JPH0832482B2 - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPH0832482B2
JPH0832482B2 JP62236558A JP23655887A JPH0832482B2 JP H0832482 B2 JPH0832482 B2 JP H0832482B2 JP 62236558 A JP62236558 A JP 62236558A JP 23655887 A JP23655887 A JP 23655887A JP H0832482 B2 JPH0832482 B2 JP H0832482B2
Authority
JP
Japan
Prior art keywords
recording
thin film
composition
film layer
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62236558A
Other languages
Japanese (ja)
Other versions
JPS63225934A (en
Inventor
昇 山田
正敏 高尾
邦夫 木村
進 佐内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS63225934A publication Critical patent/JPS63225934A/en
Publication of JPH0832482B2 publication Critical patent/JPH0832482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザー光線等の手段を用いて情報信号を高
速かつ高密度に記録再生し、かつ書き換え可能な光学的
情報記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium in which an information signal can be recorded and reproduced at high speed and high density and rewritable by using means such as a laser beam.

従来の技術 レーザー光線を金属、色素等の薄膜上に照射して局部
的な変化を生じさせ高密度に情報を記録再生する技術は
公知であり、追加記録可能なタイプのものが、いわゆる
ライトワンス(WRITE-ONCE)型光ディスク装置として商
品化されている。いっぽう書き換え可能なタイプのもの
は、まだ研究段階であるが、これまで記録層にTe,Se等
のカルコゲン、またはその化合物(カルコゲン化物)を
主成分とする材料薄膜を用いるものが提案されてきてい
る。これらの物質、とりわけTeを主成分とする系におい
ては比較的容易にアモルファス相と結晶相との間の可逆
的な相変化を生じさせることが可能であり、その間で光
学定数が大きく変化することから様々な組成が検討され
てきた。
2. Description of the Related Art A technique for irradiating a thin film such as a metal or a dye with a laser beam to cause a local change to record / reproduce information at high density is known, and a type capable of additional recording is a so-called write once ( It has been commercialized as a WRITE-ONCE) type optical disc device. On the other hand, the rewritable type is still in the research stage, but it has been proposed so far to use a thin film of a material containing chalcogen such as Te or Se or its compound (chalcogenide) as a main component in the recording layer. There is. Reversible phase changes between the amorphous and crystalline phases can occur relatively easily in these materials, especially in systems containing Te as the main component, and the optical constants change significantly between them. Since then, various compositions have been studied.

Teは光の赤外領域にも吸収が有ること、融点が400℃
程度と低いこと、さらにはその構造の基本が二配位の鎖
状の原子結合からなっていることから粘性が大きく、液
相から冷却した場合にアモルファス相が形成されやすい
こと等、相変化型の書き換え可能な記録材料として望ま
しい特性を備えている。ただしTe単独では結晶化温度
(Tx)が低く室温では安定なアモルファス相を得ること
ができない。そこでTeに様々な添加物元素を加えて、安
定なアモルファス相を得る試み、あるいは結晶化の速度
をコントロールする試みがなされてきた。
Te has absorption in the infrared region of light, melting point 400 ° C
It has a low viscosity, and because its structure is basically composed of two-coordinate chain-like atomic bonds, it has a high viscosity and tends to form an amorphous phase when cooled from the liquid phase. It has desirable characteristics as a rewritable recording material. However, Te alone has a low crystallization temperature (Tx) and cannot obtain a stable amorphous phase at room temperature. Therefore, it has been attempted to add various additive elements to Te to obtain a stable amorphous phase or to control the crystallization speed.

例えばGe15Te81Sb22(特公昭47-26897号公報)、Te
92Ge2As5(アプライド フィジックス レターズ(APPL
IED PHYSICS LETTERS),18(1971)P254),Te87Ge8Sn5
(同46(1985)P734)等がある。
For example, Ge 15 Te 81 Sb 2 S 2 (Japanese Patent Publication No. 47-26897), Te
92 Ge 2 As 5 (Applied Physics Letters (APPL
IED PHYSICS LETTERS), 18 (1971) P254), Te 87 Ge 8 Sn 5
(Ibid. 46 (1985) P734).

これらはいずれもGe添加によってTeのアモルファス相
を安定化している。また結晶化速度を高める試みはTeGe
Au系合金(特願昭60-61137号),TeGeSnAu系合金(特願
昭60-112420号)等があり、Auを添加することでTeの鎖
状構造を分断し原子の拡散速度を高めることに成功して
いる。
All of these stabilize the amorphous phase of Te by adding Ge. In addition, an attempt to increase the crystallization rate was made by TeGe
There are Au-based alloys (Japanese Patent Application No. 60-61137), TeGeSnAu-based alloys (Japanese Patent Application No. 60-112420), etc., and by adding Au, the chain structure of Te is disrupted and the diffusion rate of atoms is increased. Has been successful.

発明が解決しようとする問題点 本発明の目的は従来の系に比べて、はるかに高速に記
録、消去を行おうとするものである。
Problems to be Solved by the Invention An object of the present invention is to perform recording and erasing at a much higher speed than in conventional systems.

従来、アモルファス−結晶間の相変化を利用する記録
−消去方法においては、一般的に結晶相からアモルファ
ス相への変化を記録方向とし逆にアモルファス相から結
晶相への変化を消去方向としている。その理由は、結晶
化がアモルファス相のアニール、あるいは液相からの徐
冷という比較的時間を要するプロセスであるのに対し
て、アモルファス化が液相からの急冷という高速のプロ
セスであるためである。つまり、レーザー光線の照射時
間を短くすることができるため記録速度を大きくするこ
とができるということであった。
Conventionally, in a recording-erasing method using a phase change between amorphous and crystalline, generally, a change from a crystalline phase to an amorphous phase is a recording direction, and conversely, a change from an amorphous phase to a crystalline phase is an erasing direction. The reason is that crystallization is a relatively time-consuming process such as annealing of the amorphous phase or slow cooling from the liquid phase, whereas amorphization is a fast process of rapid cooling from the liquid phase. . In other words, the recording time can be increased because the irradiation time of the laser beam can be shortened.

