JPH0342276A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPH0342276A
JPH0342276A JP1178866A JP17886689A JPH0342276A JP H0342276 A JPH0342276 A JP H0342276A JP 1178866 A JP1178866 A JP 1178866A JP 17886689 A JP17886689 A JP 17886689A JP H0342276 A JPH0342276 A JP H0342276A
Authority
JP
Japan
Prior art keywords
recording
erasing
composition
layer
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1178866A
Other languages
Japanese (ja)
Inventor
Toshiharu Nakanishi
中西 俊晴
Kusato Hirota
草人 廣田
Gentaro Obayashi
大林 元太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1178866A priority Critical patent/JPH0342276A/en
Publication of JPH0342276A publication Critical patent/JPH0342276A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To make it possible to delete recorded information at high speed and high sensitivity and besides minimize qualitative deterioration due to repeatability by providing a recording film consisting mainly of four elements such as bismuth(Bi), antimony (Sb), germanium(Ge) and tellurium(Te), with the specified composition of these elements. CONSTITUTION:A recording film consists mainly of four elements such as bismuth(Bi), antimony (Sb), germanium(Ge) and tellurium(Te). In addition, the composition of these elements is expressed by formula (TexBiySb1-x-y)1-z(Te0.5 Ge0.5)2' and the values of x,y,z satisfy 0.25<=x<=0.6, 0.5<=y<=0.4, 0.2<=z<=0.6. where x,y,z represent an atomic number ratio respectively. This satisfaction of such a composition does not allow irreversible phase separation or segregation caused by the repeated cycle of recording and deletion to occur easily in terms of crystal structure. Thus it is possible to minimize deterioration of recording and deletion properties due to repetition and at the same time, make the medium highly sensitive and amorphous easily. The crystallization speed is high so that the speed range of 500 nsec or below can easily be attained..

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は情報記録媒体に関するもので、特にレーザ光や
電子線などのエネルギービームの照射により、情報の記
録を行う光カードや光ディスクの装置などに使用される
情報記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an information recording medium, and in particular to an optical card or optical disk device that records information by irradiation with an energy beam such as a laser beam or an electron beam. Regarding information recording media used for.

[従来の技術] 光情報記録媒体の記録方式で、結晶と非晶のような媒体
の相変化に伴う光学特性の差を記録に利用する方式は、
媒体自体の変形、蒸発による汚染などの問題がなく、保
護膜により耐久性を向上させることも可能であり、In
−8e系薄膜、Te低酸化物薄膜、5b−Te系薄膜、
Te−Ge系薄膜など種々の材料が提案されている。例
えば、Te−Ge−3n薄膜(Appl、 Ph7s、
 Left、 、 46 (8)p15 (1985)
 、特開昭61−3324など)、Teを主成分とする
T e gos b +oS e 、o記録薄膜(特開
昭61−145738.5PIE vo1529. p
2など)、5b2Seなどの組成の5b−8e膜(特開
昭60−155495、Appl、f’Js、 Let
t、 、 48 (9)、 p12 (1986)など
)、Teを主成分とするTe−Ge−5b合金記録膜(
特開昭62−209742など)、またTe−8bの2
元合金記録膜(86年応用物理学会講演集 29a−Z
E−3,4)などが提案されている。
[Prior Art] A recording method for optical information recording media that utilizes the difference in optical properties due to phase change between crystalline and amorphous media for recording.
There are no problems such as deformation of the medium itself or contamination due to evaporation, and it is possible to improve durability with a protective film.
-8e-based thin film, Te low oxide thin film, 5b-Te-based thin film,
Various materials such as Te-Ge thin films have been proposed. For example, Te-Ge-3n thin film (Appl, Ph7s,
Left, 46 (8) p15 (1985)
, JP-A No. 61-145738.5 PIE vo1529.
2 etc.), 5b-8e film with composition such as 5b2Se (JP-A-60-155495, Appl, f'Js, Let
t, , 48 (9), p12 (1986), etc.), Te-Ge-5b alloy recording films mainly composed of Te (
JP-A-62-209742, etc.), and Te-8b 2
Original alloy recording film (1986 Society of Applied Physics lectures 29a-Z
E-3, 4) etc. have been proposed.

[発明が解決しようとする課題] しかしながら、上記従来技術による記録媒体には次のよ
うな問題点があった。
[Problems to be Solved by the Invention] However, the recording medium according to the above-mentioned prior art has the following problems.

すなわち、Te−Ge−3nを記録膜としたものでは、
適切な消去特性と実用的な記録感度を両立させることが
困難で実用性に乏しく、またTe5os b IQs 
e 10記録薄膜、5b2Seなどの組成の5b−8e
合金膜などでは、実用的な消去速度範囲で満足できる消
去特性を実現することが容易でなかったり、記録と消去
の繰返しに伴ってノイズが増加し記録の信号品質が低下
する等の問題があった。またSb2Te3合金を記録膜
に用いたものは、結晶化温度が低く記録の保存性に問題
があるなど実用性に乏しいものであった。さらにTe−
Ge−8b膜では、結晶化速度を早くして消去速度を数
百n秒以下とすることが可能であるが、高速消去可能な
組成では、記録時の非晶化がそれほど容易ではなく、高
速の消去特性と実用的な記録感度を両立させることが困
難で組成の微妙な調整を必要とした。
That is, in a recording film made of Te-Ge-3n,
It is difficult to achieve both appropriate erasing characteristics and practical recording sensitivity, and it is impractical, and Te5os b IQs
e 10 recording thin film, 5b-8e with composition such as 5b2Se
With alloy films, etc., there are problems such as it is difficult to achieve satisfactory erasing characteristics within a practical erasing speed range, and noise increases and recording signal quality deteriorates with repeated recording and erasing. Ta. Furthermore, recording films using Sb2Te3 alloys have low crystallization temperatures and problems with recording storage stability, and are therefore impractical. Furthermore, Te-
With Ge-8b films, it is possible to increase the crystallization rate and reduce the erasing rate to several hundred nanoseconds or less, but with compositions that allow high-speed erasing, amorphization during recording is not so easy, and high-speed erasing is possible. It was difficult to achieve both erasing characteristics and practical recording sensitivity and required delicate adjustment of the composition.

