.5mW、
C/N比は60dBを得た。 これらの記録媒体を60℃の乾燥器中に7日間放
置したところ、実施例の2つは感度、C/N比、
反射率とも変化がなかつたが、比較例の記録媒体
は、初期反射率25%から40%に変化しており、
C/N比は20dBと大幅に低下していた。 実施例 3 厚さ1.5mm、直径305mmの強化ガラス上に光硬化
性樹脂を用いて、あらかじめ溝(深さ700Å、幅
0.6μm、ピツチ1.6μm)を形成した基板上に、抵
抗加熱法により真空度2×10-6Torrで、Sb2Te3
とGeとを二元共蒸着させ、膜厚600Åの記録層を
設けた。さらにこの膜の上に、同様な抵抗加熱法
により、厚さ100ÅのAl層を設けた。 実施例1と同様の方法で評価したところ、感度
6.5mW、C/N比60dBを得た。この媒体を80℃
の乾燥器中に10日間、放置しても、感度、C/N
比、反射率に変化は認められなかつた。ちなみ
に、このときの反射率は31%であつた。 実施例 4 射出成形により、あらかじめ溝を設けた(深さ
700Å、幅0.65μm、ピツチ1.6μm)厚さ1.5mmのア
クリル基板上に、抵抗加熱法により、Sb2Te3
Geを入れた2つの蒸着ボートから二元共蒸着さ
せて、Sb2Te3を200Å、Geを100Å相当設けた。
さらに、この上に同様な抵抗加熱法によつて、
Sb膜を200Åの厚さで形成させたものと、Bi2Te3
膜を200Åの厚さで形成させたものをそれぞれ調
整した。比較例として、同様の基板上に、
Sb2Te3膜を300Åの厚さで形成したのち、その上
にSb膜を200Åの厚さで形成させたものを調製し
た。いずれのサンプルも、膜の組成比は、Sb:
Teはほぼ2:3であり、Geを加えた2種につい
て、Geの含有量はほぼ40%であつた。 これら3つの記録媒体を記録する信号が3MHz
であること以外は、実施例1と同様の方法で評価
したところ、反射層がSbのものは、感度5mW、
C/N比60dBを、反射層がBi2Te3のものは感度
3.5mW、C/N比57dBを得た。また、比較例
は、感度4.5mW、C/N比は60dBを得た。 これらの記録媒体を60℃の乾燥器中に7日間放
置したところ、実施例の2つは感度、C/N比、
反射率とも変化がなかつたが、比較例の記録媒体
は、反射率が初期25%だつたものが40%にも変化
しており、C/N比は20dBと大巾に低下してい
た。 実施例 5 実施例4と同様のアクリル基板上に、抵抗加熱
法により、Sb、Te及びGeの3元素を共蒸着さ
せ、組成比(SbxTe1-xyGe1-yにおいて、x=
0.4、y=0.7及び0.9の膜を300Åの厚さで形成さ
せた2種のサンプルを作成した。これら2種のサ
ンプルのすべてについてSbxTe1-xyGe1-yの上
に、さらにSbを200Åの厚さで形成させた。 それぞれの媒体を実施例4と同様の方法で評価
したところ、それぞれ感度、C/N比として
(5.5mW、58dB)、(5mW、60dB)、(4.5mW、
60dB)を得た。これらのデイスクを60℃、82%
RHの条件下で7日間の加速テストを行つたのち
に信号を再生したところ、yの値が0.9の媒体に
おいてはコントラストが減少し、C/N比が
40dBに低下していたが、yが0.5及び0.7のものは
C/N比の変化は認められなかつた。 発明の効果 本発明によれば、高感度かつ高S/N比で情報
が記録され、かつ温度及び湿度に対して極めて安
定であり、信頼度の互い情報記録媒体を提供する
ことができる。
[Table] These samples were tested in the untreated state and at 200℃.
The light transmittance at a wavelength of 830 nm was measured after heat treatment was performed for about 10 minutes in an oven heated to . The rate of change in transmittance before and after this heat treatment is calculated as
As shown in the figure. As is clear from Figure 7, in a system containing Ge,
Unlike a binary system containing only Sb and Te, the change in transmittance is large in all regions where x is 0.7 or less. These samples that were not heat-treated were left in a constant temperature and humidity chamber at 50°C and 90% RH for 10 days, and the transmittance was measured.The transmittance of samples A and G was initially In comparison, they increased by about 2 times and about 1.5 times, respectively. This increase in transmittance is presumed to be due to the oxidation of Te. On the other hand,
For samples other than A and G, almost no change in transmittance was observed. From the above, it can be seen that when the value of x is in the range of 0.05 to 0.7, the change in transmittance due to heating is large and the film is stable even in a high temperature and high humidity environment. Example 1 Grooves (700 Å deep,
Using a resistance heating method, it was placed on an acrylic substrate with a thickness of 1.5 mm and a diameter of 305 mm, with a width of 0.5 μm and a pitch of 1.6 μm.
A film with a composition ratio of Sb 0.25 Te 0.45 Ge 0.3 was formed to a thickness of 300 Å by ternary co-evaporation from three evaporation boats containing Sb, Te, and Ge, and then a film was deposited on top of it.
A 200 Å film of Al was also deposited using the resistance heating method. This recording medium is rotated at 900 rpm, and a semiconductor laser (wavelength 830 nm) is transmitted through the transparent substrate.