ところが既に記録ずみの情報信号を消しながら新しい
信号を記録してゆく、いわゆる同時消録を行うときに
は、この結晶化速度もまた十分に大きくする必要があ
る。つまり結晶化(消去)に要する時間をアモルファス
化(記録)に要する時間と同じ程度に短くしなければな
らない。これまでは、このいわゆる同時消録を実現する
手段として記録、再生用と消去用の二つの光スポットを
用い、消去用の光スポットの長さを記録、再生用の光ス
ポットの長さよりも相対的に長くすることで消去光スポ
ットの照射時間を長くする方法がとられてきた。しかし
ながらこの方法は同一トラック上に二つの光スポットを
精度よく並べる技術が必要であり、装置の設計上、光学
系を複雑にするという問題があった。しかも書き換え速
度をこれまでのように高々数百キロバイト/sec程度のス
ピードからさらに高速化し、例えば磁気ディスクのよう
に数メガバイト/secで記録しようとすると、光スポット
記録媒体との相対速度が数十メートル/secにもなり実際
の照射時間は数十nsecと極端に短くなってしまう。こう
なると上述のような光学系で補うといった方法では対応
しきれず、真に結晶化速度が大きい材料が必要となる。
However, when a new signal is recorded while erasing a recorded information signal, that is, simultaneous erasure, the crystallization speed also needs to be sufficiently high. That is, the time required for crystallization (erasing) must be made as short as the time required for amorphization (recording). Until now, as a means for realizing this so-called simultaneous recording, two light spots for recording, reproduction and erasure have been used, and the length of the light spot for erasure has been recorded relative to the length of the light spot for recording and reproduction. A method has been adopted in which the irradiation time of the erasing light spot is lengthened by making it longer. However, this method requires a technique for accurately arranging two light spots on the same track, and there is a problem in that the optical system is complicated in terms of device design. Moreover, if the rewriting speed is further increased from the speed of several hundred kilobytes / sec at the highest as before, and recording is performed at several megabytes / sec like a magnetic disk, for example, the relative speed to the optical spot recording medium is several tens. The actual irradiation time will be tens of nanoseconds, which is extremely short. In such a case, the method of supplementing with the optical system as described above cannot be used, and a material having a truly high crystallization rate is required.

問題点を解決するための手段 記録相にTe,Ge,Sbの3元系薄膜を採用し、とりわけそ
の組成範囲を全体の組成が化学量論的な化合物組成また
は、それに準ずる単一相組成となるように選ぶ。
Means to solve the problem The ternary thin film of Te, Ge, Sb is adopted as the recording phase, and its composition range is especially defined as a stoichiometric compound composition or an equivalent single-phase composition. Choose to be.

作用 Ge-Sb-Teの三元素においては、GeTeとSb2Te3のあいだ
にGe2Sb2Te5,GeSb2Te4,GeSb4Te7といった三元の量論化
合物組成が存在する。安定な化学量論的化合物組成にお
いては液体状態(同様にアモルファス状態)と結晶状態
との間の自由エネルギーの差が大きく、結晶化のための
駆動力を大きくとることができる。また、結晶相が安定
な単一相であることから記録、消去の繰り返しによって
も相が別れることなく特性が変化するといった問題がな
い。さらに、この三元系は融点が比較的低くアモルファ
ス相が形成しやすい、結晶化温度が高いことから十分安
定なアモルファス相が得られる等、書換え可能な光学記
録媒体として優れた特徴を発揮することができる。
In the three elements of action Ge-Sb-Te, there exists a ternary stoichiometric compound composition such as Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 and GeSb 4 Te 7 between GeTe and Sb 2 Te 3 . In a stable stoichiometric compound composition, the difference in free energy between a liquid state (also an amorphous state) and a crystalline state is large, and a driving force for crystallization can be increased. In addition, since the crystal phase is a stable single phase, there is no problem that the characteristics do not change even if recording and erasing are repeated without changing the phase. Further, this ternary system exhibits excellent characteristics as a rewritable optical recording medium, such as a relatively low melting point, an amorphous phase is easily formed, and a sufficiently stable amorphous phase is obtained due to a high crystallization temperature. You can

実施例 本発明の光学情報記録媒体は、第2図a〜cに示すよ
うにPMMA,ポリカーボネイト等の樹脂、アルミニウム、
銅等の金属、ガラス等の表面の平滑な基板1の上にSi
O2、Al23、ZnS等の誘電体3でサンドイッチした記録
層2を形成して構成される。誘電体層は本発明にとって
は必ずしも必要ではないけれども、レーザー光線を繰り
返して照射することによる樹脂基材の熱的な損傷、ある
いは記録層そのものの変形、蒸発を低減化するために有
効である。また、レーザー光の吸収効率を高める目的で
レーザー光線の入射する反対側の誘電体層の上に光反射
層4をつけること、この上に更に保護板5を張り合わせ
ることも可能である。
Example As shown in FIGS. 2a to 2c, the optical information recording medium of the present invention is made of PMMA, resin such as polycarbonate, aluminum,
Si on a substrate 1 with a smooth surface such as metal such as copper or glass
The recording layer 2 is formed by sandwiching a dielectric 3 such as O 2 , Al 2 O 3 or ZnS. Although the dielectric layer is not always necessary for the present invention, it is effective for reducing the thermal damage to the resin substrate due to the repeated irradiation of the laser beam or the deformation and evaporation of the recording layer itself. It is also possible to attach the light reflecting layer 4 on the dielectric layer on the side opposite to the side where the laser beam is incident for the purpose of increasing the absorption efficiency of the laser beam, and further attach the protective plate 5 thereon.

本発明は、記録層の組成によって特徴づけられる。記
録層はTe,Sb,Geの3元で構成され、その組成の基本は、
第1図bに示すように二元の化学量論化合物組成GeTeお
よびSb2Te3をあらわす二つの組成点とを結ぶ線上に位置
しており、以下のような組成式で表わすことができる。
The invention is characterized by the composition of the recording layer. The recording layer is composed of ternary elements Te, Sb and Ge, and the basic composition is
As shown in FIG. 1b, it is located on the line connecting the two stoichiometric compound compositions GeTe and the two composition points representing Sb 2 Te 3, and can be expressed by the following composition formula.

xGeTe・(1−x)Sb2Te3(0<x<1) 以下、本発明の記録媒体において記録層を構成する基
本的な考え方、具体的構成元素、ならびに、その濃度を
決定する理由について述べる。
xGeTe · (1-x) Sb 2 Te 3 (0 <x <1) Hereinafter, the basic concept of forming the recording layer in the recording medium of the present invention, specific constituent elements, and the reason for determining the concentration thereof will be described. Describe.

