JP2903970B2 - Optical recording medium and recording / reproducing method using the same - Google Patents

Optical recording medium and recording / reproducing method using the same

Info

Publication number
JP2903970B2
JP2903970B2 JP5275706A JP27570693A JP2903970B2 JP 2903970 B2 JP2903970 B2 JP 2903970B2 JP 5275706 A JP5275706 A JP 5275706A JP 27570693 A JP27570693 A JP 27570693A JP 2903970 B2 JP2903970 B2 JP 2903970B2
Authority
JP
Japan
Prior art keywords
recording
layer
optical
recording medium
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5275706A
Other languages
Japanese (ja)
Other versions
JPH07130002A (en
Inventor
奈津子 鈴木
健一 高田
裕宜 水野
通和 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17559237&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2903970(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5275706A priority Critical patent/JP2903970B2/en
Publication of JPH07130002A publication Critical patent/JPH07130002A/en
Application granted granted Critical
Publication of JP2903970B2 publication Critical patent/JP2903970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザー光などの照射に
より、高速かつ高密度に情報を記録、再生、消去可能な
光学的記録用媒体およびこれを用いた記録再生方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium capable of recording, reproducing, and erasing information at a high speed and at a high density by irradiation with a laser beam or the like, and a recording / reproducing method using the same.

【0002】[0002]

【従来の技術】近年、情報量の増大、記録・再生の高密
度・高速化の要求にこたえる記録媒体として、レーザー
光線を利用した光ディスクが開発されている。光ディス
クには、一度だけ記録が可能な追記型と、記録・消去が
何度でも可能な書換え型がある。
2. Description of the Related Art In recent years, an optical disk using a laser beam has been developed as a recording medium that meets the demand for an increase in the amount of information and a high density and high speed of recording and reproduction. Optical discs include a write-once type, which allows recording only once, and a rewritable type, which allows recording and erasing as many times as possible.

【0003】書換え型光ディスクとしては、光磁気効果
を利用した光磁気記録媒体や、可逆的な結晶状態の変化
を利用した相変化媒体が挙げられる。相変化媒体は、外
部磁界を必要とせず、レーザー光のパワーを変調するだ
けで、記録・消去が可能である。さらに、消去と再記録
を単一ビームで同時に行う1ビームオーバーライトが可
能であるという利点を有する。
Examples of the rewritable optical disk include a magneto-optical recording medium utilizing a magneto-optical effect and a phase change medium utilizing a reversible change in crystalline state. The phase change medium does not require an external magnetic field, and can record and erase only by modulating the power of laser light. Furthermore, there is an advantage that one-beam overwriting in which erasing and re-recording are performed simultaneously with a single beam is possible.

【0004】1ビームオーバーライト可能な相変化記録
方式では、記録膜を非晶質化させることによって記録ビ
ットを形成し、結晶化させることによって消去を行う場
合が一般的である。このような、相変化記録方式に用い
られる記録層材料としては、カルコゲン系合金薄膜を用
いることが多い。例えば、Ge−Te系、Ge−Te−
Sb系、In−Sb−Te系、Ge−Sn−Te系合金
薄膜等が挙げられる。
In the phase change recording method capable of one-beam overwriting, it is general that a recording bit is formed by amorphizing a recording film, and erasing is performed by crystallization. As a recording layer material used in such a phase change recording method, a chalcogen-based alloy thin film is often used. For example, Ge-Te system, Ge-Te-
Sb-based, In-Sb-Te-based, Ge-Sn-Te-based alloy thin films and the like can be mentioned.

【0005】なお、書換え型とほとんど同じ材料・層構
成を適用して、追記型の相変化媒体も実現できる。この
場合、その可逆性を利用しないのでより長期にわたって
情報を記録・保存でき、原理的にはほぼ半永久的な保存
が可能である。追記型として相変化媒体を用いた場合、
孔あけ型と異なり記録ピット周辺にリムと呼ばれる盛り
上がりが生じないため信号品質に優れ、また記録層上部
に空隙が不要なためエアーサンドイッチ構造にする必要
がないという利点がある。
[0005] A write-once type phase change medium can be realized by applying almost the same material and layer structure as the rewritable type. In this case, since the reversibility is not used, information can be recorded and stored for a longer period of time, and in principle, semi-permanent storage is possible. When a phase change medium is used as a write-once type,
Unlike the perforated type, there is an advantage that a signal rim is not formed around the recording pit, so that the signal quality is excellent, and no air gap is required above the recording layer, so that an air sandwich structure is not required.