A 1.5MHz signal was written by concentrating the light and irradiating it. At this time, the laser power required to record a signal on a 140 mm diameter point on the disk was 7.0 mW on the recording film surface. Next, when the signal was regenerated at 1.2 mW using a semiconductor laser beam of the same wavelength, the C/N ratio of the signal was
It was 60dB. FIG. 8 shows the reflectance of this sample before and after heat treatment. FIG. 9 shows the reflectance of a sample similarly formed on a slide glass before and after heat treatment. 8th
Figure 9 and Figure 9 are calculation curves for the case where the Al reflective layer is 500 Å thick and the recording layer thickness is 300 Å, respectively, and the calculations were performed based on the refractive index and extinction coefficient obtained in Reference Example 2. be. Even when these samples were left in a dryer at 60° C. for 10 days, no change was observed in sensitivity, C/N ratio, or reflectance. Example 2 On an acrylic substrate similar to Example 1, 200 Å of Sb 2 Te 3 and 200 Å of Ge were deposited by binary co-evaporation from two evaporation boats containing Sb 2 Te 3 and Ge using a resistance heating method.
The equivalent of 100 Å was provided. Further, a 200 Å thick Sb film and a 200 Å thick Bi 2 Te 3 film were formed thereon by electron beam evaporation. In addition, as a comparative example, a 300 Å thick film was similarly placed on the substrate.
After forming a Sb 2 Te 3 film of 200 Å thick on top of it,
An Sb film was prepared. In terms of the composition ratio of the films formed in each sample, the Ge content was approximately 40%. These three recording media were evaluated in the same manner as in Example 1, except that the recorded signal was 3MHz, and the reflectance was
The one with Sb has a sensitivity of 5mW and the C/N ratio of 60dB, and the one with the reflective layer of Bi 2 Te 3 has a sensitivity of 3.5mW and a C/N ratio.
Obtained 57dB. In addition, the comparative example has a sensitivity of 4.5 mW,
A C/N ratio of 60 dB was obtained. When these recording media were left in a dryer at 60°C for 7 days, the sensitivity, C/N ratio,
There was no change in reflectance, but the initial reflectance of the recording medium of the comparative example changed from 25% to 40%.
The C/N ratio was significantly reduced to 20 dB. Example 3 Grooves (depth 700 Å, width
Sb 2 Te 3 was deposited on the substrate on which 0.6 μm, pitch 1.6 μm) was formed using a resistance heating method at a vacuum level of 2×10 -6 Torr.
A recording layer with a thickness of 600 Å was formed by co-evaporating two elements: Further, on top of this film, a 100 Å thick Al layer was provided using a similar resistance heating method. When evaluated in the same manner as in Example 1, the sensitivity
Obtained 6.5 mW and C/N ratio of 60 dB. This medium at 80℃
Sensitivity and C/N remain unchanged even after being left in a dryer for 10 days.
No change was observed in the ratio or reflectance. By the way, the reflectance at this time was 31%. Example 4 Grooves were prepared in advance by injection molding (depth
700Å, width 0.65μm, pitch 1.6μm) Sb 2 Te 3 and
Binary co-evaporation was carried out from two evaporation boats containing Ge to deposit Sb 2 Te 3 equivalent to 200 Å and Ge equivalent to 100 Å.
Furthermore, by using a similar resistance heating method,