本発明はかかる問題点を改善し、高速かつ高感度に記録
消去が可能であり、かつ良好な記録消去特性を備え、繰
返しによる劣化も少なく信頼性の高い、熱安定性の優れ
た光記録媒体を提供することを目的とする。
The present invention improves these problems and provides an optical recording medium with excellent thermal stability, which enables recording and erasing at high speed and high sensitivity, has good recording and erasing characteristics, and is highly reliable with little deterioration due to repetition. The purpose is to provide

[課題を解決するための手段] かかる本発明の目的は、基板上に形成された記録薄膜に
エネルギービームを照射し、直接又は間接に発生する熱
により、上記薄膜の光学特性を変化せしめて、情報の記
録を行う情報記録媒体において、該記録薄膜がビスマス
(Bi)、アンチモン(sb)、ゲルマニウム(Ge)
およびテルル(Te)の4元素から主としてなり、かつ
その組成が、次の一般式で表されることを特徴とする情
報記録媒体。
[Means for Solving the Problems] An object of the present invention is to irradiate a recording thin film formed on a substrate with an energy beam and change the optical characteristics of the thin film by the heat generated directly or indirectly, In an information recording medium for recording information, the recording thin film is made of bismuth (Bi), antimony (sb), or germanium (Ge).
1. An information recording medium characterized in that it mainly consists of four elements: and tellurium (Te), and whose composition is represented by the following general formula.

(Te、 Bt、 5bl−、−y ) r−−(Te
o、Geu5) zただし、 0、25≦x<0. 6 0.05≦y<Q、  4 0、2≦z≦0.  に こで、XNYおよび2はそれぞれ原子数比を表わす。
(Te, Bt, 5bl-, -y) r--(Te
o, Geu5) z However, 0, 25≦x<0. 6 0.05≦y<Q, 4 0, 2≦z≦0. Here, XNY and 2 each represent the atomic ratio.

により達成される。This is achieved by

すなわち、本発明において使用される記録薄膜は、ビス
マス(Bi)、アンチモン(Sb)、ゲルマニウム(G
e)およびテルル(Te)の4元素から主としてなり、
かつその組成が、一般式%式%) と表した場合、x、  y、  zの範囲がそれぞれ0
.25≦x<0. 6 0.05≦y<0.4 0.2≦z≦0.6 を満足してなるものである。ここで、XsVおよび2は
それぞれ原子数比を表わす。
That is, the recording thin film used in the present invention is made of bismuth (Bi), antimony (Sb), germanium (G
It mainly consists of four elements: e) and tellurium (Te),
and its composition is expressed as the general formula %), and the ranges of x, y, and z are each 0
.. 25≦x<0. 6 0.05≦y<0.4 0.2≦z≦0.6. Here, XsV and 2 each represent the atomic ratio.

かかる組成を満足することにより、結晶構造的に記録・
消去の繰返しに伴なう不可逆的な相分離、偏析が起りに
くく繰返しによる記録、消去特性の劣化が軽減できると
もに、高感度かつ容易に非晶化が可能であり、結晶化速
度も早く容易に500n秒以下とすることができる。ま
た非晶状態を安定化可能であるとともに、非晶と結晶で
の光学特性の差である信号コントラストの改善および消
去速度を改善することができる。
By satisfying this composition, it is possible to record and record the crystal structure.
Irreversible phase separation and segregation associated with repeated erasing are less likely to occur, reducing deterioration of recording and erasing characteristics due to repeated erasing, and it can be easily amorphized with high sensitivity, and the crystallization speed is fast and easy. The time can be set to 500 ns or less. In addition, it is possible to stabilize the amorphous state, and also to improve signal contrast, which is the difference in optical properties between amorphous and crystalline materials, and to improve erasing speed.

本発明の媒体組成は後述するような薄膜形成法により容
易に均一な構造として得ることができ、不可逆的な相分
離や偏析が起こりにくい構造となす;とができる。
The medium composition of the present invention can be easily obtained as a uniform structure by a thin film forming method as described below, and can be made into a structure that is unlikely to cause irreversible phase separation or segregation.

前記一般式において、Xが少ない場合には過剰なりiや
sbの析出や結晶相の粗大化が生じやすくなるなど好ま
しくなく、多い場合には非晶結晶化温度が低下し記録安
定性が劣化するなどして好ましくない。yが少ない場合
には高速消去性が低下するなどして好ましくなく、多過
ぎると過剰なりiの析出や非晶安定性が低下するなど好
ましくない。また2については、多い場合には非晶化や
高速消去性が低下したり、少ない場合には結晶化温度が
低くなり記録の安定性が低下するなど好ましくない。
In the above general formula, if X is too small, it is unfavorable as it tends to cause precipitation of i and sb and coarsening of the crystal phase, and if it is large, the amorphous crystallization temperature decreases and recording stability deteriorates. Such things are not desirable. If y is too small, the high-speed erasing property will deteriorate, which is undesirable, and if it is too large, it will be excessive, leading to precipitation of i and deterioration of amorphous stability. Regarding 2, if the amount is too large, it will cause amorphization and high-speed erasing performance will be reduced, and if it is too small, the crystallization temperature will become low and the stability of recording will deteriorate, which is undesirable.

本発明力効果をより好ましく発現させるには、Xやy、
zはそれぞれ0.3≦X≦0. 55. 0゜1≦y≦
0.35,0.25≦z≦0655の範囲であることが
より好ましく、yはさらには0゜15≦y≦0.35が
より好ましい。
In order to more preferably express the effect of the present invention, X, y,
z is 0.3≦X≦0. 55. 0゜1≦y≦
The range of 0.35, 0.25≦z≦0655 is more preferable, and y is more preferably 0°15≦y≦0.35.

記録薄膜の膜厚は、特に限定されないが、例えば記録膜
の表面と裏面での膜厚干渉効果を利用する場合には、7
0〜120nmの範囲に設定できる。また、記録膜に隣
接して、例えばその裏面側に反射層としての役割も持つ
冷却層を設ける場合には、約半分の膜厚にして同様な効
果を期待できる。
The thickness of the recording thin film is not particularly limited, but for example, when utilizing the film thickness interference effect on the front and back surfaces of the recording film,
It can be set in the range of 0 to 120 nm. Furthermore, when a cooling layer that also serves as a reflective layer is provided adjacent to the recording film, for example on the back side thereof, the same effect can be expected with a film thickness of about half.