上述のようにTe系の記録媒体においてはTeが他の添加
物と化合物を形成しうる以上に過剰に含まれる場合、そ
のことが消去速度を制限する原因となる。そこで添加物
の濃度を増やしTeを化学量論組成の化合物として固定す
る方法が考えられる。しかし、単に一種類の元素を加え
ただけのTe合金、例えばCdTe,SnTe,PbTe,Sb2Te3,GeTe,A
uTe2等は次に述べる理由、 (1) 融点が高すぎ、レーザー光線の照射時間が短い
場合には(記録パルス)容易に溶融することができな
い。すなわち記録感度が低い。
As described above, in a Te-based recording medium, when Te is contained in an excessive amount more than capable of forming a compound with other additives, this causes the erasing speed to be limited. Therefore, a method of increasing the concentration of the additive and fixing Te as a compound having a stoichiometric composition can be considered. However, Te alloys containing only one element, such as CdTe, SnTe, PbTe, Sb 2 Te 3 , GeTe, A
uTe 2 and the like have the following reasons: (1) If the melting point is too high and the laser beam irradiation time is short (recording pulse), it cannot be melted easily. That is, the recording sensitivity is low.

(2) 結晶化温度が低すぎて安定なアモルファス相が
形成できない。すなわち信頼性に欠ける。
(2) The crystallization temperature is too low to form a stable amorphous phase. That is, it lacks reliability.

といった、いずれかの、あるいは、両方の理由から記録
層としはて不適である。中ではGeTeが安定なアモルファ
ス相と、725℃と比較的低い融点を有しているが、これ
とても現在の実用的なレーザーダイオードの出力が高々
30-40mW程度であることを考えるとアモルファス化が容
易ではないうえ、耐湿性が低いという欠点がある。そこ
で本発明者等はTeを含む三元系の化合物を検討しGeSbTe
の三元化合物が記録薄膜として以下の点で優れているこ
とを見出した。この系は以下に述べるようにこの系に特
異的でかつ重要ないくつかの特性1−4を備えている。
Therefore, it is unsuitable as a recording layer for either or both reasons. Among them, GeTe has a stable amorphous phase and a relatively low melting point of 725 ° C, but the output of the current practical laser diode is at most high.
Considering that it is about 30-40 mW, there are drawbacks that it is not easy to amorphize and the moisture resistance is low. Therefore, the present inventors have investigated a ternary compound containing Te and GeSbTe
It was found that the ternary compound (1) was excellent as a recording thin film in the following points. This system has several properties 1-4 that are specific and important to this system as described below.

まず第一は、GeTeとSb2Te3のあいだには複数の化学量
論組成の化合物、すなわちGe2Sb2Te5,GeSb2Te4,GeSb4Te
7のように両端の二元化合物相の間の三元化合物相が存
在することである。第3図にN.Kh.アブリコソフ等によ
るGeTe-Sb2Te3擬二元相図を示す。前述のように量論化
合物相においては結晶状態における自由エネルギーが低
くアモルファス相とのエネルギー準位の差が大きいこと
から早い結晶化速度が得られる。
First, there are multiple stoichiometric compounds between GeTe and Sb 2 Te 3 , namely Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 and GeSb 4 Te.
As in 7 , there is a ternary compound phase between the binary compound phases at both ends. Figure 3 shows the GeTe-Sb 2 Te 3 pseudo-binary phase diagram by N.Kh.Abrikosov et al. As described above, in the stoichiometric compound phase, the free energy in the crystalline state is low and the difference in energy level from the amorphous phase is large, so that a high crystallization rate can be obtained.

第二は上記各化合物相が互いによく似た結晶構造を有
し結晶化温度、融点等においても、それぞれ非常に近い
値を示すということである。このことは次の効果、即
ち、たとえ記録膜組成が厳密に上記化学量論組成相の一
つに一致していなくとも、全体としては三つの相間の混
合物と見なすことができ、広い組成範囲にわたって特性
が変化しないという利点をあたえる。特にGeTe-Sb2Te3
の線上では上記、三つの量論化合物組成と全く変わらな
い特性が得られた。
Second, the compound phases have crystal structures very similar to each other, and exhibit very close values in crystallization temperature, melting point, and the like. This has the following effect: even if the composition of the recording film does not exactly match one of the stoichiometric phases, it can be considered as a mixture of the three phases as a whole, and over a wide composition range. The advantage is that the characteristics do not change. Especially GeTe-Sb 2 Te 3
On the line of (3), the characteristics which are completely the same as the above three stoichiometric compound compositions were obtained.

第三のポイントは上記結晶化温度が十分高く、従って
安定なアモルファス相が得られるということである。実
施例1中の第4図a,b,cにGeTe-Sb2Te3のライン上の組成
を含むGe-Sb−T三元系薄膜の結晶化温度の測定例と、
その組成依存性を調べた結果を等高線図として示す。こ
れによってGeTe-Sb2Te3擬二元系においては広い領域に
わたって室温よりも十分に高い結晶化温度が確保できる
ことがわかる。
The third point is that the crystallization temperature is sufficiently high, and thus a stable amorphous phase can be obtained. The measurement example of the crystallization temperature of the Ge-Sb-T ternary thin film containing the composition on the line of GeTe-Sb 2 Te 3 in FIGS.
The result of examining the composition dependence is shown as a contour map. This shows that the GeTe-Sb 2 Te 3 pseudo-binary system can secure a crystallization temperature sufficiently higher than room temperature over a wide range.

第四のポイントは、結晶化課程ののなかで見出され
た。すなわちGeTe-Sb2Te3擬二元系においては、その室
温における安定な結晶相は六方晶であるが、結晶化の初
相として、まずGe,Sb,Teの三元からなる単一な面心立方
型の準安定相が現れることがわかった。液体状態あるい
はアモルファス状態における原子構造は結晶状態におけ
る原子構造よりも遥かに等方的であり、従って生じる結
晶形ができるだけ等方的であることが結晶化時における
原子の拡散距離を短くし結晶化時間を短縮するうえで有
利であると考えられる。面心立方格子は結晶系のなかで
も最も等方的なものの一つであることが知られている。
準安定相はレーザー照射のように比較的急速に加熱冷却
を行う場合に生じやすい。
The fourth point was found during the crystallization process. In other words, in the GeTe-Sb 2 Te 3 pseudo-binary system, the stable crystal phase at room temperature is hexagonal, but as the initial phase of crystallization, a single plane consisting of Ge, Sb, and Te ternary It was found that a cubic cubic metastable phase appears. The atomic structure in the liquid state or the amorphous state is much more isotropic than the atomic structure in the crystalline state. Therefore, it is important that the resulting crystal form is as isotropic as possible by shortening the diffusion distance of atoms during crystallization and crystallization. It is considered to be advantageous in shortening the time. It is known that the face-centered cubic lattice is one of the most isotropic crystal systems.
The metastable phase is likely to occur when heating and cooling are performed relatively quickly, such as laser irradiation.

