JPH02112987A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH02112987A
JPH02112987A JP63266870A JP26687088A JPH02112987A JP H02112987 A JPH02112987 A JP H02112987A JP 63266870 A JP63266870 A JP 63266870A JP 26687088 A JP26687088 A JP 26687088A JP H02112987 A JPH02112987 A JP H02112987A
Authority
JP
Japan
Prior art keywords
recording
layer
erasing
recording layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63266870A
Other languages
Japanese (ja)
Inventor
Kusahito Hirota
草人 廣田
Gentaro Obayashi
大林 元太郎
Toshiharu Nakanishi
中西 俊晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63266870A priority Critical patent/JPH02112987A/en
Publication of JPH02112987A publication Critical patent/JPH02112987A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To provide stable operation even if recording and erasing are repeated many times and to reduce deterioration in recording characteristic such as a decrease in recording sensitivity by incorporating specific composition of Sb, Te, Ge and Co, Zr and Hf in the recording layer of an optical recording medium. CONSTITUTION:A recording layer formed on a substrate has a recording layer, a heat insulating layer and a cooling layer, and the composition of the layer is represented by a general formula, where x, y and alpha are ratio of number of atoms, Sb, antimony, Te, tellurium, Ge, germanium, M representing at least one or more of Co (cobalt), Zr (zirconium) and Hf (hafnium). The insulating layers are laminated on both side faces of the recording layer, and made of a thin film of ZnS, oxide thin film of metal such as Si, Ge, Ti, Zr and Te, and a film of mixture thereof. The cooling layer is laminated on one side of the insulating layer, and made of metal having higher thermal conductivity than that of the insulating layer and particularly small specific heat and high thermal conductivity, and Au and Sb are desirable. The substrate may be made of plastic, glass, etc. similar to that of the conventional recording medium. The recording, insulating and cooling layers are formed on the substrate by a thin film forming method such as a sputtering method, a resistance heat depositing method, an electron beam heat depositing method and an ion plating method, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光情報記録媒体に関するものC必り、ざらに
詳しくは光によって情報の記録、再生する光カード、光
ディスクなどの光記録媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to optical information recording media, and more specifically relates to optical recording media such as optical cards and optical disks that record and reproduce information using light. It is something.

〔従来の技術〕[Conventional technology]

従来、出換え可能な光記録媒体としては、非晶状態と結
晶状態の光学的に検出可能な2つの状態間の可逆的変化
を利用したものが必る。
Conventionally, a replaceable optical recording medium has always been one that utilizes a reversible change between two optically detectable states, an amorphous state and a crystalline state.

代表的なものとしては、Teを主成分とするTe81G
e15sb282膜を記録層とだもの(特開昭47−2
6897号公報)、Teを主成分とするT e 80S
blO8elO膜を記録層としたちのく特開昭61−1
45737号公報、5PIE VOl、5291)2 
) 、S b 2 S e等の組成の3b−3e合金を
記録層としたもの(特開昭60−155495号公報、
Appl、Phys、 Iett、48(19)、12
 May  1986) 、Sb2 Se3合金を記録
層とするもの(特開昭59−185048号公報)、ま
たTeを主成分とするTe−Ge−3b合金を記録層と
したもの(特開昭61−209742号公報)などがあ
る。
A typical example is Te81G, which has Te as its main component.
e15sb282 film as a recording layer (Unexamined Japanese Patent Publication No. 47-2
6897), Te 80S whose main component is Te
JP-A-61-1 by Chinoku using blO8elO film as recording layer
Publication No. 45737, 5PIE VOl, 5291) 2
), 3b-3e alloy having a composition such as S b 2 Se is used as a recording layer (Japanese Patent Application Laid-open No. 155495/1983,
Appl, Phys, Iett, 48(19), 12
May 1986), one with a recording layer made of Sb2Se3 alloy (Japanese Patent Application Laid-Open No. 185048/1982), and one with a recording layer made of a Te-Ge-3b alloy containing Te as a main component (Japanese Patent Laid-Open No. 209742/1982). Publication No.) etc.

これらの光記録媒体では、記録時には、記録状態の記録
層に光を短時間照射する。このとき記録層は部分的に溶
融し、その後、熱拡散により急冷固化することにより、
非晶マークが形成される。
In these optical recording media, during recording, the recording layer in the recorded state is irradiated with light for a short period of time. At this time, the recording layer partially melts, and then rapidly cools and solidifies due to thermal diffusion.
Amorphous marks are formed.

この非晶マークの光線反射率は、結晶状態より低く、光
学的に記録信号として検出可能である。消去時には、非
晶マーク部分に光を照射し、融点以下に加熱することに
より、非晶マークを結晶化し、もとの状態に戻し消去す
る。
The light reflectance of this amorphous mark is lower than that of the crystalline state, and can be optically detected as a recording signal. When erasing, the amorphous mark is irradiated with light and heated to below its melting point, thereby crystallizing the amorphous mark, returning it to its original state, and erasing it.