【0006】一般に、書換え型の相変化記録媒体では、
相異なる結晶状態を実現するために、2つの異なるレー
ザー光パワーを用いる。この方式を、結晶化された初期
状態に非晶質ピットの記録および結晶化による消去を行
う場合を例にとって説明する。結晶化は、記録層の結晶
化温度より十分高く、融点よりは低い温度まで記録層を
加熱することによってなされる。この場合、冷却速度は
結晶化が十分なされる程度に遅くなるよう、記録層を誘
電体層で挟んだり、ビームの移動方向に長い楕円形ビー
ムを用いたりする。
Generally, in a rewritable phase change recording medium,
Two different laser light powers are used to achieve different crystal states. This method will be described by taking as an example a case in which amorphous pits are recorded and erased by crystallization in the crystallized initial state. The crystallization is performed by heating the recording layer to a temperature sufficiently higher than the crystallization temperature of the recording layer and lower than the melting point. In this case, the recording layer is sandwiched between dielectric layers, or an elliptical beam that is long in the beam moving direction is used so that the cooling rate becomes slow enough to sufficiently crystallize.

【0007】一方、非晶質化は記録層を融点より高い温
度まで加熱し、急冷することによって行う。この場合、
上記誘電体層は十分な冷却速度(過冷却速度)を得るた
めの放熱層としての機能も有する。さらに、上述のよう
な、加熱・冷却過程における記録層の溶融・体積変化に
伴う変形や、プラスチック基板への熱的ダメージを防い
だり、湿気による記録層の劣化を防止するためにも、上
記誘電体層は重要である。
On the other hand, the amorphization is performed by heating the recording layer to a temperature higher than the melting point and rapidly cooling the recording layer. in this case,
The dielectric layer also has a function as a heat dissipation layer for obtaining a sufficient cooling rate (supercooling rate). Further, in order to prevent deformation due to melting and volume change of the recording layer in the heating / cooling process as described above, to prevent thermal damage to the plastic substrate, and to prevent deterioration of the recording layer due to moisture, the dielectric layer is used. Body layer is important.

【0008】誘電体層の材質は、レーザー光に対して光
学的に透明であること、融点・軟化点・分解温度が高い
こと、形成が容易であること、適度な熱伝導性を有する
などの観点から選定される。
The material of the dielectric layer is such that it is optically transparent to laser light, has a high melting point, softening point, and decomposition temperature, is easy to form, and has a suitable thermal conductivity. Selected from a viewpoint.

【0009】[0009]

【発明が解決しようとする課題】ガウシアンビームに仮
定できるレーザーのビーム径は0.82×λ÷NA(λ
は波長、NAはレンズの開口数)で定義される。従って
高密度記録のためレーザーに600nm以下のような短
波長のものを用いると、ビームスポット径は小さくな
る。
The beam diameter of a laser assumed to be a Gaussian beam is 0.82 × λ ÷ NA (λ
Is the wavelength, and NA is the numerical aperture of the lens. Therefore, when a laser having a short wavelength such as 600 nm or less is used for high-density recording, the beam spot diameter becomes small.

【0010】相変化型光ディスクでは、記録層のアモル
ファスビットを結晶化温度でアニールし、結晶化させる
ことで記録の消去をおこなっているが、ビームスポット
径が小さい場合、記録層が結晶化温度以上に保たれる時
間が短くなり結晶化が上手くいかなくなるという問題点
があった。
[0010] In a phase-change type optical disk, recording is erased by annealing and crystallizing amorphous bits in a recording layer at a crystallization temperature. However, when the beam spot diameter is small, the recording layer is over the crystallization temperature. The problem is that the time for which crystallization is not maintained is shortened and crystallization does not work well.