以上の理由によってGeSbTe系薄膜が書換え可能な光学
的情報記録媒体として適することがわかる。
From the above reason, it is understood that the GeSbTe thin film is suitable as a rewritable optical information recording medium.

次に本発明の製造方法について説明する。本発明の記
録媒体は真空蒸着、スパッタリング等の方法で形成する
ことが可能である。スパッタリングについては、望まし
い組成から割り出した合金ターゲットを用いることも、
各組成に応じた面積の複合モザイクターゲットを用いる
ことも出来る。真空蒸着法の場合は複数のソースを用意
し、共蒸着法を採るのが組成のコントロールに便利であ
る。この場合はたとえば三組の電子銃およびその電源、
膜厚センサー(例えば水晶振動子)を用意し、各ソース
からの蒸着レートを完全に独立して制御できることが望
ましい。蒸着時における真空度は10-4Torrから10-7Torr
で十分である。
Next, the manufacturing method of the present invention will be described. The recording medium of the present invention can be formed by a method such as vacuum deposition and sputtering. For sputtering, it is also possible to use an alloy target indexed from the desired composition,
A composite mosaic target having an area corresponding to each composition can also be used. In the case of the vacuum evaporation method, it is convenient to control a composition by preparing a plurality of sources and employing a co-evaporation method. In this case, for example, three sets of electron guns and their power supplies,
It is desirable that a film thickness sensor (for example, a quartz oscillator) be prepared and the deposition rate from each source can be controlled completely independently. Vacuum degree during vapor deposition is 10-4 Torr to 10-7 Torr
Is enough.

以下、更に詳しい具体例をもって本発明を詳述する。 Hereinafter, the present invention will be described in more detail with reference to specific examples.

実施例1 上記真空蒸着の方法で様々な組成のGe-Sb-Te三元系記
録媒体のテストピースを準備し、その特性を調べた。特
性の評価は 1.相変態温度Tx 2.アモルファス化に必要な最低レーザー照射パワーp 3.結晶化開始に必要なレーザー照射時間d の三点から行った。サンプルはTx測定には基板としては
厚さ0.3mm、直径8mmのパイレックスガラスを用い、記録
層はおよそ100nmの厚さとした。Txはas-depo状態のサン
プル片を徐々に加熱していった場合に、その光学的透過
率がが変化を開始する温度で定義した。昇温は1℃/sの
スピードで行い、その間の光学的透過率の変化をHe-Ne
レーザーを用いてモニターし変曲点を検出した。これに
よってアモルファス相の熱的安定性が評価できる。また
アモルファス化感度p、結晶化速度dの測定には、基板
として縦12mm、横10mm、厚さ1.2mmのPMMA板を用いこの
上に100nmのZnS,100nmのGeSbTe三元系記録膜、200nmのZ
nSを順次蒸着し、その上に基板と同じPMMA板を紫外線硬
化樹脂を用いて張り合わせたものを用いた。pは、ある
一定のパルス幅のレーザー光線を結晶状態の記録膜面に
絞りこんで照射し、アモルファス化が開始するのに必要
な照射パワーを測定した値をいう。この場合、各サンプ
ルはあらかじめ4mWのパワーで10μsの長さのレーザー
照射を行って十分に予備黒化(結晶化)をしておき、そ
の後、照射パルス幅を50nsに固定してレーザー出力のみ
を変化させて照射しアモルファス化が光学的反射率の変
化として確認できる照射パワーを測定した。これによっ
て記録感度を評価する。またdはレーザーダイオードか
らの光をレンズ系でas-depo状態の記録膜上に直径1μ
m程度のスポットとして照射した場合に結晶化が開始す
るのに必要な照射時間のことである。この場合、照射パ
ワーを2−25mW、また照射時間を10-1000nsの範囲で変
化させて最も速い結晶化の条件を求めた。これによって
消去速度の評価をすることができる。
Example 1 Test pieces of Ge-Sb-Te ternary recording media having various compositions were prepared by the above vacuum deposition method, and their characteristics were examined. The characteristics were evaluated from three points: 1. phase transformation temperature Tx 2. minimum laser irradiation power required for amorphization p 3. laser irradiation time d required for starting crystallization. For the Tx measurement, Pyrex glass having a thickness of 0.3 mm and a diameter of 8 mm was used as a substrate for Tx measurement, and the recording layer had a thickness of about 100 nm. Tx is defined as the temperature at which the optical transmittance of the sample piece in the as-depo state begins to change when gradually heated. The temperature is raised at a speed of 1 ° C / s, and the change in optical transmittance during that time is changed to He-Ne.
An inflection point was detected by monitoring with a laser. Thereby, the thermal stability of the amorphous phase can be evaluated. For the measurement of the amorphization sensitivity p and the crystallization speed d, a PMMA plate having a length of 12 mm, a width of 10 mm and a thickness of 1.2 mm was used as a substrate, and 100 nm ZnS, 100 nm GeSbTe ternary recording film, and 200 nm Z
nS was sequentially vapor-deposited, and the same PMMA plate as the substrate was laminated on it using an ultraviolet curing resin. p is a value obtained by measuring the irradiation power required to start amorphization by irradiating a laser beam having a certain pulse width on the surface of the recording film in a crystalline state. In this case, each sample was pre-blackened (crystallized) by performing laser irradiation with a power of 4 mW for a length of 10 μs in advance, and then fixing the irradiation pulse width to 50 ns to obtain only the laser output. Irradiation power was measured by changing and irradiating, and the amorphization was confirmed as a change in optical reflectance. Thereby, the recording sensitivity is evaluated. In addition, d is a lens system that allows light from a laser diode to have a diameter of 1 μm on the recording film in the as-depo state.
It is the irradiation time required to start crystallization when irradiated as a spot of about m. In this case, the irradiation power was changed in the range of 2 to 25 mW and the irradiation time was changed in the range of 10 to 1000 ns to obtain the fastest crystallization condition. As a result, the erasing speed can be evaluated.