記録薄膜に隣接して、好ましくはその裏面側に冷却層を
設けることができる。
A cooling layer can be provided adjacent to the recording thin film, preferably on the back side thereof.

この冷却層は、記録層から生じる熱の拡散を容易にし、
記録時の溶融部分の冷却速度を速め、非晶マークの形成
を容易にするのに有効である。さらには、金属や金属合
金などの光学的に高い反射率を有する材料を用いれば、
反射層としての役割も付与することが可能であり、記録
層の膜厚を約半分にして、記録の感度を高めるなどの効
果も期待できる。冷却層の膜厚は特に限定されないが、
10〜80nmが実用的にも好ましい。冷却層の材料と
しては、Sb、Bi、Sn、Au、AI。
This cooling layer facilitates the diffusion of heat generated from the recording layer,
This is effective in increasing the cooling rate of the melted portion during recording and facilitating the formation of amorphous marks. Furthermore, if materials with high optical reflectance such as metals and metal alloys are used,
It can also serve as a reflective layer, and can be expected to reduce the thickness of the recording layer by about half, increasing recording sensitivity. The thickness of the cooling layer is not particularly limited, but
10 to 80 nm is also preferable from a practical standpoint. Materials for the cooling layer include Sb, Bi, Sn, Au, and AI.

Ti、Ni、Cr、Pb、Hf等の金属又はそれらの合
金、あるいは金属の酸化物、炭化物、窒化物、カルコゲ
ン化物等のいずれかと金属との混合物などが使用できる
。特にAu、At、Hf、Ni、Crやそれらの合金等
は、膜の形成が容易であり、材料選択により熱伝導度を
広範囲に調整可能であるため、本発明の光記録媒体を種
々の目的に沿って設計する場合にその本来の優れた特性
を発現させるのに有効である。
Metals such as Ti, Ni, Cr, Pb, and Hf, alloys thereof, and mixtures of metals and any of metal oxides, carbides, nitrides, chalcogenides, etc. can be used. In particular, films of Au, At, Hf, Ni, Cr, and their alloys are easy to form, and the thermal conductivity can be adjusted over a wide range by material selection. It is effective in bringing out the original excellent characteristics when designing according to the following.

本発明に用いられる基板としてはポリメチルメタクリレ
ート樹脂、ポリカーボネイト樹脂、エポキシ樹脂、ポリ
オレフィン樹脂、ポリ塩化ビニル樹脂、ポリエステル樹
脂、スチレン樹脂などの高分子樹脂やガラス板、あ°る
いはA1等の金属板が挙げられる。
Substrates used in the present invention include polymeric resins such as polymethyl methacrylate resin, polycarbonate resin, epoxy resin, polyolefin resin, polyvinyl chloride resin, polyester resin, and styrene resin, glass plates, or metal plates such as A1. can be mentioned.

本発明の記録媒体は本来の特性を効果的に発現させるた
め、基板と記録層の間や媒体の表面等に保護層や、記録
層と冷却層の間に拡散防止層が形成できる。
In order to effectively exhibit the original characteristics of the recording medium of the present invention, a protective layer can be formed between the substrate and the recording layer or on the surface of the medium, and a diffusion prevention layer can be formed between the recording layer and the cooling layer.

保護層は、5in2、ZrC,ITO,ZnS。The protective layer is 5in2, ZrC, ITO, ZnS.

MgF2等の無機膜やそれらの混合膜、紫外線硬化膜等
を、蒸着、スパッタ、スピンコード等の方法を用いて形
成したり、エポキシやポリカーボネイトなどの樹脂、フ
ィルム、ガラスなどを張合わせたり、ラミネートしても
良い。拡散防止層は耐湿熱性や耐酸化性などの効果のみ
ならず、記録層と反射層の間での元素拡散を抑制し特性
劣化を押さえる効果があり、保護層と同様な材料が使用
できる。
Inorganic films such as MgF2, mixed films thereof, UV-cured films, etc. can be formed using methods such as vapor deposition, sputtering, and spin cord, and resins such as epoxy and polycarbonate, films, glass, etc. can be laminated or laminated. You may do so. The anti-diffusion layer not only has effects such as heat-and-moisture resistance and oxidation resistance, but also has the effect of suppressing elemental diffusion between the recording layer and the reflective layer and suppressing characteristic deterioration, and can be made of the same material as the protective layer.

このような保護層および拡散防止層としては、例えば、
Z n S (!= M g F 2の混合膜は、耐熱
性が良好で、湿熱下での耐久性が優れており、さらには
記録と消去の繰返しによる記録層の劣化を抑制し、消去
特性を改善するなどの効果があり好ましいものである。
Such protective layers and diffusion prevention layers include, for example,
The mixed film of Z n S (! = M g F 2) has good heat resistance and excellent durability under moist heat, and furthermore, it suppresses deterioration of the recording layer due to repeated recording and erasing, and has excellent erasing characteristics. This is preferable because it has the effect of improving

また、Zr、Ta、Ti及びWから選ばれた少なくとも
一種の金属と、ケイ素、酸素及び炭素を含む成分で構成
される膜は、各成分の好ましい含有量を上記金属が3〜
40原子%。
In addition, a film composed of at least one metal selected from Zr, Ta, Ti, and W and a component containing silicon, oxygen, and carbon has a preferable content of each component of 3 to 3.
40 atomic%.

Siが5〜30原子%、0が5〜70原子%、Cが3〜
40原子%の範囲となすことにより、記録層の膜質劣化
や性能劣化を抑制できると共に記録層との接着力を高め
る効果が期待でき好ましい。
Si is 5-30 at%, 0 is 5-70 at%, C is 3-30 at%
By setting the content in the range of 40 atomic %, it is possible to suppress deterioration of the film quality and performance of the recording layer and to increase the adhesive force with the recording layer, which is preferable.

これらの保護層および拡散防止層により、耐久性や耐吸
湿性の向上、記録層の保護コート、基板からの剥離や盛
り上がり等の変形防止、融解、蒸発、拡散等による媒体
の消失防止、等の効果や更には非晶と結晶の可逆変化を
利用する場合の繰返し性の向上等の効果が期待できる。
These protective layers and diffusion prevention layers improve durability and moisture absorption resistance, protect the recording layer, prevent deformation such as peeling or swelling from the substrate, and prevent loss of the medium due to melting, evaporation, diffusion, etc. Furthermore, effects such as improved repeatability when using reversible changes between amorphous and crystalline materials can be expected.