[発明が解決しようとする課題] しかしながら、上記従来技術の場合、次のような問題が
あった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following problems.

すなわち、Te81Ge15Sb232膜やl’−e8
0SblO3elO膜を記録層としたものでは、結晶化
速度が遅く、1μsec以下の高速消去が要求されるリ
アルタイムで書換え可能な光ディスクを実現することは
できなかった。一方、Sb2Te3.5b2Seおよび
Te−Ge−3b膜では、結晶化速度が速く、消去速度
を1μsec以下とすることができるが、以下の問題が
めった。すなわち、Sb 2Te 3膜では、結晶化温
度が70℃以下と低く、熱安定性が低いため信頼性に乏
しかった。
That is, Te81Ge15Sb232 film or l'-e8
In the case of using an 0SblO3elO film as a recording layer, the crystallization speed is slow, and it has not been possible to realize a real-time rewritable optical disk that requires high-speed erasing of 1 μsec or less. On the other hand, with the Sb2Te3.5b2Se and Te-Ge-3b films, the crystallization speed is fast and the erasing speed can be set to 1 μsec or less, but the following problems often occur. That is, in the Sb 2 Te 3 film, the crystallization temperature was as low as 70° C. or less, and the thermal stability was low, resulting in poor reliability.

また5b2Se膜では、記録消去の繰返しに伴いノイズ
が増大する欠点がおった。さらに、l’−e−Ge−3
b膜では、高速消去可能な組成では、記録膜が記録時に
変形、開口を生じ易く、信頼性に乏しい問題があった。
Furthermore, the 5b2Se film has the disadvantage that noise increases with repeated recording and erasing. Furthermore, l'-e-Ge-3
In the b film, if the composition allows high-speed erasing, the recording film is likely to be deformed and open during recording, resulting in poor reliability.

本発明はかかる問題点を改善し、高速で記録、消去が可
能であり、かつ、記録、消去感度が高く、C/N、消去
率が良好であり、また、記録、消去の多数回の繰返しに
よっても劣化が少なく、かつ熱安定性の良好な光記録媒
体を提供することを目的とする。
The present invention improves these problems, enables high-speed recording and erasing, has high recording and erasing sensitivity, has good C/N and erasing rate, and is capable of repeating recording and erasing many times. It is an object of the present invention to provide an optical recording medium that is less likely to be degraded by heat treatment and has good thermal stability.

(課題を解決するための手段〕 かかる本発明の目的は、基板上に形成された記録層に光
を照射することによって、情報の記録、消去および再生
が可能でおり、情報の記録および消去が、結晶状態と非
晶状態の間の相変化により行なわれる光記録媒体におい
て、前記記録層が少なくとも記録層、断熱層および冷F
A@を備え、かつ前記記録層の組成が下記一般式で表わ
されることを特徴とする光記録媒体。
(Means for Solving the Problems) An object of the present invention is to record, erase, and reproduce information by irradiating a recording layer formed on a substrate with light; , an optical recording medium that undergoes a phase change between a crystalline state and an amorphous state, wherein the recording layer comprises at least a recording layer, a heat insulating layer and a cold F
An optical recording medium characterized in that the composition of the recording layer is represented by the following general formula.

(SbxTel−x)1−y−αGeyMαただし、 0.55≦x≦0.65 0.01≦y≦0.10 0.001≦α≦0.03 x、yおよびαはそれぞれ原子数比を示し、Sbはアン
チモン、丁eはテルル、Geはゲルマニウム、MはCo
(コバルト)、Zr(ジルコニウム)およびHf(ハフ
ニウム)のうち少なくとも1元素以上を表わす。
(SbxTel-x)1-y-αGeyMα However, 0.55≦x≦0.65 0.01≦y≦0.10 0.001≦α≦0.03 x, y, and α each represent the atomic ratio , Sb is antimony, D is tellurium, Ge is germanium, M is Co
(cobalt), Zr (zirconium), and Hf (hafnium).

記録層の組成の主成分は、sbを主成分とする5b−T
e合金である。前記一般式中の括弧内で表わされる組成
の5b−Te二元合金は非晶質となり易く、また融点も
Sb、Sb2 Te3化合物に比べて低いため、非晶化
による記録が容易であるとともに結晶化も速く、およそ
1μsec以下のレーザ光照射により消去か可能である
。加えて、この3b−Te合金を主成分とする場合には
、5b−3膜合金系にみられるような記録、消去の繰返
しに伴う不可逆的な相分離や、結晶の粗大化が起こりに
くく、記録感度、C/N比などの記録特性の劣化が軽減
される。
The main component of the composition of the recording layer is 5b-T whose main component is sb.
It is an e-alloy. The 5b-Te binary alloy with the composition expressed in parentheses in the above general formula tends to be amorphous and has a lower melting point than Sb and Sb2Te3 compounds, so it is easy to record by amorphization and it is not crystalline. It is also fast to erase, and can be erased by laser light irradiation for approximately 1 μsec or less. In addition, when this 3b-Te alloy is the main component, irreversible phase separation and crystal coarsening that occur with repeated recording and erasing, as seen in the 5b-3 film alloy system, are less likely to occur. Deterioration of recording characteristics such as recording sensitivity and C/N ratio is reduced.