第4図aはGeTe-Sb2Te3系のTxの測定例である。透過
率が、ある温度で急激に減少し、結晶化が起こったこと
がわかる。
FIG. 4a shows an example of measurement of Tx in the GeTe—Sb 2 Te 3 system. It can be seen that the transmittance sharply decreased at a certain temperature and crystallization occurred.

bは、Ge-Sb-Teの三元組成図上に各組成点に対応する
Txをプロットし同一温度の点を結んだ当温線図である。
広い組成範囲にわたって室温をはるかに越える転移温度
が得られることがわかった。cはGeTeとSb2Te3の組成点
を結ぶライン上組成に対しGeTeの組成比xとTxの関係に
ついて調べた結果である。
b corresponds to each composition point on the ternary composition diagram of Ge-Sb-Te
It is a hot line diagram which plotted Tx and connected the point of the same temperature.
It has been found that a transition temperature well above room temperature can be obtained over a wide composition range. c is the result of examining the relationship between the composition ratio x of GeTe and Tx with respect to the composition on the line connecting the composition points of GeTe and Sb 2 Te 3 .

xGeTe*(1−x)Sb2Te3(0<x<1)系の相変態
温度は、x>0のいずれの場合も100℃以上と室温に対
して十分に高くアモルファス相が安定に存在することが
わかる。更にx>0.1の領域ではTxは140℃以上であり極
めて安定なアモルファス状態が得られることがわかっ
た。
The phase transformation temperature of the xGeTe * (1-x) Sb 2 Te 3 (0 <x <1) system is 100 ° C. or higher in both cases of x> 0, which is sufficiently high with respect to room temperature and the amorphous phase is stable. I understand that Further, in the region of x> 0.1, it was found that Tx was 140 ° C. or higher and an extremely stable amorphous state was obtained.

第5図は同じ系について結晶化開始に必要なレーザー
照射時間を測定した結果である。図中、各カーブは、レ
ーザーパワーを8mWとしたときのGe-Sb-Teの三元組成の
結晶化開始パルス幅dを各組成点に対応してプロットし
同じ温度の点を結んだ等速度線図である。これより、Ge
Te-Sb2Te3のライン上の組成ではおよそ30nsから100nsと
極めて短い照射時間で結晶化が開始すること、またライ
ンからはずれるほど結晶化に必要な照射時間が増大する
ことがわかる。ただしライン組成からのずれがそれほど
大きくない場合には200ns程度のレーザー照射によって
結晶化を開始させることができる。レーザーパワーをさ
らに高くして同様のことを行い14mW程度までは結晶化開
始のレーザー照射時間の短縮が確認された。
FIG. 5 shows the results of measuring the laser irradiation time required to start crystallization for the same system. In the figure, each curve plots the crystallization start pulse width d of the ternary composition of Ge-Sb-Te when the laser power is set to 8 mW, corresponding to each composition point, and connecting the points at the same temperature at a constant velocity. It is a diagram. From this, Ge
It can be seen that with the composition on the Te-Sb 2 Te 3 line, crystallization starts with an extremely short irradiation time of about 30 ns to 100 ns, and the irradiation time required for crystallization increases as it deviates from the line. However, when the deviation from the line composition is not so large, crystallization can be started by laser irradiation for about 200 ns. It was confirmed that the laser irradiation time to start crystallization was shortened up to about 14 mW by further increasing the laser power.

次にアモルファス化感度を調べた。結晶化速度が大き
いことは逆にアモルファスが形成されにくい可能性をも
っているともいえる。DSCによる融点の測定から上記ラ
イン付近のGe-Sb-Te三元膜の融点は上記ライン上の組成
とその周囲とでは比較的近いことがわかったのでGeTe-S
b2Te3系を中心にそのアモルファス化感度を調べた。
Next, the amorphization sensitivity was examined. On the contrary, it can be said that the fact that the crystallization speed is high has a possibility that the amorphous is hardly formed. The melting point of the Ge-Sb-Te ternary film near the above line was found to be relatively close between the composition on the above line and its surroundings from the measurement of the melting point by DSC.
The amorphization sensitivity of the b 2 Te 3 system was investigated.

第6図はその結果を示す。これよりGeTeの組成比xが
0.8よりも小さい領域においては50nsという極めて短い
時間のレーザー照射によっても20mW程度のレーザーパワ
ーでアモルファス化が実現していることがわかる。更に
GeTeの組成比が33,50,66%という化合物組成ではそれぞ
れ13,15,17mWというレーザーパワーでアモルファス化が
実現している。これらの値はGeTe単体の場合が30mW以上
であるのに比較して十分に低くGeTe-Sb2Te3系のアモル
ファス化感度がGeTeに比べて十分に高いことを表わして
いる。アモルファス化感度は融点と密接に関係しており
Sb2Te3に近づくほど高くなるがSb2Te3単体では先に述べ
たようにTxがやや低く実用に耐えない。GeTeとSb2Te3
の間の共晶組成Ge4Sb37Te59においては593℃とこの系の
最も低い融点を有することから高い記録感度と比較的安
定なアモルファス相を同時に得ることができる。
FIG. 6 shows the result. From this, the composition ratio x of GeTe is
In the region smaller than 0.8, it can be seen that even if the laser irradiation for a very short time of 50 ns, the amorphization is realized with the laser power of about 20 mW. Further
Amorphization has been realized with laser powers of 13, 15, and 17 mW for compound compositions with GeTe composition ratios of 33, 50, and 66%, respectively. These values are sufficiently low as compared with the case of GeTe alone being 30 mW or more, indicating that the amorphization sensitivity of the GeTe-Sb 2 Te 3 system is sufficiently higher than that of GeTe. Amorphization sensitivity is closely related to melting point
As it approaches Sb 2 Te 3 , it becomes higher, but with Sb 2 Te 3 alone, Tx is rather low as described above, and it is not practical. In the eutectic composition Ge 4 Sb 37 Te 59 between GeTe and Sb 2 Te 3 , it has 593 ° C. and the lowest melting point of this system, so that high recording sensitivity and relatively stable amorphous phase can be obtained at the same time. .