[製造方法1 本発明の記録媒体の作製法には種々の方法が挙げられる
が、ここでは−例としてマグネトロンスパッタ法につい
て説明する。
[Manufacturing Method 1 There are various methods for manufacturing the recording medium of the present invention, and here, a magnetron sputtering method will be described as an example.

本発明の記録媒体は、1.2mm厚のパイレックスガラ
ス、又は1.2mm厚、13cm直径、1.6μmピッ
チのスパイラルグループ付きのポリカーボネイト(PC
)製の基板を10〜150rpmで回転させ、組成や膜
厚の均一化を図りながら、例えば、保護層、記録層、拡
散防止層あるいは冷却層を各々目的に応じて順次積層形
成する。
The recording medium of the present invention is made of Pyrex glass with a thickness of 1.2 mm, or polycarbonate (PC) with a spiral group of 1.2 mm thickness, 13 cm diameter, and 1.6 μm pitch.
) is rotated at 10 to 150 rpm, and, for example, a protective layer, a recording layer, a diffusion prevention layer, or a cooling layer are sequentially laminated depending on the purpose, while making the composition and film thickness uniform.

スパッタ条件は、スパッタガスにアルゴンガスを用い、
RF出力数十〜1kW、真空度8X10−’Pa〜lX
l0−1Pa程度の条件範囲で行なった。
The sputtering conditions were to use argon gas as the sputtering gas,
RF output several tens to 1kW, vacuum degree 8X10-'Pa~1X
The test was carried out under conditions of about 10-1 Pa.

保護層や拡散防止層は、5in2、ZrC,ITo、Z
nSSMgF2や、それらの混合組成のターゲットを用
いて、水晶振動子膜厚計でモニターしながら、単独また
は同時スパッタして形成すれば良い。
The protective layer and diffusion prevention layer are 5in2, ZrC, ITo, Z
It may be formed by sputtering alone or simultaneously using nSSMgF2 or a target having a mixed composition thereof while monitoring with a crystal resonator film thickness meter.

記録層はBi、Sb、Te及びB 1−Te合金、5b
−Te合金、Te−Ge合金などを水晶膜厚計でモニタ
ーしながら同時スパッタして所定組成の記録膜とするこ
とができる。1例として後述の実施例の場合には、真空
度5X10−’Paで、20mmφのBi2Te3合金
ペレットやsbペレットなどを適宜配置したSb2Te
ターゲットとTeGeターゲット(1:1組成)をRF
出力50〜120W程度で同時スパッタし、各ターゲッ
トの各々に取り付けた水晶振動子膜厚計より得られたス
パッタ量とIPC分析で求めた組成比とを対応させ、目
的とする薄膜の組成を制御した。ターゲット部材には、
他に所定薄膜組成となるように勘案した(Bi、Sb、
Te、Ge)の4元素ターゲットを用いても良い。
Recording layer is Bi, Sb, Te and B1-Te alloy, 5b
-Te alloy, Te-Ge alloy, etc. can be simultaneously sputtered while monitoring with a crystal film thickness meter to form a recording film having a predetermined composition. As an example, in the case of the example described later, Sb2Te with 20 mmφ Bi2Te3 alloy pellets, sb pellets, etc.
RF target and TeGe target (1:1 composition)
Simultaneous sputtering is performed at an output of about 50 to 120 W, and the composition of the target thin film is controlled by matching the amount of sputtering obtained from a crystal oscillator film thickness gauge attached to each target with the composition ratio determined by IPC analysis. did. Target parts include
In addition, consideration was given to a predetermined thin film composition (Bi, Sb,
A four-element target of Te, Ge) may also be used.

冷却層はAu、  Sb、  Sn、  Bi、  P
b、 AI。
The cooling layer is made of Au, Sb, Sn, Bi, P
b. A.I.

Ti、Ni、Cr、Hf等の金属やそれらの合金を記録
薄膜と同様に形成すれば良い。
Metals such as Ti, Ni, Cr, Hf, and alloys thereof may be formed in the same manner as the recording thin film.

これらのスパッタ条件は当然ながら装置により一定では
なく上記以外の条件で作製しても良いことは言うまでも
なく、作製方法としても、例えば真空蒸着法や電子ビー
ム蒸着法などの薄膜作製技術を用いて良いことは言うま
でもない。
It goes without saying that these sputtering conditions are not constant depending on the equipment and may be fabricated under conditions other than those mentioned above.As for the fabrication method, for example, thin film fabrication techniques such as vacuum evaporation or electron beam evaporation may be used. Needless to say.

[用途] このようにして得られた本発明の記録媒体は、特に光デ
ィスク、光カード、光テープ、光フロッピー、マイクロ
フィッシュ、レーザC0M等の情報記録媒体として好ま
しい特性を備えたものであり、これ以外にも光学特性の
差を記録に利用するあらゆる用途に適用可能なものであ
る。
[Applications] The recording medium of the present invention thus obtained has properties particularly suitable for information recording media such as optical disks, optical cards, optical tapes, optical floppies, microfiche, laser COM, etc. In addition, the present invention can be applied to all other uses in which differences in optical properties are utilized for recording.

[測定法] ■ 転移温度 ガラス基板上に作製した記録薄膜上に一対の電極を設け
、その一端に30にΩの抵抗を直列に接続する。残る電
極と抵抗の両端に5vの一定電圧を印加し、電圧計で抵
抗の両端電圧を測定し、これより薄膜の印加電圧と電流
を求め抵抗値を算出する。次に加熱炉を用い、温度制御
器で約り0℃/分の速度で基板全体を均一に加熱昇温し
ながら抵抗を測定し、高抵抗から低抵抗へ変化する温度
を求め転移温度とする。
[Measurement method] (1) A pair of electrodes is provided on a recording thin film prepared on a transition temperature glass substrate, and a resistor of 30Ω is connected in series to one end of the electrode. A constant voltage of 5 V is applied across the remaining electrode and the resistor, and the voltage across the resistor is measured with a voltmeter. From this, the applied voltage and current of the thin film are determined to calculate the resistance value. Next, using a heating furnace, measure the resistance while uniformly heating the entire substrate at a rate of about 0°C/min with a temperature controller, and find the temperature at which the resistance changes from high resistance to low resistance, which is determined as the transition temperature. .