また記録層の含有するGeは、前記一般式で表わされる
組成の範囲において、非晶質状態を安定化し記録の安定
性を改善するとともに、非晶相と結晶相の光の反射率、
透過率の差を大きくし、再生信号のコントラストを改善
する効果を有する。
Furthermore, within the composition range represented by the above general formula, Ge contained in the recording layer stabilizes the amorphous state and improves recording stability, and also improves the light reflectance of the amorphous phase and crystalline phase.
This has the effect of increasing the difference in transmittance and improving the contrast of the reproduced signal.

記録層の含有するMで表わされるCO,Zrおよび)−
1fの少なくとも1元素以上の金属は、前記一般式で表
わされる組成の範囲において、記録消去時の消去率を改
善するとともに、記録繰返しに伴うノイズの増大を低減
するとともに、記録、消去の繰返しに伴う記録、消去パ
ワーの変動、反射率の変動などを防止する。また、消去
速度(結晶化速度)の向上の効果も有する。
CO, Zr and) represented by M contained in the recording layer
The metal containing at least one element of 1f, within the composition range represented by the above general formula, improves the erasure rate during recording and erasing, reduces noise increase due to repeated recording, and improves the resistance to repeated recording and erasing. This prevents fluctuations in recording and erasing power, fluctuations in reflectance, etc. It also has the effect of improving erasing speed (crystallization speed).

前記記録層の組成の一般式において、sbの原子数比X
が0.65を越える場合には、結晶化速度は高速化され
るが、記録、消去の繰返しの可逆性が悪化するとともに
、非晶化し難くなるため記録が困難になる。一方、0.
55より小さい場合には、結晶化速度が遅く、記録の高
速消去が困難になる。
In the general formula of the composition of the recording layer, the atomic ratio of sb
If it exceeds 0.65, the crystallization speed is increased, but the reversibility of recording and erasing repetitions deteriorates, and it becomes difficult to amorphize, making recording difficult. On the other hand, 0.
If it is smaller than 55, the crystallization speed is slow, making it difficult to erase records at high speed.

前記記録層の組成の一般式において、Teの原子数比1
−xが0.35より大きい場合には、結晶化速度が遅い
ため記録の消去速度が遅く実用的ではない。また0、4
5より小さい場合には、非晶化し難いため記録が困難に
なるとともに記録消去の繰返しが困難になる。
In the general formula of the composition of the recording layer, the atomic ratio of Te is 1
If -x is larger than 0.35, the crystallization rate is slow and the recording erasing rate is slow, which is not practical. Also 0, 4
If it is smaller than 5, it is difficult to amorphize, making recording difficult and making it difficult to repeat recording and erasing.

前記記録層の組成の一般式において、Geの原子数比y
が0.10より大きい場合には、結晶化速度が遅くなり
記録の高速消去が困難になるため実用的ではない。一方
、0.01より小さい場合には、結晶化温度が低いため
記録の熱安定性が低下する。また、Ge添加による信号
コントラストの有意の改善効果が認められない。
In the general formula of the composition of the recording layer, the Ge atomic ratio y
If it is larger than 0.10, it is not practical because the crystallization speed becomes slow and high-speed erasing of records becomes difficult. On the other hand, when it is smaller than 0.01, the crystallization temperature is low, resulting in a decrease in thermal stability of recording. Furthermore, no significant improvement in signal contrast was observed due to the addition of Ge.

前記記録層の組成の一般式において、Mで表わしたC0
1lrおよびHfのうち少なくとも1つ以上の元素 金
属の原子数比αが0.03より多い場合には、非晶化が
困難になるとともに、消去率が悪化する。またノイズも
増大することがら実用的ではない。一方、0.001未
満では、消去率の改善、記録消去繰返しに伴うノイズの
増大を低減するなど添加による効果が得られない。
In the general formula for the composition of the recording layer, C0 represented by M
If the atomic ratio α of at least one element metal among 1lr and Hf is more than 0.03, amorphization becomes difficult and the erasing rate deteriorates. Further, noise also increases, which is impractical. On the other hand, if it is less than 0.001, the effects of addition, such as improving the erasing rate and reducing the increase in noise caused by repeated recording and erasing, cannot be obtained.

特に、多数回の記録消去が可能であることから、αが0
.002〜0.01であることが好ましい。
In particular, since it is possible to erase records many times, α is 0.
.. It is preferable that it is 002-0.01.

本発明の記録層の厚さとしては、10nm〜1ooon
mの範囲で使用するのがよく、特に光ディスクとして高
い感度を得るためには、10nm以上150nm以下と
することが好ましく、さらに良好な記録再生信号のキャ
リア対ノイズ比を1昇ルニハ、40nm〜150nmと
するのが好ましい。
The thickness of the recording layer of the present invention is 10 nm to 100 nm.
In particular, in order to obtain high sensitivity as an optical disc, it is preferably used in the range of 10 nm or more and 150 nm or less, and even better, the carrier-to-noise ratio of the recording/reproducing signal is 1. It is preferable that

本発明の断熱層は記録層の両面に積層される。The heat insulating layer of the present invention is laminated on both sides of the recording layer.