【0011】[0011]

【課題を解決するための手段】本発明者らは、第2の誘
電体層の熱伝導率を最適化することで、記録層が結晶化
温度以上に保たれる時間を長くすることが可能となるこ
とを見いだした。その結果、記録層に結晶化温度以上の
熱を十分与えることが出来、特に600nm未満の短波
長記録に適した光学記録用媒体となることを見いだし、
本発明に到達した。
Means for Solving the Problems The present inventors can extend the time during which the recording layer is maintained at a temperature higher than the crystallization temperature by optimizing the thermal conductivity of the second dielectric layer. Was found. As a result, it has been found that heat can be sufficiently applied to the recording layer at a temperature higher than the crystallization temperature, and that the optical recording medium is particularly suitable for short-wavelength recording of less than 600 nm.
The present invention has been reached.

【0012】本発明の要旨は、基板上に、第1の誘電体
層、相変化記録層、第2の誘電体層および反射層を順次
有する光学的情報記録用媒体であって、相変化記録層の
膜厚を15−50nmとし、第2の誘電体層として熱伝
導率が5.0×10-4 −7.39×10 -3 pJ・μm -1
・K -1 ・ns -1 のものを用い、かつ第2の誘電体層の膜
厚を10〜250nmとした、波長600nm未満のレ
ーザー光を用いて情報の記録再生を行なうための光学的
情報記録用媒体、およびこれに波長600nm未満のレ
ーザー光を用いて情報の記録再生を行なうことを特徴と
する記録再生方法である。
The gist of the present invention is to provide an optical information recording medium having a first dielectric layer, a phase change recording layer, a second dielectric layer and a reflective layer on a substrate, wherein The thickness of the layer is set to 15 to 50 nm, and the second dielectric layer has a thermal conductivity of 5.0 × 10 −4 −7.39 × 10 −3 pJ · μm −1.
A layer having a wavelength of less than 600 nm using K -1 ns -1 and having a thickness of the second dielectric layer of 10 to 250 nm;
An optical information recording medium for recording / reproducing information using laser light, and a recording / reproducing method characterized by recording / reproducing information using a laser beam having a wavelength of less than 600 nm.

【0013】相変化記録層はGeSbTe系、InSb
Te系等が好ましく用いられ、結晶化速度、非晶質化の
しやすさ、結晶粒径、保存安定性等の改善のためSn,
In,Ge,Pb,As,Se,Si,Bi,Au,T
i,Cu,Ag,Pt,Pd,Co,Ni等を加えても
よい。記録層の厚みが15nmより薄いと記録層自体に
よる熱保温性が少なくなり、また記録層の結晶化のため
の結晶核形成が抑えられ結晶化が抑制され、さらには十
分なコントラストが得られないという問題が生じる。
The phase change recording layer is made of GeSbTe, InSb
Te type or the like is preferably used. For improving the crystallization speed, the easiness of amorphization, the crystal grain size, the storage stability, etc., Sn,
In, Ge, Pb, As, Se, Si, Bi, Au, T
i, Cu, Ag, Pt, Pd, Co, Ni, etc. may be added. When the thickness of the recording layer is less than 15 nm, the heat insulation property of the recording layer itself is reduced, and crystal nucleus formation for crystallization of the recording layer is suppressed to suppress crystallization, and furthermore, sufficient contrast cannot be obtained. The problem arises.

【0014】一方、50nmより厚くなるとオーバーラ
イト時の物質移動が起こり易くなる。記録層の膜厚は1
5〜50nmが好ましい。記録層は、誘電体層で挟んで
基板上に設けるが、更に反射層、紫外線硬化樹脂からな
る保護層等を設けてもよい。第1及び第2の誘電体層に
は、酸化タンタル等の、透明で光学定数nが1.5から
2.4、kが0から0.05であり、熱膨張係数が1.
0×10-5以下の誘電体を用いることが好ましい。
On the other hand, when the thickness is larger than 50 nm, mass transfer at the time of overwriting tends to occur. The thickness of the recording layer is 1
5 to 50 nm is preferred. The recording layer is provided on the substrate with the dielectric layer interposed therebetween. However, a reflective layer, a protective layer made of an ultraviolet curable resin, and the like may be further provided. The first and second dielectric layers are transparent, such as tantalum oxide, having an optical constant n of 1.5 to 2.4, k of 0 to 0.05, and a thermal expansion coefficient of 1.
It is preferable to use a dielectric material of 0 × 10 −5 or less.