Sb film formed with a thickness of 200 Å and Bi 2 Te 3
Each film was prepared with a thickness of 200 Å. As a comparative example, on a similar substrate,
A Sb 2 Te 3 film was formed to a thickness of 300 Å, and then an Sb film was formed to a thickness of 200 Å on top of the Sb 2 Te 3 film. In both samples, the composition ratio of the film is Sb:
The Te ratio was approximately 2:3, and the Ge content was approximately 40% for the two types to which Ge was added. The signal for recording these three recording media is 3MHz
When evaluated in the same manner as in Example 1 except that the reflection layer was Sb, the sensitivity was 5 mW,
The C/N ratio is 60dB and the reflection layer is Bi 2 Te 3 .
3.5 mW and C/N ratio of 57 dB were obtained. Moreover, the comparative example obtained a sensitivity of 4.5 mW and a C/N ratio of 60 dB. When these recording media were left in a dryer at 60°C for 7 days, the sensitivity, C/N ratio,
There was no change in reflectance, but in the recording medium of the comparative example, the reflectance changed from an initial value of 25% to 40%, and the C/N ratio significantly decreased to 20 dB. Example 5 On the same acrylic substrate as in Example 4, the three elements Sb, Te, and Ge were co-evaporated by a resistance heating method, and at the composition ratio (Sb x Te 1-x ) y Ge 1-y , x =
Two types of samples were prepared in which films of y=0.4, y=0.7, and 0.9 were formed with a thickness of 300 Å. For all of these two types of samples, Sb was further formed to a thickness of 200 Å on top of the Sb x Te 1-x ) y Ge 1-y . When each medium was evaluated in the same manner as in Example 4, the sensitivity and C/N ratio were (5.5 mW, 58 dB), (5 mW, 60 dB), (4.5 mW,
60dB). These disks at 60℃, 82%
When the signal was reproduced after 7 days of acceleration testing under RH conditions, the contrast decreased and the C/N ratio decreased in the medium with a y value of 0.9.
However, no change in the C/N ratio was observed for those with y of 0.5 and 0.7. Effects of the Invention According to the present invention, it is possible to provide a mutually reliable information recording medium that records information with high sensitivity and high S/N ratio, is extremely stable against temperature and humidity, and is highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明情報記録媒体の記録層の組成
を示す三角座標グラフ、第2図及び第3図は本発
明情報記録媒体のそれぞれ異なつた例を示す断面
図、第4図は参考例1の透過率変化を示すグラ
フ、第5図は参考例2の加熱による透過率変化を
示すグラフ、第6図は参考例2の熱的安定性を示
すグラフ、第7図は参考例3の透過率変化を示す
グラフ、第8図及び第9図は、それぞれ実施例1
のサンプルの反射率を示すグラフであり、図中符
号1は基板、2は記録層、3は反射層を示す。
FIG. 1 is a triangular coordinate graph showing the composition of the recording layer of the information recording medium of the present invention, FIGS. 2 and 3 are cross-sectional views showing different examples of the information recording medium of the present invention, and FIG. 4 is a reference example. 5 is a graph showing the transmittance change due to heating of Reference Example 2, FIG. 6 is a graph showing the thermal stability of Reference Example 2, and FIG. 7 is a graph showing the thermal stability of Reference Example 3. Graphs showing changes in transmittance, FIGS. 8 and 9, are for Example 1, respectively.
1 is a graph showing the reflectance of a sample, in which reference numeral 1 indicates a substrate, 2 indicates a recording layer, and 3 indicates a reflective layer.