この断熱層は記録時に基板が記録層の熱によって変形し
、記録消去特性が劣化することを防止するとともに、記
録時の記録層からの熱の拡散を低減し、断熱的な加熱を
容易にすることによって、記録感度を向上させる。前記
の断熱層としては、Zns、5i02などの無機薄膜、
特にZnSの薄膜、31. Ge、 Tr、zrおよび
Teなどの金属の酸化物薄膜、およびこれらの混合物の
膜が耐熱性が高いことから好ましい。
This heat insulating layer prevents the substrate from being deformed by the heat of the recording layer during recording and deteriorating the recording/erasing characteristics, and also reduces the diffusion of heat from the recording layer during recording, making it easier to heat adiabaticly. This improves recording sensitivity. As the heat insulating layer, inorganic thin films such as Zns and 5i02,
Especially thin films of ZnS, 31. Thin oxide films of metals such as Ge, Tr, ZR, and Te, and films of mixtures thereof are preferred because of their high heat resistance.

本発明の冷却層は、断熱層の一方に積層する。The cooling layer of the present invention is laminated on one side of the heat insulating layer.

この冷却層は断熱層からの熱拡散を容易にし、記録時に
溶融した部分の冷却速度を高くすることにより非晶マー
クの形成を容易にする。冷却層の厚さは、およそ100
m〜11000nで必る。冷却層の材質としては、断熱
層より熱伝導率が高い金属、あるいは金属と金属酸化物
、金属窒化物、金属炭化物、金属カルコゲン化物などの
混合物が使用できる。特に、比熱が小さく、熱伝導率が
高いことから、Auおよびsbが好ましい。
This cooling layer facilitates heat diffusion from the heat insulating layer and increases the cooling rate of the melted portion during recording, thereby facilitating the formation of amorphous marks. The thickness of the cooling layer is approximately 100
Required between m and 11000n. As the material for the cooling layer, a metal having a higher thermal conductivity than the heat insulating layer, or a mixture of a metal and a metal oxide, metal nitride, metal carbide, metal chalcogenide, etc. can be used. In particular, Au and sb are preferred because they have low specific heat and high thermal conductivity.

本発明に用いられる基板としては、プラスチック、ガラ
ス、アルミニウムなど従来の記録媒体と同様なものでよ
い。収束光により基板側から記録することによってごみ
の影響を避ける目的からは、基板として透明材料を用い
ることが好ましい。上記のような材料としては、ポリエ
チレンテレフタレート、ポリメチルメタクリレート、ポ
リカーボネイト、エポキシ樹脂、ポリオレフィン樹脂、
ポリイミド樹脂およびガラス等が好ましい。ざらに好ま
しくは、複屈折が小さいこと、形成が容易であることか
ら、ポリカーボネイト、エポキシ樹脂がよい。基板の厚
さは、特に限定するものではないが、10ミクロン以上
、5ミリメートル以下が実用的である。10ミクロン未
満では基板側から収束光で記録する場合でもごみの影響
を受けやすくなり、5ミリメートルを越える場合には、
収束光で記録する場合、対物レンズの開口数を大きくす
ることができなくなり、ピットサイズが大きくなるため
記録密度を上げることが困難になる。
The substrate used in the present invention may be the same as conventional recording media, such as plastic, glass, or aluminum. For the purpose of avoiding the influence of dust by recording from the substrate side using convergent light, it is preferable to use a transparent material as the substrate. The above materials include polyethylene terephthalate, polymethyl methacrylate, polycarbonate, epoxy resin, polyolefin resin,
Polyimide resin, glass, etc. are preferred. More preferably, polycarbonate and epoxy resin are used because they have low birefringence and are easy to form. Although the thickness of the substrate is not particularly limited, it is practically 10 microns or more and 5 mm or less. If it is less than 10 microns, it will be susceptible to dust even when recording with convergent light from the substrate side, and if it exceeds 5 mm,
When recording with convergent light, it becomes impossible to increase the numerical aperture of the objective lens, and the pit size increases, making it difficult to increase the recording density.

基板はフレキシブルなものであってもよいし、リジッド
なものであっても良い。フレキシブルな基板は、テープ
状、あるいはシート状で用いることができる。リジット
な基板は、カード状、あるいは円形ディスク状で用いる
ことができる。また必要に応じて、2枚の基板を用いて
エアーサンドインチ構造、エアーインシデント構造、密
着張り合わせ構造などとすることもできる。
The substrate may be flexible or rigid. The flexible substrate can be used in the form of a tape or a sheet. The rigid substrate can be used in the form of a card or a circular disk. Furthermore, if necessary, two substrates may be used to form an air sandwich structure, an air incident structure, a closely bonded structure, or the like.