■ 組成 ガラス基板上に作製した記録薄膜を王水、硝酸等で溶解
させ基板から分離させた。この溶液を高周波誘導結合プ
ラズマ(ICP)発光分光分析法(セイコー電子(株)
SPS−1100型)により、各元素の含有量を求め、
組成比を算出した。
(2) Composition The recording thin film prepared on the glass substrate was dissolved with aqua regia, nitric acid, etc. and separated from the substrate. This solution was analyzed using high-frequency inductively coupled plasma (ICP) emission spectrometry (Seiko Electronics Co., Ltd.).
SPS-1100 model) to determine the content of each element,
The composition ratio was calculated.

■ 動的記録・消去特性 PC製のグループ付基板上に記録薄膜を形成したものを
試料とした。評価装置は波長830nmの半導体レーザ
を組み込んだ光ヘッドとディスク回転装置及びそれらの
制御回路で主に構成されている。光ヘッドは回転するデ
ィスク基板を通して記録膜上に開口数0.5の対物レン
ズでレーザ光を集光し、基板に刻まれたグループに沿っ
てトラッキングするよう制御されている。記録は1〜1
5mWの記録パワーで、周波数が0.2〜6MH2,信
号のデユーティを10〜90%とし、消去パワーは1〜
15mWの範囲で測定した。線速度は0.5〜20m/
秒とした。CNRは、記録信号を0.7mWで再生し、
30kHzのバンド幅としたスペクトラルアナライザを
用いRF倍信号ら求めた。消去率は記録と消去後のキャ
リア信号の差から求めた。またキャリア周波数位置での
ノイズはその前後のノイズ値より補間で求めた。
■ Dynamic recording/erasing characteristics The sample was a recording thin film formed on a PC grouped substrate. The evaluation device mainly consists of an optical head incorporating a semiconductor laser with a wavelength of 830 nm, a disk rotating device, and their control circuits. The optical head is controlled to focus a laser beam onto a recording film through a rotating disk substrate using an objective lens with a numerical aperture of 0.5, and to track the laser beam along a group carved on the substrate. Record is 1-1
With a recording power of 5 mW, a frequency of 0.2 to 6 MH2, a signal duty of 10 to 90%, and an erasing power of 1 to 6 MH2.
It was measured in a range of 15 mW. Linear speed is 0.5-20m/
Seconds. CNR reproduces the recorded signal at 0.7mW,
The RF multiplied signal was obtained using a spectrum analyzer with a bandwidth of 30 kHz. The erasure rate was determined from the difference between the recorded and erased carrier signals. In addition, the noise at the carrier frequency position was determined by interpolation from the noise values before and after that position.

■ 活性化エネルギー “テフロン″ (デュポン社製ポリテトラフルオロエチ
レン)基板上に記録膜を形成した後、ナイフで膜を剥離
させ粉末状試料を調製した。この粉末の結晶化ピーク温
度を示差熱分析計(島津製DSC−50)により昇温速
度を変えながら測定した。このデータをキラシンジャー
プロットして、その勾配から活性化エネルギーEaを算
出した。
■ Activation energy After forming a recording film on a "Teflon" (polytetrafluoroethylene manufactured by DuPont) substrate, the film was peeled off with a knife to prepare a powder sample. The crystallization peak temperature of this powder was measured using a differential thermal analyzer (DSC-50 manufactured by Shimadzu) while changing the heating rate. This data was plotted on a Kirasinger plot, and the activation energy Ea was calculated from the slope.

昇温速度は5〜80°C/分の範囲で変えた。The heating rate was varied in the range of 5-80°C/min.

光メモリシンポジウム′85論文集のNo、3(21頁
)報告等から、Ea〜1.8eVで60℃放置で約10
年以上の保存性と推定される。
From the report No. 3 (page 21) of the Optical Memory Symposium '85 Proceedings, etc., it is found that when left at 60°C at Ea ~ 1.8 eV, the
Estimated to have a shelf life of over 20 years.

[実施例] 本発明を更に実施例に基づいて説明する。[Example] The present invention will be further explained based on examples.

実施例1 製造方法で述べたスパッタ法により、パイレックスガラ
ス基板及びプリグループ付きPC基板の夫々に保護層、
記録層、拡散防止層、冷却層を順に形成した。基板は毎
分40回転させて組成と膜厚の均一化を図った。
Example 1 A protective layer was formed on each of the Pyrex glass substrate and the PC board with pregroups by the sputtering method described in the manufacturing method.
A recording layer, a diffusion prevention layer, and a cooling layer were formed in this order. The substrate was rotated at 40 revolutions per minute to ensure uniform composition and film thickness.

真空度5X10−’Paで、基板上にSiO2を20m
o1%混合したZnS保護層を約170nm形成した。
20m of SiO2 was deposited on the substrate at a vacuum level of 5X10-'Pa.
A ZnS protective layer containing 1% O was formed to a thickness of about 170 nm.

この上に20mmφのBi、Te3合金ペー・ットを2
個配置したSb、TeターゲットとTeGeターゲット
(1:1組成)を水晶振動子膜厚計の値で約2:1の割
合となるよう同時スパッタし記録層を約73nm形成し
た。この記録層のIPC分析で求めた組成比は(T e
 0.32B 1 +。
On top of this, two pieces of Bi, Te3 alloy paper of 20 mmφ are placed.
A recording layer having a thickness of about 73 nm was formed by simultaneously sputtering individual Sb and Te targets and a TeGe target (1:1 composition) at a ratio of about 2:1 as measured by a crystal resonator film thickness meter. The composition ratio determined by IPC analysis of this recording layer is (T e
0.32B 1 +.

26Sb11.42) 0.64 (Tea、s Ge
05) 0.36であった。次いで約230 nmの5
in2拡散防止層、約41nmのHf冷却層を順次形成
した。この記録媒体の結晶化温度を測定法■の方法で測
ったところ、約150℃であり常温での記録媒体の熱安
定性は十分であると推定できる。また活性化エネルギー
を測定したところ1.82eV以上であり、媒体の保存
安定性として60℃で10年以上が推定できる。
26Sb11.42) 0.64 (Tea, s Ge
05) It was 0.36. Then 5 at about 230 nm
An in2 diffusion prevention layer and an approximately 41 nm thick Hf cooling layer were sequentially formed. When the crystallization temperature of this recording medium was measured using measurement method (2), it was approximately 150° C., and it can be estimated that the thermal stability of the recording medium at room temperature is sufficient. Furthermore, the activation energy was measured to be 1.82 eV or more, and the storage stability of the medium can be estimated to be 10 years or more at 60°C.

PC基板に形成した光記録媒体を、線速度15m/秒で
10.5mW、線速度11m/秒で15mW、線速度1
5m/秒で10.5mWの順にレーザ光を連続照射しな
がらトラック上を3回走査し記録層を結晶化(初期化)
した。この初期化により記録媒体の反射率は上昇し、ノ
イズの少ない均一な結晶化が確認された。
An optical recording medium formed on a PC board was heated at a linear velocity of 10.5 mW at a linear velocity of 15 m/sec, a linear velocity of 15 mW at a linear velocity of 11 m/sec, and a linear velocity of 1
The recording layer is crystallized (initialized) by scanning the track three times while continuously irradiating the laser beam at 5 m/sec with a power of 10.5 mW.
did. This initialization increased the reflectance of the recording medium, and uniform crystallization with little noise was confirmed.

その後、線速度15m/秒で5.5MHz、デユーティ
50%、15mWの条件で信号を記録したところ、0.
7mWの再生光強度でCNRが51dBと良好なディジ
タル記録が可能な値が得られた。ノイズも一66dBm
以下と良好で記録によるノイズの増加は見られなかった
。更に記録部分を線速度15m/秒、10.5mWで走
査したところ記録は消去され、消去率は一30dBと良
好であった。前記の記録・消去条件で2000回繰返し
た所、800回目で記録のCNRは49dB1消去率は
30dBであり、2000回目でもCNRは49dB、
消去率は30dBとほとんど劣化が見られず良好であっ
た。
After that, when the signal was recorded under the conditions of 5.5 MHz, 50% duty, and 15 mW at a linear velocity of 15 m/s, 0.
At a reproduction light intensity of 7 mW, a CNR of 51 dB was obtained, a value that allows good digital recording. Noise is also -66dBm
The results were as follows, and no increase in noise due to recording was observed. Further, when the recorded portion was scanned at a linear velocity of 15 m/sec and a power of 10.5 mW, the recording was erased, and the erasure rate was good at -30 dB. When the above recording/erasing conditions were repeated 2000 times, the CNR of recording was 49 dB at the 800th time, and the erasure rate was 30 dB, and even at the 2000th time, the CNR was 49 dB.
The erasure rate was 30 dB, which was good with almost no deterioration.

前述のごとく同一の線速度で高速に記録と消去を行える
ことより、記録パルスを消去レベルのパワーに重畳して
1度の走査で信号の書替えを行う1ビームオーバライド
が可能であると推定できる。
As described above, since recording and erasing can be performed at high speed at the same linear velocity, it can be estimated that one-beam override is possible in which the recording pulse is superimposed on the erasing level power and the signal is rewritten in one scan.

実施例2 記録層を組成が(T e O,35B 10.22S 
b Q、 43)o、74(Tea5Geo5)0.2
6で膜厚を50nmとし、保護層、拡散防止層の膜厚を
それぞれ160nm、210nmとし、冷却層をNi−
Cr合金(80:20)で約45nmとした以外は、実
施例1と同様の方法で異なる層構成の媒体を形成し、本
実施例の媒体とした。
Example 2 The composition of the recording layer was (T e O, 35B 10.22S
b Q, 43) o, 74 (Tea5Geo5) 0.2
6, the film thickness was 50 nm, the film thickness of the protective layer and the diffusion prevention layer were 160 nm and 210 nm, respectively, and the cooling layer was made of Ni-
A medium with a different layer structure was formed in the same manner as in Example 1, except that the thickness was about 45 nm using a Cr alloy (80:20), and the medium was used as the medium of this example.

この記録媒体の結晶化温度を測定したところ、約140
℃であり実施例1と同様に常温での記録媒体の熱安定性
は十分であると推定できる。
When the crystallization temperature of this recording medium was measured, it was found to be approximately 140
℃, and as in Example 1, it can be estimated that the thermal stability of the recording medium at room temperature is sufficient.

初期化条件を15m/秒、10.5mWとしてトラック
を2回走査したところ、実施例1と同様な良好な初期化
ができた。
When the track was scanned twice under initialization conditions of 15 m/sec and 10.5 mW, good initialization similar to Example 1 was achieved.

この初期化したトラックに、線速度15m/秒の高速度
条件で記録条件を5.5MHz、デユーティ50%、1
5mWとし、消去パワーをllmWとして160回記録
・消去を繰返した。その結果、0.7mWの再生光強度
で記録後のCNRは50dBと良好であり、消去後の消
去率は31dBが得られ、更に繰返しても同様の特性が
安定して再現できた。
On this initialized track, the recording conditions were set to 5.5 MHz, duty 50%, 1
Recording and erasing were repeated 160 times with an erase power of 5 mW and an erase power of 1 mW. As a result, with a reproduction light intensity of 0.7 mW, the CNR after recording was as good as 50 dB, and the erasure rate after erasing was 31 dB, and the same characteristics could be stably reproduced even after further repetition.

実施例3 記録層を(イ)は(Teo4+B io2tsbo3g
)0.5g (Teg、+s Geo、s ) 0.4
1%  (0)は(TeO,33B 1o、i+5bo
36)o6 (Tea、s Geo、)0.4Xとした
以外は実施例2と同じ構成と組成の試料を作製し測定法
■の動的記録・消去特性を評価した。
Example 3 Recording layer (A) is (Teo4+B io2tsbo3g
)0.5g (Teg, +s Geo,s) 0.4
1% (0) is (TeO, 33B 1o, i+5bo
36) A sample having the same structure and composition as in Example 2 except that o6 (Tea, s Geo,) was 0.4X was prepared, and the dynamic recording/erasing characteristics of measurement method (2) were evaluated.