Claims (1)

【特許請求の範囲】 1 基板上に、加熱により光の吸収係数が変化す
る材料から成る記録層を設け、該吸収係数の変化
によつて生じる光の反射率の変化により情報を記
録する情報記録媒体において、該記録層が少なく
ともSb、Te及びGeの3元素から成り、かつこれ
らの3元素の原子数比が、これらの各元素を頂点
とする三角座標グラフにおいて、点(Sb0.8
Te0Ge0.2)と点(Sb0Te0.8Ge0.2)とを結ぶ直線
イ、点(Sb0.7Te0.3Ge0)と点(Sb0Te0Ge1.0)と
を結ぶ直線ロ、点(Sb0.2Te0Ge0.8)と点(Sb0.2
Te0.8Ge0)とを結ぶ直線ハ、点(Sb0.4Te0Ge0.6
と点(Sb0Te0.4Ge0.6)とを結ぶ直線ニ及び点
(Sb0.4Te0.6Ge0)と点(Sb0Te0.5Ge0.5)とを結ぶ
直線ホによつて囲まれる領域内〔ただし直線ハ及
びホの線上の点を含まない〕の組成を有すること
を特徴とする情報記録媒体。
[Claims] 1. Information recording in which a recording layer made of a material whose light absorption coefficient changes when heated is provided on a substrate, and information is recorded by a change in light reflectance caused by the change in the absorption coefficient. In the medium, the recording layer is composed of at least three elements, Sb, Te, and Ge, and the atomic ratio of these three elements is such that the point (Sb 0.8
Straight line A connecting point (Te 0 Ge 0.2 ) and point (Sb 0 Te 0.8 Ge 0.2 ) Straight line B connecting point (Sb 0.7 Te 0.3 Ge 0 ) and point (Sb 0 Te 0 Ge 1.0 ) Point (Sb 0.2 Te 0 Ge 0.8 ) and point (Sb 0.2
Line c connecting point (Te 0.8 Ge 0 ) and point (Sb 0.4 Te 0 Ge 0.6 )
Within the area surrounded by the straight line D connecting the point (Sb 0 Te 0.4 Ge 0.6 ) and the straight line E connecting the point (Sb 0.4 Te 0.6 Ge 0 ) and the point (Sb 0 Te 0.5 Ge 0.5 ) 1. An information recording medium characterized by having a composition which does not include points on the lines C and E.
JP60290692A 1984-12-26 1985-12-25 Information-recording medium Granted JPS6253886A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19860301275 EP0195532B1 (en) 1985-02-22 1986-02-21 An information recording medium
US06/831,577 US4670345A (en) 1985-02-22 1986-02-21 Information recording medium
DE8686301275T DE3671122D1 (en) 1985-02-22 1986-02-21 INFORMATION RECORDING MEDIUM.
CA000502376A CA1236693A (en) 1985-02-22 1986-02-21 Information recording medium
JP2329490A JPH0725208B2 (en) 1985-12-25 1990-11-30 Information recording medium
JP2329491A JPH0694230B2 (en) 1985-12-25 1990-11-30 Information recording material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP59-280586 1984-12-26
JP28058684 1984-12-26
JP60-33779 1985-02-22
JP60-100876 1985-05-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2329490A Division JPH0725208B2 (en) 1985-12-25 1990-11-30 Information recording medium
JP2329491A Division JPH0694230B2 (en) 1985-12-25 1990-11-30 Information recording material