本発明の光記録媒体の記録に用いる光としては、レーザ
光やストロボ光のごとき光であり、とりわけ、半導体レ
ーザを用いることは、光源が小型でかつ消費電力が小さ
く、変調が容易であることから好ましい。
The light used for recording on the optical recording medium of the present invention is light such as a laser beam or a strobe light. In particular, the use of a semiconductor laser means that the light source is small, consumes low power, and can be easily modulated. preferred.

記録層、断熱層および冷却層は、スパッタ法、抵抗加熱
蒸着法、電子ビーム加熱蒸着法およびイオンブレーティ
ング法など公知の薄膜形成法により形成することができ
る。
The recording layer, the heat insulating layer, and the cooling layer can be formed by known thin film forming methods such as sputtering, resistance heating evaporation, electron beam heating evaporation, and ion blating.

記録は、結晶状態の記録層をレーザ光照射により非晶化
マークを形成して行なうことができる。
Recording can be performed by forming amorphous marks on the crystalline recording layer by irradiating the recording layer with laser light.

また非晶質状態の記録層にレーザ光照射により結晶化マ
ークを形成して行なうこともできる。また消去は記録と
同様にレーザ光を照射することによって、非晶化マーク
を結晶化するか、結晶化マーりを非晶化して行なうこと
ができる。
Alternatively, crystallization marks can be formed on the recording layer in an amorphous state by laser beam irradiation. Further, erasing can be carried out by irradiating laser light in the same manner as recording to crystallize an amorphous mark or amorphize a crystallized mark.

結晶状態の記録層にレーザ光照射により非晶化マークを
形成して記録を行ない、消去をレーザ光照射により非晶
化マークを結晶化して行なうことが、記録速度を高くで
き、記録層の変形が起こり難いことから好ましい。
Recording is performed by forming amorphous marks on a crystalline recording layer by laser beam irradiation, and erasing is performed by crystallizing the amorphous marks by laser beam irradiation, which increases the recording speed and reduces the deformation of the recording layer. This is preferable because it is unlikely to occur.

[実施例] 以下、本発明を実施例に基づいて説明する。[Example] Hereinafter, the present invention will be explained based on examples.

なお実施例中の記録層の組成は、ICP発光分析(セイ
コー電子工業(株)製F丁S−1100型)によって確
認した。
The composition of the recording layer in the Examples was confirmed by ICP emission analysis (Model F-Cho S-1100, manufactured by Seiko Electronics Co., Ltd.).

また、記録信号のキャリア対ノイズ比(C/N比)はス
ペクトラム・アナライザにより測定した。
Further, the carrier-to-noise ratio (C/N ratio) of the recording signal was measured using a spectrum analyzer.

実施例1 厚さ1.2mm、直径13cm、1.6μmピッチのス
パイラル状グループ付きポリカーボネイト製基板を毎分
30回転で回転させながら、スパッタ法により記録層、
断熱層および冷却層を形成した。
Example 1 A recording layer,
A thermal insulation layer and a cooling layer were formed.

まず、7X10−”PaのArガス雰囲気中で、基板上
に120nmのZnSの断熱層を形成し、ざらに、Te
、Sb、TeGe、Coを水晶振動膜厚計でモニタしな
がら同時スパッタして、(Sb O,60Te O,4
0>  0.98 Ge O,02Go 0.002の
元素組成比の厚ざ5Qnmの記録層を形成した。さらに
該記録層上に180nmのZnSの断熱層を形成し、こ
の断熱層上に2QnmのAu冷却層を形成し、本発明の
光記録媒体を構成した。
First, a 120 nm thick ZnS heat insulating layer was formed on the substrate in an Ar gas atmosphere of 7×10-”Pa, and a Te
, Sb, TeGe, and Co were simultaneously sputtered while monitoring them with a crystal vibrating film thickness meter to form (Sb O, 60 Te O, 4
A recording layer having an elemental composition ratio of 0>0.98 Ge O, 02Go 0.002 and a thickness of 5 Q nm was formed. Further, a 180 nm ZnS heat insulating layer was formed on the recording layer, and a 2Q nm Au cooling layer was formed on this heat insulating layer, thereby constructing an optical recording medium of the present invention.

この光記録媒体を線速度0.5m/秒で回転させ、基板
側から開口数0.5の対物レンズで集光した波長830
nmの半導体レーザ光を、膜面強度1.5mWの条件で
連続照射しながらトラック上を走査し記録層を結晶化し
た。このとき結晶化により記録層の反射率は、初期の2
倍に上昇した。
This optical recording medium was rotated at a linear velocity of 0.5 m/sec, and light was focused at a wavelength of 830 from the substrate side using an objective lens with a numerical aperture of 0.5.
The recording layer was crystallized by scanning the track while continuously irradiating the recording layer with a nm semiconductor laser beam at a film surface intensity of 1.5 mW. At this time, due to crystallization, the reflectance of the recording layer decreases from the initial 2
It has doubled.