実施例2 次にGe-Sb-Te三元系薄膜の結晶化課程をX線回折およ
びDSCを用いて調べた結果を示す。厚さ0.3mm,20mm角の
石英ガラス上に、ライン上の組成を含む幾つかの組成を
約100nm蒸着したテストピースを、それぞれ複数個準備
した。各組成において無処理のものおよび、アルゴンガ
ス中で約10分間アニールしたもののX線回折パターンを
調べた。アニール温度は、あらかじめDSCを用いて結晶
化温度等の変態点を調べ、その直上の温度とした。この
結果、第一表に示すような結晶化課程が判明した。
Example 2 Next, the crystallization process of a Ge-Sb-Te ternary thin film was examined using X-ray diffraction and DSC. A plurality of test pieces were prepared on a quartz glass having a thickness of 0.3 mm and a square of 20 mm each having several compositions including the composition on the line deposited by about 100 nm. The X-ray diffraction patterns of the untreated composition and the composition annealed in argon gas for about 10 minutes were examined. As the annealing temperature, a transformation point such as a crystallization temperature was examined in advance using DSC, and the temperature immediately above the transformation point was used. As a result, a crystallization process as shown in Table 1 was found.

すなわち、この表から1)蒸着したままの未処理の状
態がアモルファス状態であること2)上記、ライン上の
組成では、まずNaCl型の準安定相が初相として現れてい
ること3)ラインからはずれた組成では、初めから六方
晶の安定相が出現することが読み取れ、ライン上の組成
における高速な結晶化が上述の準安定相の出現とよく対
応していることがわかる。
That is, from this table, 1) the untreated state as deposited is an amorphous state. 2) In the above composition on the line, first, a NaCl-type metastable phase appears as the initial phase. 3) From the line It can be read that a hexagonal stable phase appears from the beginning with a deviated composition, and it can be seen that the rapid crystallization in the composition on the line corresponds well with the appearance of the metastable phase described above.

DSCからは、ライン上組成に関し、結晶化に伴う発熱
ピークも溶融に伴う急熱ピークも共にナローで急峻であ
ることが示され、これらの系が単一相であることが確認
された。
The DSC showed that both the exothermic peak due to crystallization and the rapid heat peak due to melting were narrow and steep in the on-line composition, confirming that these systems were single phase.

実施例3 実施例1,2に対応する各組成点について、光ディスク
を試作し、その動特性を調べた。ディスクは、光の案内
溝を備えた直径130mm、厚さ1.2mmのPMMA樹脂基板上にZn
S,Ge-Sb-Te三元膜、ZnSと順次積層しその上に紫外線効
果樹脂を用いて基板と同じPMMA板を保護層として張り合
わせて構成した。各層の厚さは、下からおよそ800A,100
0A,1600Aであり、記録層での光吸収効果を高めるべく設
計した。ダイナミックテスター(デッキ)は、記録再生
用と消去用とを兼ねた0.9μm(1/2強度)径の円形に絞
りこんだ一本のレーザースポットを有しており、記録時
はレーザー出力を高く、消去時は低くすることで古い信
号を新しい信号で書きつぶしていく、いわゆるオーバー
ライト記録をテストするものである。ディスクの回転速
度は20m/secを基準とし、5MHzと7MHzの二つの周波数で
交互に記録(オーバーライト)を行ってその繰り返し寿
命を調べた。寿命限界としては初期のC/Nから3dB減とな
る回数と定義し、以下(1)−(3)の結論を得た。
Example 3 With respect to each composition point corresponding to Examples 1 and 2, an optical disk was prototyped and its dynamic characteristics were examined. The disk is Zn on a PMMA resin substrate with a diameter of 130 mm and a thickness of 1.2 mm equipped with a light guide groove.
The S, Ge-Sb-Te ternary film and ZnS were sequentially laminated, and the same PMMA plate as the substrate was laminated as a protective layer using an ultraviolet effect resin on it. The thickness of each layer is about 800A, 100 from the bottom.
0A, 1600A, designed to enhance the light absorption effect in the recording layer. The dynamic tester (deck) has a single laser spot that is narrowed down to a circular shape with a diameter of 0.9 μm (1/2 intensity) for both recording and playback, and for erasing. The laser output is high during recording. This is a test for so-called overwrite recording in which the old signal is overwritten with the new signal by lowering it during erasing. The disc rotation speed was set to 20 m / sec as a reference, and recording (overwriting) was alternately performed at two frequencies of 5 MHz and 7 MHz to examine the repeated life. The life limit is defined as the number of times the initial C / N is reduced by 3 dB, and the following conclusions (1)-(3) are obtained.

(1) ライン上の組成では記録時15-24mW、消去時6
−12mWのパワー範囲においてオーバーライトが可能であ
り、50dB以上のC/Nが得られる。また100万回以上の繰り
返しが可能である。また、最大30m/secでのオーバーラ
イトが確認された(ランク1)。
(1) With the composition on the line, 15-24mW when recorded, 6 when erased
Overwriting is possible in the power range of -12mW, and C / N of 50dB or more is obtained. It can be repeated more than 1 million times. In addition, overwriting was confirmed at a maximum of 30 m / sec (rank 1).

(2) ライン上の組成からずれるに従って消去速度の
低下から古い信号が消しきれなくなり新しい信号の品質
が低下する。この場合は記録周波数を下げ回転速度を10
m/sec,5m/secというように遅くすることでライン上の組
成の場合と同様にオーバーライトを行える。ただし、あ
まり大きくはずれてしまうと回転速度では対応できなく
なる。また繰り返しによって生じた分相に起因すると思
われるノイズが発生しやすくなる。
(2) As the composition on the line deviates, the erasing speed decreases, and the old signal cannot be erased and the quality of the new signal deteriorates. In this case, lower the recording frequency and reduce the rotation speed to 10
By slowing down to m / sec or 5 m / sec, overwriting can be performed as in the case of the composition on the line. However, if the deviation is too large, the rotation speed cannot cope. In addition, noise that is thought to be caused by phase separation generated by repetition is likely to occur.