【0015】第2の誘電体層は、熱伝導率が5.0×1
-4 −7.39×10 -3 pJ・μm -1 ・K -1 ・ns -1
あることが必要である。熱伝導率を5.0×10-4pJ
・μm-1・K-1・ns-1より大きくすることにより、第
2の誘電体層を伝ってすばやく記録層から熱を逃がすこ
とで、記録層が結晶化するための温度に保たれる幅を広
くとることが可能となる。
The second dielectric layer has a thermal conductivity of 5.0 × 1.
In 0 -4 -7.39 × 10 -3 pJ · μm -1 · K -1 · ns -1
It is necessary that there is. Thermal conductivity of 5.0 × 10 -4 pJ
By making it larger than μm -1 · K -1 · ns -1 , heat is quickly released from the recording layer through the second dielectric layer, so that the recording layer is maintained at a temperature for crystallization. It is possible to increase the width.

【0016】その結果、十分に結晶化するための時間を
稼ぐことができ、消去特性を向上させることが出来る。
第2の誘電体層は10〜250nmの膜厚とする。第2
の誘電体層の膜厚が10nm未満の場合には、繰り返し
オーバーライトを行った場合に生じる記録層の物質移動
を抑えることができなくなる。
As a result, sufficient time for crystallization can be obtained, and the erasing characteristics can be improved.
The second dielectric layer has a thickness of 10 to 250 nm. Second
If the thickness of the dielectric layer is less than 10 nm, it is not possible to suppress mass transfer of the recording layer caused by repeated overwriting.

【0017】一方、第2の誘電体層が250nmを越え
るとクラックが入りやすくなる。第1の誘電体層の膜厚
は50〜250nmであることが好ましい。本発明にお
ける記録媒体の基板としては、ガラス、プラスチック、
ガラス上に光硬化性樹脂を設けたもの等のいずれであっ
てもよいが、本発明に用いた誘電体層は耐熱性に優れ、
基板の熱的変形防止効果があるため、現在光ディスク用
基板として一般的に使用されているポリカーボネート樹
脂基板を使用することが可能である。
On the other hand, if the thickness of the second dielectric layer exceeds 250 nm, cracks tend to occur. The first dielectric layer preferably has a thickness of 50 to 250 nm. As the substrate of the recording medium in the present invention, glass, plastic,
It may be any of those provided with a photocurable resin on glass, but the dielectric layer used in the present invention has excellent heat resistance,
Since there is an effect of preventing thermal deformation of the substrate, it is possible to use a polycarbonate resin substrate generally used at present as an optical disk substrate.

【0018】反射層は、AlおよびAl合金、Au、A
g等の、熱伝導性の高い物質を用いることが好ましく、
その厚みは通常100〜200nmの範囲に選ばれる。
記録層、誘電体層、反射層はスパッタリング法などによ
って形成される。記録膜用ターゲット、誘電体膜用ター
ゲット、必要な場合には反射層材料用ターゲットを同一
真空チャンバー内に設置したインライン装置で膜形成を
行うことが各層間の酸化や汚染を防ぐ点で望ましい。ま
た、生産性の面からもすぐれている。
The reflection layer is made of Al and an Al alloy, Au, A
g, it is preferable to use a substance having high thermal conductivity,
The thickness is usually selected in the range of 100 to 200 nm.
The recording layer, the dielectric layer, and the reflection layer are formed by a sputtering method or the like. It is desirable to form a film using an in-line apparatus in which a target for a recording film, a target for a dielectric film, and if necessary, a target for a reflective layer material are installed in the same vacuum chamber, from the viewpoint of preventing oxidation and contamination between layers. It is also excellent in productivity.

【0019】本発明に記載されている熱伝導率は、物質
のバルクでの値ではなく、薄膜の熱伝導率である。薄膜
の熱伝導率測定法には、J.C.Lambropoul
os,et.al.,J.Appl.Phys.,6
6,4230(1989)、I.Hatta,et.a
l.,Rev.Sci.Instrum.,56,16
43(1985)や、M.Horie,et.al.,
MitsubishiKasei R&D Revie
w,4(2),68(1990)等に示されている。具
体的には光交流励起法による熱伝導率測定装置を用いれ
ば良い。
The thermal conductivity described in the present invention is not the bulk value of a substance but the thermal conductivity of a thin film. Methods for measuring the thermal conductivity of thin films are described in C. Lambropoul
os, et. al. , J. et al. Appl. Phys. , 6
6,4230 (1989); Hatta, et. a
l. Rev., Rev .. Sci. Instrum. , 56,16
43 (1985); Horie, et. al. ,
MitsubishiKasei R & D Review
w, 4 (2), 68 (1990) and the like. Specifically, a thermal conductivity measuring device using a photo-ac excitation method may be used.