その後、線速度7m/秒の条件で先と同一の光学系を使
用して、周波数3MH2,デユーティー比50%に変調
した11mWの半導体レーザ光により記録を行なった。
Thereafter, using the same optical system as before, recording was performed using a 11 mW semiconductor laser beam modulated to a frequency of 3 MH2 and a duty ratio of 50% under the condition of a linear velocity of 7 m/sec.

記録層、半導体レーザ光の強度を0.7mWとした記録
部分を走査し、記録の再生を行なったところ記録マーク
部分の反射率が非晶化によって低下し記録が行なわれて
いることが確認できた。この再生信号のC/N比をバン
ド幅30kH2の条件で測定したところC/N比は、デ
ジタル記録可能な50dBの値が得られた。
When the recorded portion of the recording layer was scanned with the intensity of the semiconductor laser light being 0.7 mW and the recording was reproduced, the reflectance of the recording mark portion decreased due to amorphization, and it was confirmed that recording was being performed. Ta. When the C/N ratio of this reproduced signal was measured under the condition of a bandwidth of 30 kHz, a C/N ratio of 50 dB, which is digitally recordable, was obtained.

ざらに記録部分を、線速度1.5m/秒の条件で2.8
mWの半導体レーザ光を照射したところ記録は消去され
た。前記の記録、消去条件で50回の記録、消去の繰返
し後も、記録、消去に要するレーザパワーは、不変であ
り、再生信号のノイズレベルの増加は1dB、C/Nは
49dBと、記録、消去特性の劣化はほとんど見られな
かった。
Roughly recorded part, 2.8 at a linear velocity of 1.5 m/sec.
When irradiated with mW semiconductor laser light, the recording was erased. Even after repeating recording and erasing 50 times under the above recording and erasing conditions, the laser power required for recording and erasing remained unchanged, the noise level of the reproduced signal increased by 1 dB, and the C/N increased by 49 dB. Almost no deterioration in erasing characteristics was observed.

また消去率にっても一30dBの良好な値が得られた。Also, a good value of -30 dB was obtained for the erasure rate.

また、この記録部分の非晶化マークは、通風オーブン中
でこの光記録媒体を60℃に2時間加熱した後も安定に
存在した。
Furthermore, the amorphous mark in the recorded portion remained stable even after the optical recording medium was heated to 60° C. for 2 hours in a ventilated oven.

実施例2 実施例1の記録層の組成を(Sb O,57Te O,
43)  0.92 Ge O,07Co O,01の
組成とじた他は、実施例1と同様にして光記録媒体を製
作した。この光記録媒体の記録、再生を実施例1と同様
な条件で行なったところ、記録再生信号のC/N比は、
47dBであった。また、この記録部分を線速度1.5
m/秒、3.0mWの消去条件で消去することが可能で
あった。このときの消去率は一29dBであった。
Example 2 The composition of the recording layer of Example 1 was (SbO, 57TeO,
43) An optical recording medium was produced in the same manner as in Example 1, except that the composition was changed to 0.92 Ge O,07Co O,01. When recording and reproducing on this optical recording medium were performed under the same conditions as in Example 1, the C/N ratio of the recorded and reproduced signal was as follows.
It was 47dB. Also, this recorded part was recorded at a linear velocity of 1.5
Erasing was possible under the erasing conditions of m/sec and 3.0 mW. The erasure rate at this time was -29 dB.

実施例3 実施例1の基板を32mm四方の1.2mm厚のガラス
板に、冷却層をsbに替えた他は、実施例1と同様にし
て光記録媒体を作製した。この記録媒体を静止状態で固
定し、実施例1と同様な光学系を用いて、記録、消去を
行なった。記録パルスは、14mW、350nsec、
消去パルスは5.5mW、700nsecとシタ。マタ
再生ハ、0.6mWで行なった。この条件で10万回の
記録、消去サイクルを繰返した後も記録、消去が可能で
あり、このときの反射信号の変化率は殆ど変化が見られ
ず、特性の劣化はなかった。
Example 3 An optical recording medium was produced in the same manner as in Example 1, except that the substrate in Example 1 was a 32 mm square glass plate with a thickness of 1.2 mm, and the cooling layer was replaced with SB. This recording medium was fixed in a stationary state, and recording and erasing were performed using the same optical system as in Example 1. The recording pulse was 14 mW, 350 nsec,
The erase pulse is 5.5mW and 700nsec. Mata regeneration was performed at 0.6 mW. Recording and erasing was possible even after 100,000 recording and erasing cycles were repeated under these conditions, with almost no change observed in the rate of change of the reflected signal and no deterioration of characteristics.

また、この記録層の結晶化温度を昇温時の直流電気抵抗
の変化、および光線透過率の変化から測定したところ、
10℃/分の昇温条件で140℃であった。従って、常
温での熱的安定性は良好であると推定できる。
In addition, the crystallization temperature of this recording layer was measured from the change in DC electrical resistance and the change in light transmittance when the temperature was increased.
The temperature was 140°C under the temperature increasing condition of 10°C/min. Therefore, it can be estimated that the thermal stability at room temperature is good.