初期化として線速度9m/秒、9mWのパワーでトラッ
クに沿って2回走査した後、0.7mWで再生した所、
試料(イ)と(ロ)いずれもRF信号レベルは明らかに
高反射率に変化し、良好な結晶化(初期化)ができた。
After scanning twice along the track at a linear velocity of 9 m/s and a power of 9 mW as initialization, playback was performed at 0.7 mW.
In both samples (a) and (b), the RF signal level clearly changed to a high reflectance, and good crystallization (initialization) was achieved.

ノイズの増加は数dB以下でほとんどなかった。次いで
線速度9m/秒で記録を13mW、4MHz、デユーテ
ィ50%とし、消去を9mWで行なったところ、記録の
CNRは試料(イ)では51dB、(ロ)では49dB
と良好であり、消去率はいずれも25dB以上が得られ
た。更に同一トラックに記録・消去を繰返したところ安
定な繰返しが可能であることが確認できた。
The increase in noise was only a few dB or less. Next, recording was performed at a linear velocity of 9 m/s at 13 mW, 4 MHz, duty 50%, and erasing was performed at 9 mW. The CNR of the recording was 51 dB for sample (a) and 49 dB for sample (b).
The results were excellent, and erasure rates of 25 dB or higher were obtained in all cases. Furthermore, when recording and erasing were repeated on the same track, it was confirmed that stable repetition was possible.

比較例1 記録層を(ハ)は(Teo、3 B to5Sbo2)
o、71 (Teo5Geo5)0.29、(ニ)は(
Tea、b B 1o4)0.27 (Tea5Geo
、)0.73とした以外は実施例1と同様な構成でパイ
レックスガラス基板とPCのディスク基板にそれぞれ媒
体を形成した。パイレックスガラス基板で測定したこの
媒体の結晶化温度は試料(ハ)、(ニ)いずれも110
℃以下と大きく低下しており、記録媒体の熱安定性は大
巾に低下していると推定される。
Comparative Example 1 Recording layer (c) (Teo, 3 B to5Sbo2)
o, 71 (Teo5Geo5)0.29, (d) is (
Tea, b B 1o4) 0.27 (Tea5Geo
, )0.73 except that the medium was formed on a Pyrex glass substrate and a PC disk substrate, respectively, with the same configuration as in Example 1. The crystallization temperature of this medium measured on a Pyrex glass substrate was 110 for both samples (c) and (d).
It is estimated that the thermal stability of the recording medium has decreased significantly.

次に線速度9m/秒で記録を13mW、4MHz、デユ
ーティ50%とし、消去を9mWとして繰返したところ
記録が非常に困難となっており、試料(ハ)、(ニ)い
ずれも記録のCNRは35dB以下で、消去率は20d
B以下であり、繰返しによる改善も見られなかった。
Next, when recording was repeated at a linear velocity of 9 m/s, 13 mW, 4 MHz, and duty 50%, and erasing was repeated at 9 mW, recording became extremely difficult, and the CNR of both samples (c) and (d) was Less than 35dB, erasure rate is 20d
The score was B or below, and no improvement was observed through repetition.

実施例4 保護層、拡散防止層および中間層にMgF2を10mo
1%混合したZnS無機膜を用い、記録層の組成を(T
eg3□Bio26sbo4゜)0.65 (Te。、
5Geo、)。3.として、保護層、記録層、および拡
散防止層の順にそれぞれおよそ170nm。
Example 4 10 mo of MgF2 in the protective layer, anti-diffusion layer and intermediate layer
Using a 1% mixed ZnS inorganic film, the composition of the recording layer was (T
eg3□Bio26sbo4゜) 0.65 (Te.,
5Geo,). 3. The protective layer, the recording layer, and the anti-diffusion layer each have a thickness of about 170 nm in that order.

51nm、および216 nmの厚みで積層した。The layers were stacked to a thickness of 51 nm and 216 nm.

次いでNi−Cr合金(80:20)を約26nm1中
間層を約21nm、更にNi−Cr合金を約26nm形
成し本実施例の媒体とした。
Next, a Ni-Cr alloy (80:20) of about 26 nm, an intermediate layer of about 21 nm, and a Ni-Cr alloy of about 26 nm were formed to form the medium of this example.

初期化条件を8m/秒、8.5mWとしてトラックを走
査したところ、実施例1と同様な良好な初期化ができた
When the track was scanned under initialization conditions of 8 m/sec and 8.5 mW, good initialization similar to Example 1 was achieved.

線速度8m/秒で、記録を4 M Hz 、デユーティ
40%、14mWとし消去を8.5mWの条件で120
回繰返した結果、1mWの再生光強度でCNRが49 
d B、消去率が27dBが得られ、良好な記録・消去
の繰返しが可能であった。更に消去率の消去速度の依存
性を見るために、記録を12m/秒、3.69MHz、
デユーティ50%、15mWとし消去を15m/秒、1
0.5mWの条件として120回゛繰返した後、記録条
件を一定として、消去線速度を5〜20m/秒の範囲で
変えて消去率を測定した。消去のパワーは各線速度で消
去率が最良となるよう最適化した。その結果、例えば線
速度18m/秒で消去パワー13mWの場合に消去率が
27dB得られ、同様に5〜20m/秒いずれの線速度
でも26〜30dBの消去率が実現できた。この場合、
再生光強度は0. 7mWとし、記録のCNRは消去線
速度によらず約48dBが得られた。
Linear speed was 8 m/s, recording was 4 MHz, duty was 40%, 14 mW, and erasing was 120 mW at 8.5 mW.
As a result of repeating several times, the CNR was 49 at a reproduction light intensity of 1 mW.
dB and an erasing rate of 27 dB were obtained, and good repeating of recording and erasing was possible. Furthermore, in order to see the dependence of the erasure rate on the erasure speed, recording was performed at 12 m/s, 3.69 MHz,
Duty 50%, 15mW, erasure 15m/sec, 1
After repeating 120 times under the condition of 0.5 mW, the erasing rate was measured while keeping the recording conditions constant and changing the erasing linear velocity in the range of 5 to 20 m/sec. The erasing power was optimized to give the best erasing rate at each linear velocity. As a result, for example, at a linear velocity of 18 m/sec and an erasing power of 13 mW, an erasure rate of 27 dB was obtained, and similarly, at any linear velocity of 5 to 20 m/sec, an erasure rate of 26 to 30 dB was achieved. in this case,
The reproduction light intensity is 0. At 7 mW, a recording CNR of about 48 dB was obtained regardless of the erase linear velocity.