【0020】[0020]

【実施例】以下実施例をもって本発明を詳細に説明す
る。 実施例1 ポリカーボネート樹脂基板上に(ZnS)80(Si
220(数字は成分割合を示し単位はmol%)の組成、
波長488nmでの光学定数がn=2.2、k=0の第
1の誘電体膜を160nm、Ge2Sb2Te5(組成は
比率で示した)記録膜を30nm、Ta25(熱伝導率
7.39×10-3pJ・μm-1・K-1・ns-1、波長4
88nmでの光学定数n=2.2、k=0)からなる第
2の誘電体膜を20nm、Al合金反射膜を200n
m、スパッタリング法により順に形成した。さらに反射
層の上部に紫外線硬化樹脂層を設けた。
The present invention will be described in detail with reference to the following examples. Example 1 (ZnS) 80 (Si
O 2 ) 20 (the numbers indicate the component ratio and the unit is mol%),
At a wavelength of 488 nm, the first dielectric film having an optical constant of n = 2.2 and k = 0 is 160 nm, the Ge 2 Sb 2 Te 5 (composition is shown by ratio) recording film is 30 nm, and the Ta 2 O 5 ( Thermal conductivity 7.39 × 10 -3 pJ · μm -1 · K -1 · ns -1 , wavelength 4
The second dielectric film having an optical constant at 88 nm of n = 2.2 and k = 0) is 20 nm, and the Al alloy reflection film is 200 n.
m, and formed sequentially by a sputtering method. Further, an ultraviolet curable resin layer was provided on the reflective layer.

【0021】上記のように作成したディスクの記録層は
アモルファス状態であるので、Arレーザーで結晶化さ
せ初期化を行った後、波長488nmのレーザーピック
アップを用いた評価装置でディスクの動特性を評価し
た。線速度10m/sで記録パワー14mW、消去パワ
ー7mWで記録周波数8.58MHz、パルス幅38n
secの信号を記録した時のC/N比、および消去パワ
ーをDC照射した時の消去比はそれぞれ51dB、24
dBであった。さらに、消去比20dB以上の消去パワ
ーマージンは2mWであった。
Since the recording layer of the disk prepared as described above is in an amorphous state, the disk is crystallized with an Ar laser and initialized, and then the dynamic characteristics of the disk are evaluated by an evaluation apparatus using a laser pickup having a wavelength of 488 nm. did. A recording power of 14 mW at a linear velocity of 10 m / s, a recording frequency of 8.58 MHz at an erasing power of 7 mW, and a pulse width of 38 n
The C / N ratio when a signal of sec was recorded and the erasing ratio when erasing power was applied by DC irradiation were 51 dB and 24 dB, respectively.
dB. Further, the erase power margin at an erase ratio of 20 dB or more was 2 mW.

【0022】実施例2 ポリカーボネート樹脂基板上に(ZnS)80(Si
220の組成、波長488nmでの光学定数n=2.
2、k=0の第1の誘電体膜を160nm、Ge2Sb2
Te5記録膜を30nm、SiO2(熱伝導率5.40×
10-3pJ・μm- 1・K-1・ns-1、波長488nmで
の光学定数n=1.6、k=0)からなる第2の誘電体
膜を20nm、Al合金反射膜を200nm、スパッタ
リング法により順に形成した。さらに反射層の上部に紫
外線硬化樹脂層を設けた。
Example 2 (ZnS) 80 (Si) was coated on a polycarbonate resin substrate.
O 2 ) 20 composition, optical constant n = 2 at wavelength 488 nm.
2, 160 nm thick first dielectric film with k = 0, Ge 2 Sb 2
The Te 5 recording film is formed of 30 nm, SiO 2 (thermal conductivity 5.40 ×
10 -3 pJ · μm - 1 · K -1 · ns -1, the optical constants n = 1.6 at a wavelength of 488nm, k = 0) the second dielectric film 20nm made of, 200 nm of Al alloy reflective film , By sputtering. Further, an ultraviolet curable resin layer was provided on the reflective layer.