比較例1 実施例1において、記録層の組成を下記(イ)、(ロ)
に変更した以外は実施例1と同様にして光記録媒体をそ
れぞれ作製し、同様に評価した。
Comparative Example 1 In Example 1, the composition of the recording layer was as follows (a) and (b).
Optical recording media were prepared in the same manner as in Example 1 except that the following was changed, and evaluated in the same manner.

(イ)  (Sb O,70Te O,30)  0.
85 Ge O,15Co O,002 (0)  (Sb O,50Te 0.50 >  0
.95 Ge O,05Go 0.002 (イ)の組成の場合には、実施例1と同様の記録、消去
条件で記録、消去を繰返したところ30回の繰返しの後
、記録消去特性は著しく悪化した。
(A) (Sb O, 70Te O, 30) 0.
85 Ge O,15Co O,002 (0) (Sb O,50Te 0.50 > 0
.. In the case of the composition of 95 Ge O, 05 Go 0.002 (a), when recording and erasing were repeated under the same recording and erasing conditions as in Example 1, the recording and erasing characteristics were significantly deteriorated after 30 repetitions. .

このときの消去率は−15dB程度に悪化し、かつ記録
再生信号のノイズレベルも10dB劣化した。
The erasure rate at this time deteriorated to about -15 dB, and the noise level of the recording/reproduction signal also deteriorated by 10 dB.

(ロ)の組成の場合には、結晶化速度が遅く、レーザ光
照射によるリアルタイムの結晶化が困難であった。
In the case of the composition (b), the crystallization rate was slow and real-time crystallization by laser beam irradiation was difficult.

比較例2 実施例3において、記録層の組成を下記(ハ)に変更し
た以外は実施例3と同様にして光記録媒体を作製し、同
様に記録、消去を行なった。
Comparative Example 2 An optical recording medium was prepared in the same manner as in Example 3 except that the composition of the recording layer was changed to (c) below, and recording and erasing were performed in the same manner.

(ハ) (Sb O,130Te 0.40 >  0
.94 Ge O,0に の組成(ハ)の場合には、記録状態と消去状態の反射率
の差が、記録、消去の繰返し回数に伴い変動し不安定で
あった。また5万回の記録消去後から、反射率の変化量
が徐々に小さくなり、記録、消去が困難になった。
(c) (Sb O,130Te 0.40 > 0
.. In the case of the composition (c) of 94 Ge O,0, the difference in reflectance between the recorded state and the erased state varied with the number of repetitions of recording and erasing and was unstable. Furthermore, after 50,000 times of recording and erasing, the amount of change in reflectance gradually decreased, making recording and erasing difficult.

実施例4 実施例3において、記録層の組成をそれぞれ(Sb O
,60Te O,40>  0.98 Ge O,02
Z rO,005、および(Sb 0.60 Te 0
140 )  0.98Ge O,02Hf O,00
5としたものを作製した。
Example 4 In Example 3, the composition of the recording layer was changed to (SbO
,60TeO,40>0.98GeO,02
Z rO,005, and (Sb 0.60 Te 0
140) 0.98Ge O,02Hf O,00
5 was prepared.

これらの光記録媒体を実施例3と同様にして記録、消去
を行なった。記録パルスは、14mW。
Recording and erasing were performed on these optical recording media in the same manner as in Example 3. The recording pulse was 14 mW.

300nS、消去パルスは、6mW、300nsとした
。この条件で10万回の記録消去サイクルを繰返した後
も、記録、消去が可能でめった。
The erase pulse was 6 mW and 300 ns. Even after repeating the recording/erasing cycle 100,000 times under these conditions, recording and erasing was still possible.

[発明の効果] 本発明は光記録媒体の記録層をSb、Te、GeとCO
,Zrおよび1−1fからなる特定の組成としたので、
以下の効果が得られた。
[Effect of the invention] The present invention provides a recording layer of an optical recording medium made of Sb, Te, Ge, and CO.
, Zr and 1-1f,
The following effects were obtained.

(1)消去率が高く、消し残りが極めて少ない。(1) The erasing rate is high and there is very little unerased material.

(2)  消去速度が速く、およそ1μsec以下の光
ビーム照射で消去が可能である。
(2) Erasing speed is fast, and erasing can be performed with light beam irradiation for approximately 1 μsec or less.

(3〉  多数回の記録、消去を繰返しても動作が安定
しており、記録感度の低下、再生信号強度の低下および
ノイズの増大などの記録特性の劣化が少ない。
(3) Operation is stable even after repeated recording and erasing many times, and there is little deterioration in recording characteristics such as a decrease in recording sensitivity, a decrease in reproduction signal strength, and an increase in noise.

(4)  転移温度が高く、熱安定性に優れる。(4) High transition temperature and excellent thermal stability.

(5)低出力の半導体レーザにより記録、消去可能であ
り感度が高い。
(5) Recording and erasing is possible with a low-power semiconductor laser, and the sensitivity is high.