(3) 組成ずれの許容幅は第6図からわかるように上
記ラインから見てSbの方向へ+10at%、Teの方向へ+10
at%程度であって、この範囲では5m/sec以下の回転速度
で1万回の繰り返しが可能である(ランク4)。同様に
Sbの方向に+7at%、Teの方向へ+5at%程度の範囲では
15m/sec以下の回転速度で10万回の繰り返しが可能であ
る(ランク3)。さらに+5at%、+3at%程度の範囲で
は25m/sec以下の回転速度で100万回の繰り返しが可能で
ある(ランク2)。上記角ランクに対応する組成領域を
第二表に示す。
(3) As shown in Fig. 6, the allowable range of composition deviation is + 10at% in the Sb direction and +10 in the Te direction as seen from the above line.
It is about at%, and in this range, it can be repeated 10,000 times at a rotation speed of 5 m / sec or less (rank 4). As well
In the range of + 7at% in the Sb direction and + 5at% in the Te direction
It can be repeated 100,000 times at a rotation speed of 15 m / sec or less (rank 3). Furthermore, in the range of + 5at% and + 3at%, it is possible to repeat 1 million times at a rotation speed of 25m / sec or less (rank 2). Table 2 shows composition regions corresponding to the above corner ranks.

これらのディスクは、当然のことながら従来のように
複数個のレーザースポットを用いて記録/消去をくり返
すことが可能であり、むしろそのほうが条件としては選
択の自由度が大きく容易であった。
As a matter of course, these disks can be repeatedly recorded / erased by using a plurality of laser spots as in the conventional case, and rather, the condition is that the degree of freedom in selection is large and easy.

実施例4 実施例1,2におけるディスクの環境試験を行った。各
ディスクを80℃,80RH%の環境下に放置し1ケ月の間、
反射率をモニターしたが前記Txが140℃以上の組成のデ
ィスクについては全く変化が認められなかった。
Example 4 Environmental tests of the disks in Examples 1 and 2 were performed. Leave each disk in the environment of 80 ℃, 80RH% for 1 month,
The reflectance was monitored, but no change was observed in the disk having the composition having Tx of 140 ° C. or higher.

発明の効果 以上述べたように本発明によれば、 (1) 情報の転送レートが毎秒数Mバイトと極めて大
きい。
EFFECTS OF THE INVENTION As described above, according to the present invention, (1) the information transfer rate is extremely large, such as several megabytes per second.

(2) 単一のレーザービームでオーバーライトが可能
な。
(2) Overwriting is possible with a single laser beam.

(3) 繰り返し寿命の長い光学的情報記録媒体が提供
される。
(3) An optical information recording medium having a long repeated life is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の光学情報記録媒体に適用するGe-Sb-Te
三元系記録膜の組成領域を示す組成図、第2図は本発明
の一実施例における記録媒体の実施形態例を示す断面
図、第3図はGe-Sb-Te三元系組成の中心であるGeTe-Sb2
Te3擬二元系相図、第4図は結晶化転移温度Txの測定例
及び、その組成依存性を示す図、第5図は本発明のGe-S
b-Te三元系記録膜のアモルファス化感度の組成依存性を
示す図、第6図は本発明のGe-Se-Te三元系記録膜が結晶
化を開始するのに必要なレーザー照射時間を示す図であ
る。
FIG. 1 shows Ge-Sb-Te applied to the optical information recording medium of the present invention.
FIG. 2 is a composition diagram showing a composition region of a ternary recording film, FIG. 2 is a sectional view showing an embodiment of a recording medium in an example of the present invention, and FIG. 3 is a center of a Ge-Sb-Te ternary composition. GeTe-Sb 2
Te 3 pseudo-binary phase diagram, FIG. 4 shows an example of measurement of crystallization transition temperature Tx and its composition dependence, and FIG. 5 shows Ge-S of the present invention.
FIG. 6 is a diagram showing the composition dependence of the amorphization sensitivity of the b-Te ternary recording film, and FIG. 6 shows the laser irradiation time required for the Ge-Se-Te ternary recording film of the present invention to start crystallization. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐内 進 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭61−89889(JP,A) 特開 昭61−66696(JP,A) 特開 昭62−53886(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Susumu Sanai 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 61-89889 (JP, A) JP 61-66696 (JP, A) JP 62-53886 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に、その両側を誘電体薄膜層で挟ん
だ記録薄膜層を備え、レーザ光線の照射によって、上記
記録薄膜層にアモルファス−結晶間の可逆的相変化を生
じさせ、それに伴って生じる光学的特性の変化を利用し
て情報の記録、消去を行なう書換え可能な相変化記録媒
体であって、上記記録薄膜が、安定な化学量論的三元化
合物組成Ge2Sb2Te5,GeSb2Te4またはGeSb4Te7の内のいず
れか、もしくは、これらの間の固溶体組成であって、初
期状態として記録薄膜層が結晶相に転換されていること
を特徴とする光学的情報記録媒体。
1. A recording thin film layer sandwiching dielectric thin film layers on both sides of the substrate is provided, and a reversible phase change between amorphous and crystal is caused in the recording thin film layer by irradiation of a laser beam. A rewritable phase change recording medium for recording and erasing information by utilizing the accompanying change in optical properties, wherein the recording thin film has a stable stoichiometric ternary compound composition Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 or GeSb 4 Te 7 , or a solid solution composition between them, which is characterized in that the recording thin film layer is converted to a crystalline phase in the initial state. Information recording medium.
【請求項2】記録薄膜層を挟む誘電体薄膜層の内、レー
ザ光線の出射側の誘電体薄膜層の上に、さらに反射層を
形成した特許請求の範囲第1項記載の光学的情報記録媒
体。
2. The optical information recording according to claim 1, further comprising a reflecting layer formed on the dielectric thin film layer on the laser beam emitting side among the dielectric thin film layers sandwiching the recording thin film layer. Medium.
【請求項3】基板上に、その両側を誘電体薄膜層で挟ん
だ記録薄膜層を備え、レーザ光線の照射によって、上記
記録薄膜層にアモルファス−結晶間の可逆的相変化を生
じさせ、それに伴って生じる光学的特性の変化を利用し
て情報の記録、消去を行なう書換え可能な相変化記録媒
体であって、上記記録薄膜が、GeTeとSb2Te3の間の共晶
組成であって初期状態として記録薄膜層が結晶相に転換
されていることを特徴とする光学的情報記録媒体。
3. A recording thin film layer sandwiched between dielectric thin film layers on both sides of the substrate, wherein a reversible phase change between amorphous and crystalline is caused in the recording thin film layer by irradiation with a laser beam, and A rewritable phase change recording medium for recording and erasing information by utilizing the accompanying change in optical properties, wherein the recording thin film has a eutectic composition between GeTe and Sb 2 Te 3. An optical information recording medium, wherein the recording thin film layer is converted into a crystalline phase in an initial state.
【請求項4】記録薄膜層を挟む誘電体薄膜層の内、レー
ザ光線の出射側の誘電体薄膜層の上に、さらに反射層を
形成した特許請求の範囲第3項記載の光学的情報記録媒
体。
4. The optical information recording according to claim 3, wherein a reflective layer is further formed on the dielectric thin film layer on the laser beam emitting side among the dielectric thin film layers sandwiching the recording thin film layer. Medium.
JP62236558A 1986-09-22 1987-09-21 Optical information recording medium Expired - Fee Related JPH0832482B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90967386A 1986-09-22 1986-09-22
US909673 1986-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7214514A Division JP2692654B2 (en) 1986-09-22 1995-08-23 Optical reversible recording method