【0023】上記のように作成したディスクの記録層は
アモルファス状態であるので、Arレーザーで結晶化さ
せ初期化を行った後、波長488nmのレーザーピック
アップを用いた評価装置でディスクの動特性を評価し
た。線速度10m/sで記録パワー15mW、消去パワ
ー7mWで記録周波数8.58MHz、パルス幅38n
secの信号を記録した時のC/N比、および消去パワ
ーをDC照射した時の消去比はそれぞれ49dB、24
dBであった。さらに、消去比20dB以上の消去パワ
ーマージンは3mWであった。
Since the recording layer of the disk prepared as described above is in an amorphous state, the disk is crystallized with an Ar laser and initialized, and then the dynamic characteristics of the disk are evaluated by an evaluation device using a laser pickup having a wavelength of 488 nm. did. A recording power of 15 mW at a linear velocity of 10 m / s, a recording frequency of 8.58 MHz at an erasing power of 7 mW, and a pulse width of 38 n
The C / N ratio when a signal of sec was recorded and the erasing ratio when DC power was applied to the erasing power were 49 dB and 24 dB, respectively.
dB. Further, the erase power margin at an erase ratio of 20 dB or more was 3 mW.

【0024】比較例1 ポリカーボネート樹脂基板上に(ZnS)80(Si
220の組成、波長488nmでの光学定数n=2.
2、k=0の第1の誘電体膜を160nm、Ge2Sb2
Te5記録膜を20nm、(ZnS)80(SiO2
20(熱伝導率3.5×10-4pJ・μm-1・K-1・ns
-1、波長488nmでの光学定数n=2.2、k=0)
からなる第2の誘電体膜を20nm、Al合金反射膜を
200nm、スパッタリング法により順に形成した。さ
らに反射層の上部に紫外線硬化樹脂層を設けた。
Comparative Example 1 (ZnS) 80 (Si
O 2 ) 20 composition, optical constant n = 2 at wavelength 488 nm.
2, 160 nm thick first dielectric film with k = 0, Ge 2 Sb 2
Te 5 recording film 20nm, (ZnS) 80 (SiO 2)
20 (Thermal conductivity 3.5 × 10 -4 pJ-μm -1 · K -1 · ns
−1 , optical constant at wavelength 488 nm n = 2.2, k = 0)
A second dielectric film of 20 nm and an Al alloy reflective film of 200 nm were sequentially formed by sputtering. Further, an ultraviolet curable resin layer was provided on the reflective layer.