Claims (1)

【特許請求の範囲】 1 基板上に形成された記録層に光を照射することによ
って、情報の記録、消去および再生が可能であり、情報
の記録および消去が、結晶状態と非晶状態の間の相変化
により行なわれる光記録媒体において、前記記録層が少
なくとも記録層、断熱層および冷却層を備え、かつ前記
記録層の組成が下記一般式で表わされることを特徴とす
る光記録媒体。 (Sb_xTe_1_−_x)_1_−_y_−_αG
e_yM_αただし、 0.55≦x≦0.65 0.01≦y≦0.10 0.001≦α≦0.03 x、yおよびαはそれぞれ原子数比を示し、Sbはアン
チモン、Teはテルル、Geはゲルマニウム、MはCo
(コバルト)、Zr(ジルコニウム)およびHf(ハフ
ニウム)のうち少なくとも1元素以上を表わす。
[Claims] 1 Information can be recorded, erased, and reproduced by irradiating a recording layer formed on a substrate with light, and information can be recorded and erased between a crystalline state and an amorphous state. What is claimed is: 1. An optical recording medium in which phase change is effected by phase change, wherein the recording layer comprises at least a recording layer, a heat insulating layer, and a cooling layer, and the composition of the recording layer is represented by the following general formula. (Sb_xTe_1_-_x)_1_-_y_-_αG
e_yM_α However, 0.55≦x≦0.65 0.01≦y≦0.10 0.001≦α≦0.03 x, y and α each indicate the atomic ratio, Sb is antimony, Te is tellurium , Ge is germanium, M is Co
(cobalt), Zr (zirconium), and Hf (hafnium).
JP63266870A 1988-10-21 1988-10-21 Optical recording medium Pending JPH02112987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266870A JPH02112987A (en) 1988-10-21 1988-10-21 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266870A JPH02112987A (en) 1988-10-21 1988-10-21 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH02112987A true JPH02112987A (en) 1990-04-25

Family

ID=17436797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266870A Pending JPH02112987A (en) 1988-10-21 1988-10-21 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH02112987A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661699A2 (en) * 1993-12-27 1995-07-05 Nec Corporation Information recording medium
JP2004507022A (en) * 2000-08-21 2004-03-04 コミツサリア タ レネルジー アトミーク Multi-level optical recording medium for laser reading / writing system with transparent heat dissipation layer
US6842306B2 (en) 2002-10-31 2005-01-11 Hitachi Global Storage Technologies Magnetic head having highly thermally conductive insulator materials containing cobalt-oxide
WO2005044575A1 (en) * 2003-11-05 2005-05-19 Ricoh Company, Ltd. Two-layer phase change information recording medium and recording method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139812A (en) * 1985-12-16 1987-06-23 Toyota Motor Corp Manufacture of high strength and toughness cast steel
JPS62220127A (en) * 1986-03-18 1987-09-28 株式会社 木村研究所 Plant culture apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139812A (en) * 1985-12-16 1987-06-23 Toyota Motor Corp Manufacture of high strength and toughness cast steel
JPS62220127A (en) * 1986-03-18 1987-09-28 株式会社 木村研究所 Plant culture apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661699A2 (en) * 1993-12-27 1995-07-05 Nec Corporation Information recording medium
US5492794A (en) * 1993-12-27 1996-02-20 Nec Corporation Information recording medium
EP0661699A3 (en) * 1993-12-27 1997-02-05 Nec Corp Information recording medium.
JP2004507022A (en) * 2000-08-21 2004-03-04 コミツサリア タ レネルジー アトミーク Multi-level optical recording medium for laser reading / writing system with transparent heat dissipation layer
US6842306B2 (en) 2002-10-31 2005-01-11 Hitachi Global Storage Technologies Magnetic head having highly thermally conductive insulator materials containing cobalt-oxide
WO2005044575A1 (en) * 2003-11-05 2005-05-19 Ricoh Company, Ltd. Two-layer phase change information recording medium and recording method

Similar Documents

Publication Publication Date Title
JP3011200B2 (en) Optical recording medium
JP2574325B2 (en) Optical information recording medium
JPH08127176A (en) Information recording thin film, manufacture thereof information recording medium and using method therefor
JP3963781B2 (en) Optical recording medium
JP2778237B2 (en) Optical information recording medium and optical recording / erasing method
JP2827202B2 (en) Optical recording medium
JPH02112987A (en) Optical recording medium
JP2629746B2 (en) Optical recording medium
JPH03240590A (en) Data recording medium
JP2830022B2 (en) Optical information recording medium
JP2798247B2 (en) Optical recording medium
JP2867390B2 (en) Optical recording medium
JPH0342276A (en) Information recording medium
JP3048235B2 (en) Optical recording medium
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
JP2557347B2 (en) Optical recording medium
JPH04316887A (en) Optical recording medium and sputtering target, and manufacture thereof
JP3506621B2 (en) Optical recording medium
JPH11126366A (en) Phase transition type optical record medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JP2000339750A (en) Optical recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JP2892025B2 (en) Optical recording medium
JPH05144084A (en) Optical recording medium and production thereof