[発明の効果] 本発明による記録媒体は以下に述べるような優れた効果
を奏するものである。
[Effects of the Invention] The recording medium according to the present invention exhibits excellent effects as described below.

■ 消去速度が早く、高速での記録・消去が可能な光記
録媒体が得られる。
■ An optical recording medium with high erasing speed and capable of high-speed recording and erasing can be obtained.

■ 低線速度から高線速度まで、記録のCNR。■ Recording CNR from low linear velocity to high linear velocity.

消去率が良好かつ安定な光記録媒体が得られる。A stable optical recording medium with a good erasing rate can be obtained.

■ 転移温度が良好で活性化エネルギーも高く、熱及び
保存安定性に優れた光記録媒体が得られる。
(2) An optical recording medium with good transition temperature, high activation energy, and excellent thermal and storage stability can be obtained.

■ 実用的な半導体レーザ出力で記録・消去が可能であ
り、感度の良好な光記録媒体が得られる。
■ Recording and erasing is possible with a practical semiconductor laser output, and an optical recording medium with good sensitivity can be obtained.

■ 多数回の記録・消去の繰返しでも動作が安定してお
り、記録感度、記録・消去特性、ノイズの増大などの劣
化が少ない良好な光記録媒体が得られる。
(2) Operation is stable even after repeated recording/erasing many times, and a good optical recording medium with little deterioration in recording sensitivity, recording/erasing characteristics, increase in noise, etc. can be obtained.

Claims (1)

【特許請求の範囲】 基板上に形成された記録薄膜にエネルギービームを照射
し、直接又は間接に発生する熱により、上記薄膜の光学
特性を変化せしめて、情報の記録を行う情報記録媒体に
おいて、該記録薄膜がビスマス(Bi)、アンチモン(
Sb)、ゲルマニウム(Ge)およびテルル(Te)の
4元素から主としてなり、かつその組成が、次の一般式
で表されることを特徴とする情報記録媒体。 (Te_xBi_ySb_1_−_x_−_y)_1_
−_z(Te_0_._5Ge_0_._5)_xただ
し0.25≦x<0.6 0.05≦y<0.4 0.2≦z≦0.6 ここで、x、yおよびzはそれぞれ原子数比を表わす。
[Scope of Claims] An information recording medium in which information is recorded by irradiating a recording thin film formed on a substrate with an energy beam and changing the optical characteristics of the thin film by the heat generated directly or indirectly, The recording thin film is made of bismuth (Bi), antimony (
1. An information recording medium mainly consisting of four elements: Sb), germanium (Ge), and tellurium (Te), and whose composition is represented by the following general formula. (Te_xBi_ySb_1_-_x_-_y)_1_
−_z(Te_0_._5Ge_0_._5)_x where 0.25≦x<0.6 0.05≦y<0.4 0.2≦z≦0.6 Here, x, y, and z are the number of atoms, respectively. represents the ratio.
JP1178866A 1989-07-10 1989-07-10 Information recording medium Pending JPH0342276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1178866A JPH0342276A (en) 1989-07-10 1989-07-10 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1178866A JPH0342276A (en) 1989-07-10 1989-07-10 Information recording medium

Publications (1)

Publication Number Publication Date
JPH0342276A true JPH0342276A (en) 1991-02-22

Family

ID=16056056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1178866A Pending JPH0342276A (en) 1989-07-10 1989-07-10 Information recording medium

Country Status (1)

Country Link
JP (1) JPH0342276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006220A1 (en) * 1997-08-01 1999-02-11 Hitachi, Ltd. Information recording medium
WO2000054982A1 (en) * 1999-03-15 2000-09-21 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
KR100411336B1 (en) * 2001-03-29 2003-12-18 에스케이씨 주식회사 Phase change optical recording material for rewritable optical recording medium
US7498069B2 (en) 2004-07-15 2009-03-03 Nec Corporation Optical recording medium, optical recording method, and optical recording apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006220A1 (en) * 1997-08-01 1999-02-11 Hitachi, Ltd. Information recording medium
WO2000054982A1 (en) * 1999-03-15 2000-09-21 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
US6858277B1 (en) 1999-03-15 2005-02-22 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
CN1294030C (en) * 1999-03-15 2007-01-10 松下电器产业株式会社 Information recording medium and method for manufacturing the same
KR100411336B1 (en) * 2001-03-29 2003-12-18 에스케이씨 주식회사 Phase change optical recording material for rewritable optical recording medium
US7498069B2 (en) 2004-07-15 2009-03-03 Nec Corporation Optical recording medium, optical recording method, and optical recording apparatus

Similar Documents

Publication Publication Date Title
US5221588A (en) Method for recording and erasing information
JP2574325B2 (en) Optical information recording medium
JP2937351B2 (en) Optical recording material consisting of antimony-tin alloy containing third element
KR100453540B1 (en) Rewritable phase-change optical recording composition and rewritable phase-change optical disk
JPS6273438A (en) Optical information recording member
JPH0342276A (en) Information recording medium
JP2830022B2 (en) Optical information recording medium
JP2629746B2 (en) Optical recording medium
JPS63142542A (en) Sputtering target for forming thin film for information recording
JPH02112987A (en) Optical recording medium
JP3010513B2 (en) Optical recording medium and manufacturing method thereof
JP2658224B2 (en) Information recording medium
JP2867407B2 (en) Information recording medium
JP3286501B2 (en) Information recording medium initialization method
JP2893737B2 (en) Information recording medium
JP2629717B2 (en) Information recording medium
JPH04316887A (en) Optical recording medium and sputtering target, and manufacture thereof
JP2629749B2 (en) Information recording medium
JP2000339750A (en) Optical recording medium
JP2798247B2 (en) Optical recording medium
JPS63167440A (en) Method for recording or recording and erasing information
JPH01180387A (en) Information recording medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JPH0322231A (en) Method for initializing information recording medium
JP3246244B2 (en) Optical information recording medium