【0025】上記のように作成したディスクの記録層は
アモルファス状態であるので、Arレーザーで結晶化さ
せ初期化を行った後、波長488nmのレーザーピック
アップを用いた評価装置でディスクの動特性を評価し
た。線速度10m/sで記録パワー8mW、消去パワー
4mWで記録周波数8.58MHz、パルス幅38ns
ecの信号を記録した時のC/N比、および消去パワー
をDC照射した時の消去比はそれぞれ56dB、20d
Bであった。さらに、消去比20dB以上の消去パワー
マージンは0.3mWであった。参考例1〜2ポリカー
ボネート樹脂基板上に、(ZnS)80(SiO2 20
組成(単位はmol %;熱伝導率3.5×10-4[ pJ/
μm/K/ns] )の第1の誘電体膜を110nm、表
−1に示す厚さのGe2 Sb2 Te5 記録膜、Ta2
5 (熱伝導率7.39×10-3[ pJ/μm/K/n
s] :参考例1)又は(ZnS)80(SiO2 20(熱
伝導率3.5×10-4[ pJ/μm/K/ns] :参考
例2)の組成で表−1に示す厚さの第2の誘電体膜、A
l合金反射膜を200nmを、スパッタリング法により
順に形成した。さらに反射層の上部に紫外線硬化樹脂層
を設けた。上記のように作成したディスクの記録層はア
モルファス状態であるので、波長810nmのLDを光
源とするバルクイレーザにより結晶化させ初期化を行っ
た後、波長780nm(NA0.55)のレーザーピッ
クアップを用いた評価装置でディスクの動特性を評価し
た。線速度10m/secで表−1に示す記録パワー及
び消去パワーで記録周波数4MHz、duty50%の
信号を記録した時のC/N比、及び消去比20dB以上
の消去パワーマージンを表−1に示す。
Since the recording layer of the disk prepared as described above is in an amorphous state, the disk is crystallized with an Ar laser and initialized, and then the dynamic characteristics of the disk are evaluated by an evaluation device using a laser pickup having a wavelength of 488 nm. did. A recording power of 8 mW at a linear velocity of 10 m / s, a recording frequency of 8.58 MHz at an erasing power of 4 mW, and a pulse width of 38 ns
The C / N ratio when the ec signal was recorded and the erasing ratio when the erasing power was applied by DC irradiation were 56 dB and 20 d, respectively.
B. Further, the erase power margin at an erase ratio of 20 dB or more was 0.3 mW. Reference Examples 1 and 2 Composition of (ZnS) 80 (SiO 2 ) 20 (unit: mol%; thermal conductivity: 3.5 × 10 −4 [pJ /
μm / K / ns]), a Ge 2 Sb 2 Te 5 recording film having a thickness of 110 nm and a thickness shown in Table 1 and a Ta 2 O film thickness of 110 nm.
5 (Thermal conductivity 7.39 × 10 −3 [pJ / μm / K / n
s]: The composition of Reference Example 1) or (ZnS) 80 (SiO 2 ) 20 (Thermal conductivity 3.5 × 10 −4 [pJ / μm / K / ns]: Reference Example 2) and shown in Table 1. A second dielectric film of thickness A
An l-alloy reflective film was formed in order of 200 nm by a sputtering method. Further, an ultraviolet curable resin layer was provided on the reflective layer. Since the recording layer of the disk prepared as described above is in an amorphous state, it is crystallized and initialized by a bulk eraser using an LD of 810 nm as a light source, and then a laser pickup of 780 nm (NA 0.55) is used. The dynamic characteristics of the disk were evaluated using the evaluation device. Table 1 shows a C / N ratio when a signal having a recording frequency of 4 MHz and a duty of 50% was recorded at a recording power and an erasing power shown in Table 1 at a linear velocity of 10 m / sec, and an erasing power margin of an erasing ratio of 20 dB or more. .

【表1】 表−1より、750〜900nm程度での波長での記録
再生においては、本願で規定する膜厚や熱伝導率の範囲
内であってもそうでなくても、消去マージンに大きな差
がないことが分かる。
[Table 1] From Table 1, it can be seen that in recording / reproducing at a wavelength of about 750 to 900 nm, there is no large difference in the erasing margin regardless of whether it is within the range of the film thickness and thermal conductivity specified in the present application. I understand.

【0026】[0026]

【発明の効果】本発明の光学的情報記録用媒体は、特に
レーザー波長600nm以下の光源を用いて、消去比の
良い記録再生特性を得ることができる。
According to the optical information recording medium of the present invention, a recording / reproducing characteristic with a good erasing ratio can be obtained by using a light source having a laser wavelength of 600 nm or less.

フロントページの続き (51)Int.Cl.6 識別記号 FI G11B 7/24 538 G11B 7/24 538C (72)発明者 堀江 通和 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (56)参考文献 特開 平3−241539(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 7/24 535 G11B 7/24 538 Continuation of the front page (51) Int.Cl. 6 Identification code FI G11B 7/24 538 G11B 7/24 538C (72) Inventor Horie Tatsukazu 1000 Kamoshita-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Research Institute (56) References JP-A-3-241539 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 7/24 535 G11B 7/24 538

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、第1の誘電体層、相変化記録
層、第2の誘電体層および反射層を順次有する光学的情
報記録用媒体であって、相変化記録層の膜厚を15−5
0nmとし、第2の誘電体層として熱伝導率が5.0×
10-4 −7.39×10 -3 pJ・μm -1 ・K -1 ・ns -1
のものを用い、かつ第2の誘電体層の膜厚を10〜25
0nmとした、波長600nm未満のレーザー光を用い
て情報の記録再生を行なうための光学的情報記録用媒
体。
1. An optical information recording medium having a first dielectric layer, a phase change recording layer, a second dielectric layer, and a reflective layer on a substrate, wherein the thickness of the phase change recording layer is 15-5
0 nm, and the thermal conductivity of the second dielectric layer is 5.0 ×
10 -4 -7.39 × 10 -3 pJ · μm -1 · K -1 · ns -1
And the thickness of the second dielectric layer is 10-25.
Using laser light with a wavelength of less than 600 nm, which is 0 nm
Optical information recording medium for recording and reproducing information.
【請求項2】 相変化記録層が、GeSbTe系又はI
nSbTe系である請求項1に記載の光学的情報記録用
媒体。
2. A phase change recording layer comprising a GeSbTe-based or I
2. The optical information recording device according to claim 1, wherein the optical information recording device is an nSbTe system.
Medium.
【請求項3】 第1及び第2の誘電体層は、酸化タンタ3. The method of claim 1, wherein the first and second dielectric layers are tantalum oxide.
ルからなる請求項1又は2に記載の光学的情報記録用媒The optical information recording medium according to claim 1, wherein the medium comprises an optical information recording medium.
体。body.
【請求項4】 第1及び第2の誘電体層は、光学定数n4. The first and second dielectric layers have an optical constant n
が1.5−2.4であり、kが0−0.05である誘電Is 1.5-2.4 and k is 0-0.05.
体からなる請求項1乃至3のいずれか1つに記載の光学An optical device according to any one of claims 1 to 3, wherein the optical device comprises a body.
的情報記録用媒体。Information recording medium.
【請求項5】 反射層の厚みが100−200nmであ5. The reflective layer has a thickness of 100 to 200 nm.
る請求項1乃至4のいずれか1つに記載の光学的情報記The optical information recording device according to any one of claims 1 to 4,
録用媒体。Recording medium.
【請求項6】 請求項1乃至5のいずれか1つに記載の6. The method according to claim 1, wherein
光学的情報記録用媒体に、波長600nm未満のレーザLaser with wavelength less than 600nm for optical information recording medium
ー光を用いて情報の記録再生を行うことを特徴とする記-Recording and reproduction of information using light
録再生方法。Recording and playback method.
JP5275706A 1993-11-04 1993-11-04 Optical recording medium and recording / reproducing method using the same Expired - Lifetime JP2903970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275706A JP2903970B2 (en) 1993-11-04 1993-11-04 Optical recording medium and recording / reproducing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5275706A JP2903970B2 (en) 1993-11-04 1993-11-04 Optical recording medium and recording / reproducing method using the same

Publications (2)

Publication Number Publication Date
JPH07130002A JPH07130002A (en) 1995-05-19
JP2903970B2 true JP2903970B2 (en) 1999-06-14

Family

ID=17559237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275706A Expired - Lifetime JP2903970B2 (en) 1993-11-04 1993-11-04 Optical recording medium and recording / reproducing method using the same

Country Status (1)

Country Link
JP (1) JP2903970B2 (en)

Also Published As

Publication number Publication date
JPH07130002A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
JP3011200B2 (en) Optical recording medium
JPH07169094A (en) Optical recording medium
JPH06195747A (en) Optical disc
JP3790673B2 (en) Optical recording method, optical recording apparatus, and optical recording medium
JPH01277338A (en) Optical recording medium
JPH11513166A (en) Reversible optical information medium
JPWO2002043058A1 (en) Optical recording medium inspection method and optical recording medium manufacturing method
JP4239428B2 (en) Optical recording medium
JP2553736B2 (en) Optical recording medium and method of manufacturing optical recording medium
JPH04134643A (en) Optical information recording medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
US5015548A (en) Erasable phase change optical recording elements and methods
JP2629746B2 (en) Optical recording medium
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
JP3493913B2 (en) Optical information recording medium
JPH04232780A (en) Phase change optical recording medium
JP2002117577A (en) Optical recording medium and optical information recording method
JP3010513B2 (en) Optical recording medium and manufacturing method thereof
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JP2557347B2 (en) Optical recording medium
JPH02112987A (en) Optical recording medium
JPS62226438A (en) Optical recording medium
JPH07220303A (en) Phase change type disk medium
JP2798247B2 (en) Optical recording medium

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 15

EXPY Cancellation because of completion of term