Publications (2)

Publication Number Publication Date
JPS6253886A JPS6253886A (en) 1987-03-09
JPH0380635B2 true JPH0380635B2 (en) 1991-12-25

Family

ID=17627095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290692A Granted JPS6253886A (en) 1984-12-26 1985-12-25 Information-recording medium

Country Status (1)

Country Link
JP (1) JPS6253886A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584741B2 (en) * 1986-03-11 1997-02-26 松下電器産業株式会社 Rewritable optical information recording member
JP2585520B2 (en) * 1985-12-27 1997-02-26 株式会社日立製作所 Phase change recording medium
JPH0832482B2 (en) * 1986-09-22 1996-03-29 松下電器産業株式会社 Optical information recording medium
JPS6432438A (en) * 1987-07-28 1989-02-02 Nippon Columbia Optical information recording medium
JP2769153B2 (en) * 1987-09-03 1998-06-25 松下電器産業株式会社 Sputtering target for forming information recording thin film
WO1991005342A1 (en) * 1989-09-28 1991-04-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium and method of producing the same
JPH07141693A (en) * 1993-09-22 1995-06-02 Toshiba Corp Information recording medium
TW336317B (en) * 1996-02-28 1998-07-11 Asahi Chemical Ind Design method of phase change type recording medium and the phase change optical recording medium
WO1998038636A1 (en) 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
JP3185890B2 (en) 1997-04-16 2001-07-11 旭化成株式会社 Method for manufacturing optical information recording medium and optical information recording medium manufactured by this method
US6996052B1 (en) 1998-09-09 2006-02-07 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
DE60226621D1 (en) * 2001-09-12 2008-06-26 Matsushita Electric Ind Co Ltd OPTICAL INFORMATION RECORDING MEDIUM AND THIS USE RECORDING METHOD
JP4221455B2 (en) * 2002-10-23 2009-02-12 三星電子株式会社 Pattern forming material and pattern forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042841A (en) * 1973-08-20 1975-04-18
JPS52115202A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Recording member for information
JPS52130304A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Information recording material
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS5912612U (en) * 1982-07-15 1984-01-26 小柳工業株式会社 Gate rubber for ready-mixed concrete manufacturing storage tank hopper
JPS6189889A (en) * 1984-10-11 1986-05-08 Nippon Columbia Co Ltd Optical information-recording medium
JPS61152487A (en) * 1984-12-25 1986-07-11 Nippon Columbia Co Ltd Photo-information recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604278Y2 (en) * 1976-11-19 1985-02-06 ティーディーケイ株式会社 Recording medium of optical memory device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042841A (en) * 1973-08-20 1975-04-18
JPS52115202A (en) * 1976-03-24 1977-09-27 Hitachi Ltd Recording member for information
JPS52130304A (en) * 1976-04-26 1977-11-01 Hitachi Ltd Information recording material
JPS58161161A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Recording member
JPS5912612U (en) * 1982-07-15 1984-01-26 小柳工業株式会社 Gate rubber for ready-mixed concrete manufacturing storage tank hopper
JPS6189889A (en) * 1984-10-11 1986-05-08 Nippon Columbia Co Ltd Optical information-recording medium
JPS61152487A (en) * 1984-12-25 1986-07-11 Nippon Columbia Co Ltd Photo-information recording medium

Also Published As

Publication number Publication date
JPS6253886A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
EP0195532B1 (en) An information recording medium
JP2990011B2 (en) Optical recording medium
US6143469A (en) Optical information recording medium and manufacturing method
US8192820B2 (en) Data storage media containing carbon and metal layers
JPH0380635B2 (en)
KR20030076413A (en) Optical information recording medium and method for producing the same
JPH0725200B2 (en) Information recording medium
JPH01277338A (en) Optical recording medium
JP2003323743A (en) Information recording medium and manufacturing method thereof
JPH0475835B2 (en)
WO2007123230A1 (en) Information recording medium and method for production thereof
JPH0526668B2 (en)
JPH0582838B2 (en)
JPH0447909B2 (en)
JPH03178479A (en) Information recording medium
JPH042436B2 (en)
JP2888520B2 (en) Optical information recording medium
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
JPH0375940B2 (en)
JPH0694230B2 (en) Information recording material
JPH042437B2 (en)
JP2596902B2 (en) Optical information recording medium
JP2827201B2 (en) Optical recording medium
JP4108166B2 (en) Manufacturing method of optical information recording medium
JPS59218644A (en) Optical recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term