Publications (2)

Publication Number Publication Date
JPS63225934A JPS63225934A (en) 1988-09-20
JPH0832482B2 true JPH0832482B2 (en) 1996-03-29

Family

ID=25427640

Family Applications (3)

Application Number Title Priority Date Filing Date
JP62236558A Expired - Fee Related JPH0832482B2 (en) 1986-09-22 1987-09-21 Optical information recording medium
JP62237838A Expired - Fee Related JP2574325B2 (en) 1986-09-22 1987-09-22 Optical information recording medium
JP7214514A Expired - Fee Related JP2692654B2 (en) 1986-09-22 1995-08-23 Optical reversible recording method

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP62237838A Expired - Fee Related JP2574325B2 (en) 1986-09-22 1987-09-22 Optical information recording medium
JP7214514A Expired - Fee Related JP2692654B2 (en) 1986-09-22 1995-08-23 Optical reversible recording method

Country Status (1)

Country Link
JP (3) JPH0832482B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
GB2209579B (en) * 1987-09-09 1992-01-29 Gerber Garment Technology Inc Balanced reciprocating drive mechanism
JPH02158383A (en) * 1988-12-12 1990-06-18 Hitachi Ltd Data recording membrane
JP2596478B2 (en) * 1991-03-20 1997-04-02 非酸化物ガラス研究開発株式会社 Rewritable optical information recording medium
US5527661A (en) * 1992-11-25 1996-06-18 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
JP2778621B2 (en) * 1995-05-11 1998-07-23 日本電気株式会社 Method for manufacturing optical information recording medium
TW200529414A (en) * 2004-02-06 2005-09-01 Renesas Tech Corp Storage
TW200601322A (en) 2004-04-07 2006-01-01 Hitachi Maxell Information recording medium
EP1858712B1 (en) 2005-03-17 2010-05-12 Ricoh Company, Ltd. Two-layered optical recording medium
WO2006132076A1 (en) 2005-06-07 2006-12-14 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for producing the same
WO2008018225A1 (en) 2006-08-08 2008-02-14 Panasonic Corporation Information recording medium, its manufacturing method, and sputtering target
US8017208B2 (en) 2006-11-01 2011-09-13 Panasonic Corporation Information recording medium, target and method for manufacturing of information recording medium using the same
US8273438B2 (en) 2007-02-09 2012-09-25 Panasonic Corporation Information recording medium, process for producing the information recording medium, sputtering target and film forming apparatus
CN101678693B (en) 2007-06-11 2012-05-30 松下电器产业株式会社 Information recording medium, process for production of the same, and target
US8040765B2 (en) 2008-09-05 2011-10-18 Panasonic Corporation Initialization method for information recording medium, initialization apparatus for information recording medium, and information recording medium
WO2010052842A1 (en) 2008-11-07 2010-05-14 パナソニック株式会社 Information recording medium and method for producing same, and sputtering target
JPWO2011024381A1 (en) 2009-08-31 2013-01-24 パナソニック株式会社 Information recording medium and manufacturing method thereof
CN102884577B (en) 2011-03-08 2016-11-09 松下知识产权经营株式会社 Information recording carrier and manufacture method thereof
CN102918593B (en) 2011-03-08 2016-07-13 松下知识产权经营株式会社 Information recording carrier and manufacture method thereof
WO2013031107A1 (en) * 2011-08-30 2013-03-07 パナソニック株式会社 Optical information recording medium and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131291A (en) * 1984-07-24 1986-02-13 Daicel Chem Ind Ltd Optical information-recording medium
JPS6153033A (en) * 1984-08-22 1986-03-15 株式会社クボタ Manufacture of double pipe
JPS6166696A (en) * 1984-09-11 1986-04-05 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium
JPS6189889A (en) * 1984-10-11 1986-05-08 Nippon Columbia Co Ltd Optical information-recording medium
JPS6253886A (en) * 1984-12-26 1987-03-09 Asahi Chem Ind Co Ltd Information-recording medium

Also Published As

Publication number Publication date
JPS63225935A (en) 1988-09-20
JPS63225934A (en) 1988-09-20
JP2692654B2 (en) 1997-12-17
JP2574325B2 (en) 1997-01-22
JPH0845074A (en) 1996-02-16

Similar Documents

Publication Publication Date Title
JP2574325B2 (en) Optical information recording medium
JP4435429B2 (en) Information recording medium
US5194363A (en) Optical recording medium and production process for the medium
Yamada et al. High speed overwritable phase change optical disk material
KR900009187B1 (en) Optical information recording carrier
US5346740A (en) Optical information recording medium
US7002896B2 (en) Information recording medium and method for producing the same, and method for recording/reproducing information thereon
JP3011200B2 (en) Optical recording medium
JP2000505930A (en) Optical recording medium having phase change recording layer
US6660451B1 (en) Optical information recording medium
JPH10166738A (en) Optical recording material and optical recording medium
JPS61269247A (en) Reversible optical information recording and reproducing method
Akahira et al. Recent advances in erasable phase-change optical disks
JP3963781B2 (en) Optical recording medium
JP2553736B2 (en) Optical recording medium and method of manufacturing optical recording medium
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JP2629696B2 (en) Optical information recording / reproduction member
JP2765235B2 (en) Optical information recording / reproducing / erasing method and optical recording apparatus
JP2538915B2 (en) How to record and erase information
JP2650868B2 (en) Rewritable optical information recording method
JP2523907B2 (en) Optical information recording / reproducing / erasing member
JP3413986B2 (en) Optical information recording medium and recording / reproducing method
JPH07111786B2 (en) Optical recording medium, protective film for optical recording medium, and manufacturing method of protective film
JPH02112987A (en) Optical recording medium
JPH05144084A (en) Optical recording medium and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees